Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 392-401.doi: 10.3724/SP.J.1006.2023.21003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of TaRPP13-1B gene related to powdery mildew resistance in wheat cultivar Brock

LIU Xiao-Ying1(), ZHANG Chi1, WANG Xue-Qing1, YANG Chen-Xiao1, WANG Guang-Yu1, BIAN Yun-Di1, FANG Fang2, WANG Ying2, WANG Zhen-Ying1,*()   

  1. 1College of Life Sciences, Tianjin Normal University, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin 300387, China
    2Forestry Development Service Center of Baodi District, Tianjin 301899, China
  • Received:2022-01-16 Accepted:2022-05-05 Online:2022-05-25 Published:2022-05-25
  • Contact: WANG Zhen-Ying E-mail:skylxy@tjnu.edu.cn;skywangzy@tjnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31071671);Tianjin Science and Technology Program(18YFZCNC01100);Tianjin Science and Technology Program(17JCZDJC34100)

Abstract:

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a severe wheat disease in China. Cloning and pyramiding of different resistance genes to improve crop disease resistance is one of the most cost-effective methods. In this study, TaRPP13-1B on chromosome 1B, which encodes the CC, NB-ARC, and LRR domains, was isolated from common wheat. The relative expression level of TaRPP13-1B in Brock and BJ-1 fluctuated after Bgt inoculation, but the average expression levels were always higher than the susceptible wheat Jing 411. The function of TaRPP13-1B was elucidated by virus-induced gene silencing (VIGS) and overexpression transgenic technique. Silencing of TaRPP13-1B resulted in decreased disease resistance in Brock. Overexpression of TaRPP13-1B improved disease resistance in the transgenic wheat seedlings of Jinqiang 5 cultivar. The above results demonstrated that TaRPP13-1B was involved in the defense response of wheat to powdery mildew, which provided valuable genetic resources for breeding of resistant varieties.

Key words: wheat, NBS-LRR gene, TaRPP13-1B, powdery mildew resistance

Table 1

Primers used in this study"

引物Primer name 序列Sequence (5'-3') 用途Gene usage
TaRPP13-1B-F/R F: ATGGAGTTAGCCGTGGGCGC
R: TCAATCATGATACTCGTTAATAATTAGGG
cDNA克隆 Isolation of cDNA
RPP13-1B-GSP1 F: GCCTGGGCCAACTACGTTTCAAGTC 3'RACE第1轮PCR 1st run PCR of 3'RACE
RPP13-1B-GSP2 F: AAGCCTTCGAGGGACAGACG 3'RACE 第2轮PCR 2nd run PCR of 3'RACE
RPP13-1B-5RACE-1 R: AATCTCTGTCTCCCTTATGTCTAGGGTC 5'RACE第1轮PCR 1st run PCR of 5'RACE
RPP13-1B-5RACE-2 R: ATGACTTGAAACGTAGTTGGCCCAGG 5'RACE第2轮PCR 2nd run PCR of 5'RACE
TaRPP13-1B-ORF F: ATGGAGTTAGCCGTGGGCGC 全长cDNA克隆 Isolation of full-length cDNA
R: TCAATCATGATACTCGTTAATAATTAGGG
Actin-F/R F: TACTCCCTCACAACAACCG qRT-PCR
R: AGAACCTCCACTGAGAACAA
qRPP13-1B F: CCTACGACATCGAGGACTGC qRT-PCR
R: CGTACAGAGTCCTGCGGATC
RPP13-1B-V F: CTAGCTAGCAAAATGGATTACGGAAGGG BSMVγ: TaRPP13-1B载体构建
Construction of BSMVγ: TaRPP13-1B vector
R: CTAGCTAGCCGACCAGTAGCCACCAAC
RPP13-1B-BglF/BstE R F: GAAGATCTATGGAGTTAGCCGTGGGCGC TaRPP13-1B过表达载体构建
Construction of TaRPP13-1B overexpression vector
R: GGTAACCTCAATCATGATACTCGTTAATAATTAGGG
RPP13-1B-R(35S) TCTTCTGAAAAGTGCTGCCTG 鉴定转基因小麦
Identification of transgenic wheats

Fig. 1

Structure characterization of TaRPP13-1B gene A: predictive schematic for TaRPP13-1B sequence; B: predictive domain schematic for coding TaRPP13-1B protein; C: the phylogenetic tree of diverse RPP13-like proteins family."

