Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 377-391.doi: 10.3724/SP.J.1006.2023.23021
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YIN Fang-Bing1(), LI Ya-Nan1, BAO Jian-Xi1, MA Ya-Jie1, QIN Wen-Xuan1, WANG Rui-Pu1, LONG Yan1,2, LI Jin-Ping2, DONG Zhen-Ying1,2,*(), WAN Xiang-Yuan1,2,*()
[1] | 宁慧云, 连晋, 赵玉坤, 连吉明, 高根来. 不同玉米品种雌穗性状及产量的灰关联评价研究. 农学学报, 2013, 3(6): 13-16. |
Ning H Y, Lian J, Zhao Y K, Lian J M, Gao G L. Grey relational evaluation study in ear traits and yield of different maize varieties. J Agric, 2013, 3(6): 13-16. (in Chinese with English abstract) | |
[2] | 王帮太, 吴建宇, 丁俊强, 席章营. 玉米产量及产量相关性状QTL的图谱整合. 作物学报, 2009, 35: 1836-1843. |
Wang B T, Wu J Y, Ding J Q, Xi Z Y. Map integration of QTLs for grain yield and its related traits in maize. Acta Agron Sin, 2009, 35: 1836-1843. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01836 |
|
[3] | 吴律, 代力强, 董青松, 施婷婷, 王丕武. 玉米行粒数的全基因组关联分析. 作物学报, 2017, 43: 1559-1564. |
Wu L, Dai L Q, Dong Q S, Shi T T, Wang P W. Genome-wide association analysis of kernel number per row in maize. Acta Agron Sin, 2017, 43: 1559-1564 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01569 |
|
[4] |
张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40: 1-6.
doi: 10.3724/SP.J.1006.2014.00001 |
Zhang H X, Weng J F, Zhang X C, Liu C L, Yong H J, Hao Z F, Li X H. Genome-wide association analysis of kernel row number in maize. Acta Agron Sin, 2014, 40: 1-6. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00001 |
|
[5] |
Li F, Jia H T, Liu L, Zhang C X, Liu Z J, Zhang Z X. Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize. Genet Mol Res, 2014, 13: 1707-1716.
doi: 10.4238/2014.January.17.1 pmid: 24535896 |
[6] |
Choi J K, Sa K J, Park D H, Lim S E, Ryu S H, Park J Y, Park K J, Rhee H I, Lee M, Lee J K. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers. Genes Genomics, 2019, 41: 667-678.
doi: 10.1007/s13258-019-00813-x |
[7] |
Zhou B, Zhou Z J, Ding J Q, Zhang X C, Mu C, Wu Y B, Gao J Y, Song Y X, Wang S W, Ma J L, Li X T, Wang R X, Xia Z L, Chen J F, Wu J Y. Combining three mapping strategies to reveal quantitative trait loci and candidate genes for maize ear length. Plant Genome, 2018, 11: 170107.
doi: 10.3835/plantgenome2017.11.0107 |
[8] |
Zhang X X, Guan Z R, Li Z L, Liu P, Ma L L, Zhang Y C, Pan L, He S J, Zhang Y L, Li P, Ge F, Zou C Y, He Y C, Gao S B, Pan G T, Shen Y O. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet, 2020, 133: 2881-2895.
doi: 10.1007/s00122-020-03639-4 pmid: 32594266 |
[9] |
Xu Y, Xu C, Xu S. Prediction and association mapping of agronomic traits in maize using multiple omic data. Heredity, 2017, 119: 174-184.
doi: 10.1038/hdy.2017.27 pmid: 28590463 |
[10] |
Li T, Qu J Z, Tian X K, Lao Y H, Wei N N, Wang Y H, Hao Y C, Zhang X H, Xue J Q, Xu S T. Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Front Genet, 2020, 11: 747.
doi: 10.3389/fgene.2020.00747 |
[11] |
Tian H L, Wang F G, Zhao J R, Yi H M, Wang L, Wang R, Yang Y, Song W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015, 35: 136.
doi: 10.1007/s11032-015-0335-0 |
[12] |
Zhu X M, Shao X Y, Pei Y H, Guo X M, Li J, Song X Y, Zhao M A. Genetic diversity and genome-wide association study of major ear quantitative traits using high-density SNPs in maize. Front Plant Sci, 2018, 9: 966.
doi: 10.3389/fpls.2018.00966 |
[13] |
Zhang C S, Zhou Z Q, Yong H J, Zhang X C, Hao Z F, Zhang F J, Li M S, Zhang D G, Li X H, Wang Z H, Weng J F. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet, 2017, 130: 1011-1029.
doi: 10.1007/s00122-017-2867-7 pmid: 28215025 |
[14] |
Xue Y D, Warburton M L, Sawkins M, Zhang X H, Setter T, Xu Y B, Grudloyma P, Gethi J, Ribaut J M, Li W C, Zhang X B, Zheng Y L, Yan J B. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet, 2013, 126: 2587-2596.
doi: 10.1007/s00122-013-2158-x pmid: 23884600 |
[15] |
Pandis N. Linear regression. Am J Orthod Dentofacial Orthop, 2016, 149: 431-434.
doi: 10.1016/j.ajodo.2015.11.019 |
[16] |
Carraro N, Forestan C, Canova S, Traas J, Varotto S. ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol, 2006, 142: 254-264.
pmid: 16844839 |
[17] |
Forestan C, Meda S, Varotto S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol, 2010, 152: 1373-1390.
doi: 10.1104/pp.109.150193 pmid: 20044449 |
[18] |
马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析. 作物学报, 2021, 47: 1228-1238.
