Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 833-844.doi: 10.3724/SP.J.1006.2023.24027

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping

LIU Shan-Shan(), PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen(), YANG Wen-Yu   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2022-01-22 Accepted:2022-09-05 Online:2023-03-12 Published:2022-09-14
  • Contact: YONG Tai-Wen E-mail:1525740873@qq.com;yongtaiwen@sicau.edu.cn
  • Supported by:
    China Agriculture Research System of MOF of MARA(Soybean, CARS-04-PS20);General Project of National Natural Science Foundation of China(31671625)

Abstract:

Abstract: To exploit the difference of root nodule growth and nitrogen fixation potential of soybean in maize-soybean relay strip intercropping system, a two-year filed experiment with different nodulation characteristics soybean varieties (Gongxuan 1, Guixia 3, and Nandou 25) under different maize-soybean spacing (30, 45, 60, and 75 cm) was conducted. The results showed that the peaks of soybean nodule number and fresh weight were delayed under the intercropping system compared with soybean monoculture. The root nodule number and fresh weight of each variety under 60 cm were significantly higher than those of other spacing treatments, and were higher than those of monoculture soybean after reaching the peak stage. The differences among varieties were as follows: Nandou 25 > Guixia 3 > Gongxuan 1. Compared with soybean monoculture, nitrogen fixation potential of soybean nodules per plant before the beginning seed stage (R5) under intercropping mode was reduced. However, nitrogen fixation potential per plant of Gongxuan 1, Guixia 3, and Nandou 25 increased by 8.53%, 16.40%, and 13.70% on average in two years under 60 cm at R5 stage. The accumulation process of inclusions in infected cells of different soybean varieties was quite different. Compared with soybean monoculture, the number of bacteroids increased under 60 cm at R5, among which poly-β-hydroxybutyrate (PHB) increased, and Nandou 25 was the best. Therefore, to improve the number of soybean nodule bacteroids, PHB and nitrogen fixation potential the appropriate inter-plant row spacing (60 cm) under intercropping can increase soybean nodule number and fresh weight at R5 stage, and Nandou 25 with strong nodulation had the best effect.

Key words: maize/soybean relay strip intercropping, row spacing, nodular varieties, root nodule growth, ultrastructure, nitrogen fixation potential

Fig. 1

Daily rainfall and average daily air temperature map of the test site from April to October in 2016-2017"

Table 1

Main characteristics of three soybean varieties"

主要特征
Main characteristics
贡选1号
Gongxuan 1
桂夏3号
Guixia 3
南豆25号
Nandou 25
生育期 Maturity (d) 120 108 134
叶形 Leaf shape 卵圆 Oval 椭圆 Elliptical 卵圆 Oval
株高 Plant height (cm) 96.00 59.90 67.50
结荚习性 Growth habit 有限 Determinate 有限 Determinate 有限 Determinate
蛋白质 Protein (%) 47.00 43.62 49.10
脂肪 Fat (%) 17.20 20.11 17.50

Fig. 2

Planting map of maize-soybean relay strip intercropping RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm."

Table 2

Analysis of the main effects of the nodulation capacity of different soybean varieties under different row spacing"

处理
Treatment
单株根瘤数 Root nodule number per plant 单株根瘤鲜重 Root nodule fresh weight per plant (g)
V5 R2 R3 R4 R5 R6 V5 R2 R3 R4 R5 R6
年份 Years (Y) 1350.82** 1126.19** 237.74** 15.49** 61.69** 10.66** 838.99** 721.82** 354.81** 133.85** 0.62 0.06
种间距
Row spacing (R)
382.16** 473.47** 309.46** 155.95** 96.34** 40.80** 280.54** 143.60** 102.65** 105.95** 106.05** 39.28**
品种 Varieties (V) 49.39** 49.50** 20.76** 25.87** 25.07** 57.80** 43.01** 13.27** 4.84* 33.62** 24.91** 19.31**
年份×种间距 Y×R 332.84** 183.15** 59.25** 29.07** 17.09** 24.23** 285.32** 60.24** 45.57** 65.83** 9.69** 1.86
年份×品种 Y×V 9.11** 26.14** 20.15** 8.30** 4.73* 8.48** 21.25** 14.27** 29.57** 1.48 1.19 2.18
种间距×品种 R×V 0.88 9.07** 5.23** 1.81 3.14* 1.61 10.08** 2.60* 4.40** 1.60 5.08** 0.88
年际×种间距×品种 Y×R×V 1.43 3.10* 1.09 1.81 3.06* 3.31** 5.16** 0.29 3.04* 2.88* 3.82** 1.04