Fig. 2

Homologous comparisons of TaRPP13-1B and TaRPP13-3"

Fig. 3

Relative expression level of TaRPP13-1B genes in Bgt-inoculated seedlings Jing 411: wheat susceptible variety; BJ-1: near isogenic line; Brock: wheat resistant variety; Student’s t-test, *: P < 0.05; **: P < 0.01."

Fig. 4

Silencing of TaRPP13-1B reduce wheat resistance against Bgt A: phenotype of Brock leaves inoculated with BSMV; B: TaRPP13-1B-knockdown plants inoculated with BgtE09; C: the relative expression of TaRPP13-1B (*: P < 0.05)."

Fig. 5

Microscopic observation of the spores on the Brock leaves LA: lobed appressoria; SA: slender appressoria; AGT: appressorium germ tube; SH: the secondary hypha; BC: beaded conidia"

Fig. 6

PCR detection of TaRPP13-1B T0 transgenic wheat M: DL2000 marker; 1: control; 2: positive control; 3-14: T0 transgenic wheat."

Fig. 7

Relative expression analysis of TaRPP13-1B in T1 transgenic wheat C: control; 1-11: T1-1-T1-11: transgenic wheat (**: P < 0.01)."

Fig. 8

Overexpression of TaRPP13-1B increase wheat resistance against BgtE09 A: phenotype of transgenic wheat leaves inoculated with BgtE09 for 7 days; B: the lesion area in transgenic wheat leaves (**: P < 0.01)."