doi: 10.3724/SP.J.1006.2021.03048 |
Ma J, Cao Y Y, Li H Y. Genome-wide association study of ear cob diameter in maize. Acta Agron Sin, 2021, 47: 1228-1238. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.03048 |
|
[19] | 殷芳冰, 王成, 龙艳, 董振营, 万向元. 玉米雌穗性状遗传分析与形成机制. 中国生物工程杂志, 2021, 41(12): 30-46. |
Yin F B, Wang C, Long Y, Dong Z Y, Wan X Y. Progress on dissecting genetic architecture and formation mechanism of maize ear traits. China Biotechnol, 2021, 41(12): 30-46. (in Chinese with English abstract) | |
[20] |
Lu M, Xie C X, Li X H, Hao Z F, Li M S, Weng J F, Zhang D G, Bai L, Zhang S H. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breed, 2011, 28: 143-152.
doi: 10.1007/s11032-010-9468-3 |
[21] |
Karen S P, Lopes S C J, Pereira S A, Augusto F G A. QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas, 2008, 145: 194-203.
doi: 10.1111/j.0018-0661.2008.02065.x |
[22] |
Tian B H, Wang J H, Wang G Y. Confirmation of a major QTL on chromosome 10 for maize kernel row number in different environments. Plant Breed, 2014, 133: 184-188.
doi: 10.1111/pbr.12132 |
[23] |
Liu L, Du Y F, Huo D A, Wang M, Shen X M, Yue B, Qiu F Z, Zheng Y L, Yan J B, Zhang Z X. Genetic architecture of maize kernel row number and whole genome prediction. Theor Appl Genet, 2015, 128: 2243-2254.
doi: 10.1007/s00122-015-2581-2 pmid: 26188589 |
[24] |
Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed, 2007, 20: 41-51.
doi: 10.1007/s11032-006-9071-9 |
[25] |
Yang C, Liu J, Rong T Z. Detection of quantitative trait loci for ear row number in F2 populations of maize. Genet Mol Res, 2015, 14: 14229-14238.
doi: 10.4238/2015.November.13.6 pmid: 26600480 |
[26] |
Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121-131.
doi: 10.1007/s10681-005-9060-9 |
[27] |
Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M D, Buckler E S, Rocheford T R. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011, 7: e1002383.
doi: 10.1371/journal.pgen.1002383 |
[28] |
Huo D A, Ning Q, Shen X M, Liu L, Zhang Z X. QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS One, 2016, 11: e0155506.
doi: 10.1371/journal.pone.0155506 |
[29] |
Yang N, Lu Y L, Yang X H, Huang J, Zhou Y, Ali F, Wen W W, Liu J, Li J S, Yan J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet, 2014, 10: e1004573.
doi: 10.1371/journal.pgen.1004573 |
[30] |
Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt R J, McSteen P. Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA, 2008, 105: 15196-15201.
doi: 10.1073/pnas.0805596105 |
[31] |
Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S, McSteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell, 2011, 23: 550-566.
doi: 10.1105/tpc.110.075267 |
[32] |
Barazesh S, McSteen P. Barren inflorescence1 functions in organogenesis during vegetative and inflorescence development in maize. Genetics, 2008, 179: 389-401.
doi: 10.1534/genetics.107.084079 pmid: 18493061 |
[33] |
McSteen P, Hake S. Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development, 2001, 128: 2881-2891.
doi: 10.1242/dev.128.15.2881 pmid: 11532912 |
[34] |
McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X T, Kellogg E, Hake S. Barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol, 2007, 144: 1000-1011.
doi: 10.1104/pp.107.098558 pmid: 17449648 |
[35] |
Kato H, Nishihama R, Weijers D, Kohchi T. Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. J Exp Bot, 2018, 69: 291-301.
doi: 10.1093/jxb/erx267 pmid: 28992186 |
[36] |
Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630-635.
doi: 10.1038/nature03148 |
[37] |
Sigmon B, Vollbrecht E. Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol, 2010, 19: 1296-1311.
doi: 10.1111/j.1365-294X.2010.04562.x |
[38] | 肖朝文, 傅永福. AT-hook蛋白的研究进展. 中国农业科技导报, 2009, 11(5): 12-16. |
Xiao C W, Fu Y F. Research progress in AT-hook proteins. J Agric Sci Technol, 2009, 11(5): 12-16. (in Chinese with English abstract) | |
[39] |
Gallavotti A, Malcomber S, Gaines C, Stanfield S, Whipple C, Kellogg E, Schmidt R J. BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears. Plant Cell, 2011, 23: 1756-1771.
doi: 10.1105/tpc.111.084590 |
[40] |
Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z X, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D, Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun, 2020, 11: 988.
doi: 10.1038/s41467-020-14746-7 |
[1] | YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730. |
[2] | XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633. |
[3] | MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661. |
[4] | LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807. |
[5] | LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844. |
[6] | FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi–Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783. |
[7] | DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686. |
[8] | SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551. |
[9] | LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510. |
[10] | XU Tong, LYU Yan-Jie, SHAO Xi-Wen, GENG Yan-Qiu, WANG Yong-Jun. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities [J]. Acta Agronomica Sinica, 2023, 49(2): 472-484. |
[11] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[12] | SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23. |
[13] | CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261. |
[14] | ZHANG Jing, WANG Hong-Zhang, REN Hao, YIN Fu-Wei, WU Hong-Yan, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, DAI Ai-Bin, LIU Peng. Relationship between root architecture and root pulling force of summer maize [J]. Acta Agronomica Sinica, 2023, 49(1): 188-199. |
[15] | WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152. |
|