Fig. 3

Dynamics of root nodule number of different soybean varieties under different row spacing V5: 5-trifoliate stage; R1: beginning flower stage; R2: full flower stage; R3: beginning pod stage; R4: full pod stage; R5: beginning seed stage; R6: bulge stage. SS: soybean monoculture; RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm. GX1: Gongxuan 1; GX3: Guixia 3; ND25: Nandou 25."

Fig. 4

Dynamics of nodule fresh weight of different soybean varieties under different row spacing V5: 5-trifoliate stage; R1: beginning flower stage; R2: full flower stage; R3: beginning pod stage; R4: full pod stage; R5: beginning seed stage; R6: bulge stage. SS: soybean monoculture; RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm ; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm. GX1: Gongxuan 1; GX3: Guixia 3; ND25: Nandou 25."

Fig. 5

Accumulation of inclusions in infected cells of Gongxuan 1 under different row spacing ( 30,000 times magnification) R: rhizobia; PHB: poly-β-hydroxybutyrate; PP: polyphosphate particle; VE: vesicle; B: bacterioid. V5: 5-trifoliate stage; R2: full flower stage; R5: beginning seed stage. SS: monoculture soybean; RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm. GX1: Gongxuan 1; GX3: Guixia 3; ND25: Nandou 25."

Fig. 6

Accumulation of inclusions in infected cells of Guixia 3 under different row spacing (30,000 times magnification) R: rhizobia; PHB: poly-β-hydroxybutyrate; PP: polyphosphate particle; VE: vesicle; B: bacterioid. V5: 5-trifoliate stage; R2: full flower stage; R5: beginning seed stage. SS: monoculture soybean; RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm. GX1: Gongxuan 1; GX3: Guixia 3; ND25: Nandou 25."

Fig. 7

Accumulation of inclusions in infected cells of Nandou 25 under different row spacing ( 30,000 times magnification) R: rhizobia; PHB: poly-β-hydroxybutyrate; PP: polyphosphate particle; VE: vesicle; B: bacterioid. V5: 5-trifoliate stage; R2: full flower stage; R5: beginning seed stage. SS: monoculture soybean; RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm. GX1: Gongxuan 1; GX3: Guixia 3; ND25: Nandou 25."

Table 3

Main effects analysis of nitrogen fixation capacity of different soybean varieties under different row spacing"

处理
Treatment
固氮酶活性
Nitrogenase activity of per unit mass (mL g-1 h-1)
单株固氮潜力
Nitrogenase activity of per plant (mL h-1 plant-1)
V5 R1 R3 R4 R5 V5 R1 R3 R4 R5
年份 Years (Y) 3.92 1207.12** 4.39* 280.81** 145.77** 266.26** 95.61** 72.09** 187.77** 117.82**
种间距 Row spacing (R) 25.01** 155.05** 63.62** 43.00** 40.07** 44.54** 122.48** 107.08** 231.80** 21.65**
品种 Varieties (V) 9.19** 81.56** 33.34** 30.76** 46.49** 8.31** 8.14** 11.65** 62.59** 14.70**
年份×种间距 Y×R 0.61 6.98** 4.44** 0.58 3.81* 10.17** 14.57** 1.47 0.70 1.29
年份×品种 Y×V 4.06* 24.10** 9.66** 13.67** 1.27 0.91 1.27 6.43** 6.85** 6.69**
种间距×品种 R×V 3.07* 5.20** 2.46* 3.16* 3.17* 0.63 2.91* 4.64** 15.68** 3.14*
年际×种间距×品种 Y×R×V 1.56 1.70 1.32 2.08 0.84 1.27 3.41** 4.38** 5.75** 3.10*

Fig. 8

Dynamics of nitrogenase activity of different soybean varieties under different row spacing V5: 5-trifoliate period stage; R1: beginning flower stage; R3: beginning pod stage; R4: full pod stage; R5: beginning seed stage; R6: bulge stage. SS: soybean monoculture; RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm. GX1: Gongxuan 1; GX3: Guixia 3; ND25: Nandou 25."