[1] Kourelis J, Van Der Hoorn R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell, 2018, 30: 285-299.
doi: 10.1105/tpc.17.00579
[2] Zou S H, Wang H, Li Y W, Kong Z S, Tang D Z. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol, 2018, 218: 298-309.
doi: 10.1111/nph.14964
[3] Xing L P, Hu P, Liu J Q, Witek K, Zhou S, Xu J F, Li W H, Gao L, Huang Z P, Zhang R Q, Wang X E, Chen P D, Wang H Y, Jones D G, Karafiátová M, Vrána J, Bartoš J, Doleže l J, Tian Y C, Wu Y F, Cao A Z. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant, 2018, 11: 874-878.
doi: 10.1016/j.molp.2018.02.013
[4] Li M M, Dong L L, Li B B, Wang Z Z, Xie J Z, Qiu D, Li Y H, Shi W Q, Yang L J, Wu Q H, Chen Y X, Lu P, Guo G H, Zhang H Z, Zhang P P, Zhu K Y, Li Y W, Zhang Y, Wang R G, Yuan C G, Liu W, Yu D Z, Luo M C, Fahima T, Nevo E, Li H J, Liu Z Y. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol, 2020, 228: 1027-1037.
doi: 10.1111/nph.16761
[5] Xie J Z, Guo G H, Wang Y, Hu T Z, Wang L L, Li J T, Qiu D, Li Y H, Wu Q H, Lu P, Chen Y X, Dong L L, Li M M, Zhang H Z, Zhang P P, Zhu K Y, Li B B, Deal K R, Huo N X, Zhang Y, Luo M H, Liu S Z, Gu Y Q, Li H J, Liu Z Y. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol, 2020, 228: 1011-1026.
doi: 10.1111/nph.16762
[6] Koller T, Brunner S, Herren G, Hurni S, Keller B. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theor Appl Genet, 2018, 131: 861-871.
doi: 10.1007/s00122-017-3043-9
[7] Hall S A, Allen R L, Baumber R E, Baxter L A, Fisher K, Bittner-Eddy P D, Rose L E, Holub E B, Beynon J L. Maintenance of genetic variation in plants and pathogens involves complex networks of gene-for-gene interactions. Mol Plant Pathol, 2009, 10: 449-457.
doi: 10.1111/j.1364-3703.2009.00544.x pmid: 19523099
[8] Allen R L, Meitz J C, Baumber R E, Hall S A, Lee S C, Rose L E, Beynon J L. Natural variation reveals key amino acids in a downy mildew effector that alters recognition specificity by an Arabidopsis resistance gene. Mol Plant Pathol, 2008, 9: 511-523.
doi: 10.1111/j.1364-3703.2008.00481.x
[9] Rose L E, Bittner-Eddy P D, Langley C H, Holub E B, Beynon J L. The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics, 2004, 166: 1517-1527.
doi: 10.1534/genetics.166.3.1517
[10] Rentel M C, Leonelli L, Dahlbeck D, Zhao B, Staskawicz B J. Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci USA, 2008, 105: 1091-1096.
doi: 10.1073/pnas.0711215105
[11] Ramachandran S R, Yin C, Kud J, Tanaka K, Mahoney A K, Xiao F, Hulbert S H. Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology, 2017, 107: 75-83.
pmid: 27503371
[12] Hu W G, Wang Q H, Wang S W, Wang M M, Wang C Y, Tian Z R, Liu X L, Ji W Q, Zhang H. Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. J Genet, 2020, 99: 44-45.
doi: 10.1007/s12041-020-01206-w
[13] Liu X Y, Zhang C Q, Zhang L L, Huang J G, Dang C, Xie C J, Wang Z Y. TaRPP13-3, a CC-NBS-LRR like gene located on chr 7D, promotes disease resistance to wheat powdery mildew in Brock. J Phytopathol, 2020, 168: 688-699.
doi: 10.1111/jph.12949
[14] 王艳红, 肖莹, 郑舒扬, 刘晓颖, 王振英. 白粉菌诱导的小麦品种Brock的差异表达基因解析. 天津师范大学学报(自然科学版), 2015, 35(2): 71-76.
Wang Y H, Xiao Y, Zheng S Y, Liu X Y, Wang Z Y. Analysis on differentially expressed genes of wheat Brock inoculated by Blumeria gramini f. sp. tritici. J Tianjin Nor Univ (Nat Sci Edn), 2015, 35(2): 71-76. (in Chinese with English abstract)
[15] Ramachandran S R, Yin C, Kud J, Tanaka K, Mahoney A K, Xiao F, Hulbert S H. Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology, 2016, 107: 75-83.
doi: 10.1094/PHYTO-02-16-0083-R
[16] Chen J H, Zhang F Y, Zhao C J, Lyu G G, Sun C W, Pan Y B, Guo X Y, Chen F. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J, 2019, 17: 2106-2122.
doi: 10.1111/pbi.13126
[17] 刘登全, 王园秀, 崔朝宇, 秦双林, 欧阳慧, 蒋军喜. 晚熟温州蜜柑 NBS-LRR类抗病基因同源序列的克隆及分析. 江西农业大学学报, 2016, 38: 83-89.
Liu D Q, Wang Y X, Cui C Y, Qin S L, Ou-Yang H, Jiang J X. Cloning and analysis of NBS-LRR disease-resistant gene analogs in Citrus unshiu Marc. Acta Agric Univ Jiangxiensis, 2016, 38: 83-89. (in Chinese with English abstract)