Fig. 9

Dynamics of nitrogenase activity per plant of different soybean varieties under different row spacing V5: 5-trifoliate period stage; R1: beginning flower stage; R3: beginning pod stage; R4: full pod stage; R5: beginning seed stage; R6: bulge stage. SS: soybean monoculture; RI30: space between maize and soybean is 30 cm; RI45: space between maize and soybean is 45 cm; RI60: space between maize and soybean is 60 cm; RI75: space between maize and soybean is 75 cm. GX1: Gongxuan 1; GX3: Guixia 3; ND25: Nandou 25."

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2021: 48: 1-14.
Yang H, Zhou Y, Chen P, Du Q, Zheng B C, Pu T, Wen J, Yang W Y, Yong T W. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system. Acta Agron Sin, 2021, 48: 1-14. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03058
[2] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415. (in Chinese with English abstract)
[3] Ferguson B J, Indrasumunar A, Hayashi S, Lin M H, Lin Y H, Reid D E, Gresshoff P M. Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol, 2010, 52: 61-76.
doi: 10.1111/j.1744-7909.2010.00899.x
[4] 杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全. 中国农业科学, 2019, 52: 3748-3750.
Yang W Y, Yang F. Developing maize-soybean strip intercropping for demand security of national food. Sci Agric Sin, 2019, 52: 3748-3750. (in Chinese with English abstract)
[5] 苏本营, 陈圣宾, 李永庚, 杨文钰. 间套作种植提升农田生态系统服务功能. 生态学报, 2013, 33: 4505-4514.
Su B Y, Chen S B, Li Y G, Yang W Y. Intercropping enhances the farmland ecosystem services. Acta Ecol Sin, 2013, 33: 4505-4514. (in Chinese with English abstract)
[6] Ferguson B J, Mens C, Hastwell A H, Zhang M B, Su H, Jones C H, Chu X T, Gresshoff P M. Legume nodulation: the host controls the party. Plant Cell Environ, 2019, 42: 41-51.
doi: 10.1111/pce.13348
[7] Wang X Y, Gao Y Z, Zhang H L, Shao Z Q, Sun B R, Gao Q. Enhancement of rhizosphere citric acid and decrease of NO3- /NH4+ ratio by root interactions facilitate N fixation and transfer. Plant Soil, 2020, 447: 169-182.
doi: 10.1007/s11104-018-03918-6
[8] Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambersb H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA, 2016, 113: 6496-6501.
doi: 10.1073/pnas.1523580113
[9] 范元芳, 杨峰, 何知舟, 王锐, 刘沁林, 袁小琴, 雍太文, 武晓玲, 杨文钰. 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应. 中国生态农业学报, 2016, 24: 608-617.
Fan Y F, Yang F, He Z Z, Wang R, Liu Q L, Yuan X Q, Yong T W, Wu X L, Yang W Y. Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean-maize intercropping system. Chin J Eco-Agric, 2016, 24: 608-617. (in Chinese with English abstract)
[10] 王竹, 杨文钰, 伍晓燕, 吴其林. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19: 323-329.
pmid: 18464638
Wang Z, Yang W Y, Wu X Y, Wu Q L. Effects of maize plant type and planting width on the early morphological characters and yield of relay planted soybean. Chin J Appl Ecol, 2008, 19: 323-329. (in Chinese with English abstract)
pmid: 18464638
[11] 于晓波, 苏本营, 龚万灼, 罗玲, 刘卫国, 杨文钰, 张明荣, 吴海英, 曾宪堂. 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响. 中国农业科学, 2014, 47: 1743-1753.
Yu X B, Su B Y, Gong W Z, Luo L, Liu W G, Yang W Y, Zhang M R, Wu H Y, Zeng X T. The nodule characteristics and nitrogen fixation of soybean in maize-soybean relay strip intercropping. Sci Agric Sin, 2014, 47: 1743-1753. (in Chinese with English abstract)
[12] 庞婷, 陈平, 袁晓婷, 雷鹿, 王甜, 付智丹, 汪锦, 杨文钰, 张晓娜, 雍太文. 种间距对不同结瘤特性套作大豆物质积累、鼓粒及产量形成的影响. 中国农业科学, 2019, 52: 3751-3762.
Pang T, Chen P, Yuan X T, Lei L, Wang T, Fu Z D, Wang J, Yang W Y, Zhang X N, Yong T W. Effects of Row Spacing on Dry matter accumulation, grain filling and yield formation of different nodulation characteristic soybeans in intercropping. Sci Agric Sin, 2019, 52: 3751-3762. (in Chinese with English abstract)
[13] Carroll B J, Mcneil D L, Gresshoff P M. Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA, 1985, 82: 4162-4166.
pmid: 16593577
[14] 庞婷, 帅鹏, 陈平, 杜青, 付智丹, 杨文钰, 雍太文. 不同结瘤品种和行间距对套作大豆根瘤生长及物质积累与分配的影响. 浙江大学学报(农业与生命科学版), 2017, 43: 451-461.
Pang T, Shuai P, Chen P, Du Q, Fu Z D, Yang W Y, Yong T W. Effects of different nodulation varieties and row spacings on nodule growth, dry matter accumulation and distribution of relay strip intercropping soybean. J Zhejiang Univ (Agric Life Sci), 2017, 43: 451-461. (in Chinese with English abstract)
[15] 赵财, 柴强, 乔寅英, 王建康. 禾豆间距对间作豌豆“氮阻遏”减缓效应的影响. 中国生态农业学报, 2016, 24: 1169-1176.
Zhao C, Chai Q, Qiao Y Y, Wang J K. Effect of cereal-legume spacing in intercropping system on alleviating “N inhibition” in pea plants. Chin J Eco-Agric, 2016, 24: 1169-1176. (in Chinese with English abstract)
[16] Ratcliff W C, Kadam S V, Denison R F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol, 2008, 65: 391-399.
doi: 10.1111/j.1574-6941.2008.00544.x pmid: 18631180
[17] Dhingra H K, Priya K. Physiological and molecular identification of polyhydroxybutyrates (PHB) producing micro-organisms isolated from root nodules of leguminous plants. Acad J, 2013, 7: 3961-3967.
[18] Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev, 1990, 54: 450-472.
doi: 10.1128/mr.54.4.450-472.1990 pmid: 2087222
[19] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Integr Agric, 2018, 17: 747-754.
doi: 10.1016/S2095-3119(17)61789-1
[20] 吴雨珊, 龚万灼, 廖敦平, 武晓玲, 杨峰, 刘卫国, 雍太文, 杨文钰. 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响. 作物学报, 2015, 41: 1740-1747.
doi: 10.3724/SP.J.1006.2015.01740
Wu Y S, Gong W Z, Liao D P, Wu X L, Yang F, Liu W G, Yong T W, Yang W Y. Effects of shade and light recovery on soybean cultivars (lines) and its relationship with yield in relay strip intercropping system. Acta Agron Sin, 2015, 41: 1740-1747. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01740
[21] 吴海英, 梁建秋, 于晓波, 杨鹏, 张明荣. 大豆新品种南夏豆25的选育及配套高产栽培技术研究. 大豆科技, 2015, (2): 23-26.
Wu H Y, Liang J Q, Yu X B, Yang P, Zhang M R. Breeding of a new soybean variety Nanxiadou 25 and its supporting high-yield cultivation techniques. Soybean Sci Technol, 2015, (2): 23-26. (in Chinese with English abstract)
[22] 陈渊, 梁江, 韦清源. 优质夏大豆新品种——桂夏3号的选育. 作物杂志, 2008, (8): 417-418.
Chen Y, Liang J, Wei Q Y. Breeding of a new high quality summer soybean variety, Guixia No.3. Crops, 2008, (8): 417-418. (in Chinese with English abstract)
[23] 邱丽娟, 王曙明. 中国大豆品种志1993-2004. 北京: 中国农业出版社, 2007. p 12.
Qiu L J, Wang S M. Chinese Soybean Variety 1993-2004. Beijing: China Agricultural Press, 2007. p 12. (in Chinese)
[24] 杨虎彪, 李晓霞, 罗丽娟. 植物石蜡制片中透明和脱蜡技术的改良. 植物学报, 2009, 44: 230-235.
doi: 10.3969/j.issn.1674-3466.2009.02.013