[18] Prabhukarthikeyan S R, Manikandan R, Durgadevi D, Keerthana U, Harish S, Karthikeyan G, Raguchander T. Bio-suppression of turmeric rhizome rot disease and understanding the molecular basis of tripartite interaction among Curcuma longa, Pythium aphanidermatum and Pseudomonas fluorescens. Biol Control, 2017, 111: 23-31.
doi: 10.1016/j.biocontrol.2017.05.003
[19] Chen T, Lv Y, Zhao T M, Li N, Yang Y w, Yu W, He X, Liu T, Zhang B L. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One, 2013, 8: e80816.
doi: 10.1371/journal.pone.0080816
[20] Han L J, Weng K, Ma H, Xiang G Q, Li Z Q, Wang Y J, Liu G T, Xu Y. Identification and characterization of erysiphe necator-responsive MicroRNAs in Chinese wild vitis pseudoreticulata by high-throughput sequencing. Front Plant Sci, 2016, 7: 621.
doi: 10.3389/fpls.2016.00621 pmid: 27303408
[21] Khan S A, Zhang C, Ali N, Gandeka M. Highdensity SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus favus resistance in peanut (Arachis hypogaea). Theor Appl Genet, 2020, 133: 2239-2257.
doi: 10.1007/s00122-020-03594-0
[22] Howlader J, Robin A, Natarajan S, Biswas M K, Nou I S. Transcriptome analysis by RNA-Seq reveals genes related to plant height in two sets of parent-hybrid combinations in easter lily (Lilium longiflorum). Sci Rep, 2020, 10: 9082-9097.
doi: 10.1038/s41598-020-65909-x pmid: 32494055
[23] 黄建国. 小麦抗白粉病基因 SSR 分子标记筛选及AP2/ERF转录因子家族分析. 天津师范大学硕士学位论文, 天津, 2021.
Huang J G. Screening for SSR Markers Linked to Powdery Mildew Resistance Gene and Bioinformatics Analysis of AP2/ERF Transcription Factor Family in Wheat. MS Thesis of Tianjin Normal University, Tianjin, China, 2021. (in Chinese with English abstract)
[24] 刘晓颖. 小麦品种Brock响应白粉菌侵染早期抗病相关基因表达和功能分析. 中国农业大学博士学位论文, 北京, 2021.
Liu X Y. Expression and Functional Analysis of Genes Associated with Early Powdery Mildew Resistance in Wheat Variety Brock. PhD Dissertation of China Agricultural University, Beijing, China, 2021. (in Chinese with English abstract)
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Liu X Y, Wang J Y, Fan B L, Shang Y T, Sun Y F, Dang C, Xie C J, Wang Z Y, Peng Y K. A COI1 gene in wheat contributes to the early defence response against wheat powdery mildew. J Phytopathol, 2018, 166: 116-122.
doi: 10.1111/jph.12667
[27] 栗聪, 雒景吾, 张磊, 田增荣, 刘新伦, 吉万全. 小麦成熟胚再生体系优化及优良受体基因型筛选. 麦类作物学报, 2014, 34: 583-590.
Li C, Luo J W, Zhang L, Tian Z R, Liu X L, Ji W Q. Optimizing the regeneration system from mature embryo and screening of elite wheat genotypes. J Triticeae Crops, 2014, 34: 583-590. (in Chinese with English abstract)
[28] 王艳丽, 叶兴国, 刘艳鹏, 杜丽璞, 徐惠君. 农杆菌敏感小麦基因型的筛选研究. 麦类作物学报, 2005, 25(6): 6-10.
Wang Y L, Ye X G, Liu Y P, Du L P, Xu H J. Screening of wheat genotype sensitive to Agrobacterium tumefaciens infection. J Triticeae Crops, 2005, 25(6): 6-10 (in Chinese with English abstract).
[29] 王怡, 彭永康. 抗、感白粉病春小麦感染白粉菌后抗病特性的细胞学观察. 天津农业科学, 2014, 20(4): 1-4.
Wang Y, Peng Y K. Cytological analysis of spring wheat with different resistance to powdery mildew induced by Bgt. J Tianjin Agric Sci, 2014, 20(4): 1-4. (in Chinese with English abstract)
[30] 河南省植保站. 河南省主要农作物病虫害测报办法. 郑州: 河南科学技术出版社, 1995. pp 11-18.
Plant Protection and Quarantine Station of Henan Province. Forecasting Methods of the Main Crop Diseases and Insect Pests in Henan Province. Zhengzhou: Henan Science and Technology Press, 1995. pp 11-18. (in Chinese)
[31] Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538.
doi: 10.1046/j.1365-313x.2003.01977.x pmid: 14756761
[32] Brunner S, Hurni S, Herren G, Kalinina O, Burg S V, Zeller S L, Schmid B, Winzeler M, Keller B. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnol J, 2011, 9: 897-910.
doi: 10.1111/j.1467-7652.2011.00603.x
[33] Brunner S, Stirnweis D, Quijano C D, Buesing G, Herren G, Parlange F, Barret P, Tassy C, Sautter C, Winzeler M. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol J, 2012, 10: 398-409.
doi: 10.1111/j.1467-7652.2011.00670.x
[34] He H G, Zhu S Y, Zhao R H, Jiang Z N, Ji Y Y, Ji J, Qiu D, Li H J, Bie T D. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant, 2018, 11: 879-882.
doi: S1674-2052(18)30090-X pmid: 29567454
[35] 王海燕, 肖进, 袁春霞, 徐涛, 于春艳, 孙昊杰, 陈佩度, 王秀娥. 携带抗白粉病基因Pm21的小麦-簇毛麦小片段易位染色体在不同小麦背景中的传递率及遗传稳定性. 作物学报, 2016, 42: 361-367.
doi: 10.3724/SP.J.1006.2016.00361
Wang H Y, Xiao J, Yuan C X, Xu T, Yu C Y, Sun H J, Chen P D, Wang X E. Transmission and genetic stability of no-homoeologous small fragment wheat-Haynaldia villosa translocation chromosomes with Pm21 in various cultivar backgrounds of common wheat. Acta Agron Sin, 2016, 42: 361-367. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00361
[36] Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger S G, Wicker T, Doležel J, Keller B, Wulff B B H. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol, 2016, 17: 221.
pmid: 27795210
[37] 陈芳, 乔麟轶, 李锐, 刘成, 李欣, 郭慧娟, 张树伟, 常利芳, 李东方, 阎晓涛, 任永康, 张晓军, 畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位. 作物学报, 2019, 45: 1503-1510.
Chen F, Qiao L Y, Li R, Li C, Li X, Guo H J, Zhang S W, Chang L F, Li D F, Yan X T, Ren Y K, Zhang X J, Chang Z J. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357. Acta Agron Sin, 2019, 45: 1503-1510. (in Chinese with English abstract)
[38] 陈芳. 小偃麦衍生品系抗白粉病基因的遗传定位及图位克隆. 山西大学博士论文, 山西太原, 2020.
Chen F. Genetic Mapping and Positional Cloning of Powdery Mildew Resistance Genes in the Derived Lines from a Wheat- Thinopyrum Hybrid. PhD Dissertation of Shanxi University, Taiyuan, Shanxi, China, 2020. (in Chinese with English abstract)
[39] 李根桥, 房体麟, 朱婕, 高亮亮, 李闪, 解超杰, 杨作民, 孙其信, 刘志勇. 普通小麦品种Brock抗白粉病基因分子标记定位. 作物学报, 2009, 35: 1613-1619.
Li G Q, Fang T L, Zhu J, Gao L L, Li S, Xie C J, Yang Z M, Sun Q X, Liu ZY. Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock. Acta Agron Sin, 2009, 35: 1613-1619. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01613
[40] Zou S H, Wang H, Li Y W, Kong Z S, Tang D Z. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol, 2017, 218: 298-309.
doi: 10.1111/nph.14964
[41] Zhou F S, Kurth J, Wei F S, Elliott C, Valè G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P. Cell-autonomous expression of Barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1 independent signaling pathway. Plant Cell, 2001, 13: 337-350.
pmid: 11226189
[42] Halterman D A, Wei F, Wise R P. Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol, 2003, 131: 558-567.
pmid: 12586880
[43] Chang C, Yu D S, Jiao J, Jing S J, Schulze-Lefert P, Shen Q H. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell, 2013, 25: 1158-1173.
doi: 10.1105/tpc.113.109942
[1] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.)  [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[2] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[3] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[4] LIU Fang-Fang, WAN Ying-Xiu, CAO Wen-Xin, LI Yao, ZHANG Qi-Qi, LI Yan, ZHANG Ping-Zhi. Evaluation method of late spring coldness tolerance in wheat [J]. Acta Agronomica Sinica, 2023, 49(2): 438-446.
[5] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[6] WANG Xue, WANG Wen-Hui, LI Dong, YAO Xia, ZHU Yan, CAO Wei-Xing, CHENG Tao. Difference between bidirectional reflectance factor and directional-hemispherical reflectance factor spectra and its effect on the estimation of leaf chlorophyll content in wheat [J]. Acta Agronomica Sinica, 2023, 49(2): 485-496.
[7] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[8] LI Xiu, LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(1): 286-294.
[9] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[10] WANG Hai-Qi, WANG Rong-Rong, JIANG Gui-Ying, YIN Hao-Jie, YAN Shi-Jie, CHE Zi-Qiang. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves [J]. Acta Agronomica Sinica, 2023, 49(1): 211-224.
[11] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[12] TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254.
[13] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[14] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[15] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!