Yang H B, Li X X, Luo L J. An improved clearing and de-waxing method for plant paraffin sectioning. Bull Bot, 2009, 44: 230-235. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3466.2009.02.013
[25] 中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 6-18.
Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Experiment Guide for Modern Plant Physiology. Beijing: Science Press, 1999. pp 6-18. (in Chinese)
[26] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 642-650.
doi: 10.3724/SP.J.1006.2015.00642
Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G, Yang W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agron Sin, 2015, 41: 642-650. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00642
[27] Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crop Res, 2014, 155: 245-253.
doi: 10.1016/j.fcr.2013.08.011
[28] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响. 作物学报, 2021, 47: 2268-2277.
Peng X H, Chen P, Du Q, Yang X L, Ren J B, Zheng B C, Luo K, Xie C, Lei L, Yong T W, Yang W Y. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean. Acta Agron Sin, 2021, 47: 2268-2277. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04237
[29] 林伟伟, 李娜, 陈雨珊, 吴则焰, 林文雄, 沈荔花. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报, 2022, 30: 26-37.
Lin W W, Li N, Chen L S, Wu Z Y, Lin W X, Shen L H. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chin J Eco-Agric, 2022, 30: 26-37. (in Chinese with English abstract)
[30] Hu H Y, Li H, Hao M M, Ren Y N, Zhang M K, Liu R Y, Zhang Y, Li G, Chen J S, Ning T Y, Kuzyakov Y. Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria. J Appl Ecol, 2021, 58: 13964.
[31] 吴雨珊, 龚万灼, 杨文钰, 雍太文, 杨峰, 刘卫国, 武晓玲. 带状套作复光后不同大豆品种干物质积累模型与特征分析. 中国生态农业学报, 2017, 25: 572-580.
Wu Y S, Gong W Z, Yang W Y, Yong T W, Yang F, Liu W G, Wu X L. Dynamic model and characteristics analysis of dry matter production after light recovery of different soybean varieties in relay strip intercropping systems. Chin J Eco-Agric, 2017, 25: 572-580. (in Chinese with English abstract)
[32] 陈平, 杜青, 庞婷, 付智丹, 杨燕竹, 刘佳, 帅鹏, 孙丽霞, 张瑞娣, 杨文钰, 雍太文. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响. 四川农业大学学报, 2018, 36(1): 28-37.
Chen P, Du Q, Pang T, Fu Z D, Yang Y Z, Liu J, Shuai P, Sun L X, Zhang R D, Yang W Y, Yong T W. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system. J Sichuan Agric Univ, 2018, 36(1): 28-37. (in Chinese with English abstract)
[33] 韩善华. 大豆根瘤中多磷酸盐积累的特征. 中国微生态学杂志, 1991, (2): 55-58.
Han S H. Characteristics of polyphosphate accumulation in soybean root nodules. Chin Microecol J, 1991, (2): 55-58. (in Chinese)
[34] Sinclair T R, Serraj R. Legume nitrogen fixation and drought. Nature, 1995, 378: 344-344.
doi: 10.1038/378344a0
[35] 左元梅, 刘永秀, 张福锁. 与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响. 植物生理与分子生物学报, 2003, 29: 33-38.
Zuo Y M, Liu Y X, Zhang F S. Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghaemoglobin content of peanut. J Plant Physiol Mol Biol, 2003, 29: 33-38. (in Chinese with English abstract)
[1] WEI Xiao-Dong, ZHANG Ya-Dong, SONG Xue-Mei, CHEN Tao, ZHU Zhen, ZHAO Qin-Yong, ZHAO Ling, LU Kai, LIANG Wen-Hua, HE Lei, HUANG Sheng-Dong, XIE Yin-Feng, WANG Cai-Lin. Photosynthetic physiological characteristics of high yield super rice variety Nanjing 5718 [J]. Acta Agronomica Sinica, 2022, 48(11): 2879-2890.
[2] YAN Wei, LI Fang-Jun, XU Dong-Yong, DU Ming-Wei, TIAN Xiao-Li, LI Zhao-Hu. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature and relative humity in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1654-1665.
[3] JIN Rong,LI Zhong,YANG Yun,ZHOU Fang,DU Lun-Jing,LI Xiao-Long,KONG Fan-Lei,YUAN Ji-Chao. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan [J]. Acta Agronomica Sinica, 2020, 46(4): 614-630.
[4] Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG. Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(5): 662-675.
[5] Ya-Jiao CHENG,Yuan-Fang FAN,Jun-Xu CHEN,Zhong-Lin WANG,Ting-Ting TAN,Jia-Feng LI,Sheng-Lan LI,Feng YANG,Wen-Yu YANG. Effects of Light Intensity on Photosynthetic Characteristics and Assimilates of Soybean Leaf [J]. Acta Agronomica Sinica, 2018, 44(12): 1867-1874.
[6] LIU Hong-Yan, ZHOU Fang, LI Jun, YANG Min-Min, ZHOU Ting, HAO Guo-Cun,ZHAO Ying-Zhong . Anatomical Structure and Photosynthetic Characteristics of a Yellow Leaf Mutant YL1 in Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2017, 43(12): 1856-1863.
[7] FAN Yuan-Fang,YANG Feng*,LIU Qin-Lin,CHEN Jun-Xu,WANG Rui,LUO Shi-Ling,YANG Wen-Yu*. Effects of Shading on Leaf Structure and Photosynthetic Fluorescence Characteristics of Soybean seedlings in Maize-Soybean Relay Intercropping System [J]. Acta Agron Sin, 2017, 43(02): 277-285.
[8] KUAI Jie,SUN Ying-Ying,ZUO Qing-So,LIAO Qing-Xi,LENG Suo-Hu,CHENG Yu-Gui,CAO Shi,WU Jiang-Sheng,ZHOU Guang-Sheng. Optimization of Plant Density and Row Spacing for Mechanical Harvest in Winter Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2016, 42(06): 898-908.
[9] CHANG Jian-Feng,ZHANG Hai-Hong,LI Hong-Ping,DONG Peng-Fei,LI Chao-Hai. Effects of Different Row Spaces on Canopy Structure and Resistance of Summer Maize [J]. Acta Agron Sin, 2016, 42(01): 104-112.
[10] LI Wei,SHEN Jia-Heng,GUO De-Dong. Ultrastructure of Central Cell before and after Fertilization in Sugar Beet (Beta vulgaris) [J]. Acta Agron Sin, 2014, 40(01): 166-173.
[11] LI Wei,SHEN Jia-Heng,GUO De-Dong. Ultrastructure of Synergid in Its Degenerative Process in Sugar Beet (Beta vulgaris) [J]. Acta Agron Sin, 2013, 39(12): 2220-2227.
[12] YONG Ta-Wen, YANG Wen-Yu, XIANG Da-Bing, ZHU Zhen-Ying. Effect of Wheat/Maize/Soybean and Wheat/Maize/Sweet Potato Relay Strip Intercropping on Bacterial Community Diversity of Rhizosphere Soil and Nitrogen Uptake of Crops [J]. Acta Agron Sin, 2012, 38(02): 333-343.
[13] QIU Yi-Lan,LI Hong,PENG Ke-Qin,LIU Zhu-Li,CHEN Song,LIU Ru-Shi,LIANG Man-Zhong. Observation of Chloroplast Ultrastructure of Zebra Leaf in Rice Mutant b411 [J]. Acta Agron Sin, 2010, 36(1): 184-190.
[14] YANG Ji-Shun, GAO Hui-Yuan, LIU Peng, LI Geng, DONG Shu-Ting, ZHANG Ji-Wang, WANG Jing-Feng. Effects of Planting Density and Row Spacing on Canopy Apparent Photosynthesis of High-Yield Summer Corn [J]. Acta Agron Sin, 2010, 36(07): 1226-1233.
[15] DING Chang-Hong,SHEN Jia-Heng,GUO De-Dong,SHANG Ya-Jia,LU Jun-Ping. Ultrastructure of Megasprogenesis in Faculative Apomictic Monosonic Addition Line M14  of Beta corolliflora of Sugar Beet [J]. Acta Agron Sin, 2009, 35(8): 1516-1524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .