Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 795-807.doi: 10.3724/SP.J.1006.2023.23026

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development

LIU Yue(), MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun(), XIE Rui-Zhi()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, the Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2022-03-11 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-18
  • Contact: LI Shao-Kun,XIE Rui-Zhi E-mail:liuyue65147@163.com;xieruizhi@caas.cn;lishaokun@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFD0300302);China Agriculture Research System of MOF and MARA(CARS-02-25);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004)

Abstract:

The coordination of shoot and root is essential for the growth and development in maize. Analyzing the effect of the planting density on the shoot and root coordinated development can provide a new perspective for the theory and technology of increasing planting density and yield improvement. The experiments were conducted in 2020 and 2021 at the experimental station of Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, Gongzhuling, Jilin province. Two densification resistant varieties (Zhengdan 958 and Xianyu 335) and two planting densities (D1: 67,500 plants hm-2; D2: 97,500 plants hm-2) which were in the production stability interval were set up in this study, and the difference of some indexes of root and shoot was analyzed at different growth stages. The results showed that, compared with D2, the dry matter and root dry weight per plant of maize decreased significantly, while some population indexes were different. Among them, the yield of two varieties were not significantly increased. When the root indexes reached the maximum value on the 15th day after silking (R2 stage), the root dry weight per area, root length density did not increase significantly. The dynamic of shoot root ratio (S/R) during growth period could be expressed by exponential equation (y=aebx), and the increasing planting density significantly increased the S/R, grain root ratio, and leaf area root ratio. The increase of the three ratio at high density provided a signal of intensified root survival pressure. The results showed that the response of maize root to planting density was different from that of shoot. Under the premise of the same yield level, choosing the planting density with less root pressure may be more conducive to the construction of shoot and root coordination and constructing reasonable maize population.

Key words: maize, reasonable dense planting, yield, root dry weight, shoot root coordination

Fig. 1

Monthly accumulated temperature and precipitation during growth period in 2020 and 2021"

Table 1

Yield per plant and per area among different treatments"

年份
Year
品种
Variety
种植密度
Planting density (plants hm-2)
单株籽粒产量
Grain yield per plant (g plant-1)
群体产量
Grain yield per area (t hm-2)
2020 郑单958 67,500 185.42±0.79 aB 12.52±0.05 aB
Zhengdan 958 97,500 128.84±5.39 bA 12.56±0.53 aA
先玉335 67,500 201.26±2.11 aA 13.59±0.14 aA
Xianyu 335 97,500 135.96±3.22 bA 13.26±0.31 aA
2021 郑单958 67,500 198.90±4.95 aB 13.43±0.33 aB
Zhengdan 958 97,500 143.67±3.69 bB 14.01±0.40 aB
先玉335 67,500 217.36±3.76 aA 14.67±0.25 aA
Xianyu 335 97,500 152.86±0.77 bA 14.90±0.08 aA

Fig. 2

Dynamics of dry matter per plant and per area at different growth stages Different lowercase letters indicate significant differences at the 0.05 probability level between different planting densities under the same variety. D1: 67,500 plants hm-2; D2: 97,500 plants hm-2; ZD: Zhengdan 958; XY: Xianyu 335; V6: the sixth leaf collar stage; V12: the twelfth leaf collar; R1: silking stage; R2: 15 days after silking; R3: 30 days after silking; R4: 45 days after silking; R5: 60 days after silking; R6: harvest stage."

Fig. 3

Dynamics of leaf area per plant and LAI at different growth stages in maize Different lowercase letters indicate significant differences at the 0.05 probability level between different planting densities under the same variety. Treatments and stages are the same as those given in Fig. 2."

Fig. 4

Dynamics of root dry weight per plant and per area at different growth stages in maize Different lowercase letters indicate significant differences at the 0.05 probability level between different planting densities under the same variety. Treatments and stages are the same as those given in Fig. 2."

Fig. 5

Dynamics of root length per plant and root length density at different growth stages in maize Different lowercase letters indicate significant differences at the 0.05 probability level between different planting densities under the same variety. Treatments and stages are the same as those given in Fig. 2."

Fig. 6

Dynamics of root surface area per plant and root surface area density at different growth stages in maize Different lowercase letters indicate significant differences at the 0.05 probability level between different planting densities under the same variety. Treatments and stages are the same as those given in Fig. 2."

Fig. 7

Dynamics of root volume per plant and root volume density at different growth stages in maize Different lowercase letters indicate significant differences at the 0.05 probability level between different planting densities under the same variety. Treatments and stages are the same as those given in Fig. 2."

Table 2

Correlation between root growth indexes"

指标
Index
根长
Root length
根表面积
Root surface area
根体积
Root volume
根干重
Root dry weight
根长Root length 1 0.975** 0.933** 0.927**
根表面积Root surface area 1 0.956** 0.925**
根体积Root volume 1 0.948**
根干重Root dry weight 1

Fig. 8

Dynamics of shoot root ratio and fitting equation at different growth stage in maize Different lowercase letters indicate significant differences at the 0.05 probability level between different planting densities under the same variety. Treatments are the same as those given in Fig. 2."

Table 3

Kernel root ratio and leaf area root ratio of maize at R2 stage with maximum root dry weight"

年份
Year
品种
Variety
种植密度
Planting density (plants hm-2)
粒/根
Grain/root (g g-1)
叶/根
Leaf area/root (m2 g-1)
2020 郑单958 67,500 12.18±2.01 bA 0.06±0.01 aA
Zhengdan 958 97,500 15.56±2.51 aA 0.08±0.01 bA
先玉335 67,500 12.26±1.40 bA 0.05±0.01 aA
Xianyu 335 97,500 14.28±1.05 aA 0.08±0.01 bA
2021 郑单958 67,500 18.81±1.38 bA 0.09±0.01 aA
Zhengdan 958 97,500 22.75±4.88 aA 0.11±0.02 bA
先玉335 67,500 22.13±2.21 bA 0.09±0.01 aA
Xianyu 335 97,500 23.57±4.73 aA 0.11±0.02 bA
[1] Cardwell V B. Fifty years of Minnesota corn production sources of yield increase. Agron J, 1982, 74: 984-990.
doi: 10.2134/agronj1982.00021962007400060013x
[2] Brian D M, Rita H M. Survey of plant density tolerance in U.S. maize germplasm. Crop Sci, 2012, 54: 157-173.
doi: 10.2135/cropsci2013.04.0252
[3] 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示. 玉米科学, 2009, 17(5): 156-159.
Zhao J R, Wang R H. Factors of American corn increasing continuously and its enlightenment to China. J Maize Sci, 2009, 17(5): 156-159. (in Chinese with English abstract)
[4] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 11: 1960-1972.
Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Changes of maize planting density in China from 2005 to 2016. Sci Agric Sin, 2017, 11: 1960-1972. (in Chinese with English abstract)
[5] 徐明洁, 刘江, 董秋婷, 温日红, 张雷. 先玉335适宜栽培密度与性状指标研究. 安徽农业科学, 2009, 37: 8928-8930.
Xu M J, Liu J, Dong Q T, Wen R H, Zhang L. Preliminary study on proper cultivation density and character index of Xianyu 335. J Anhui Agric Sci, 2009, 37: 8928-8930. (in Chinese with English abstract)
[6] 李娜. 不同种植密度对玉米生长发育及产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Li N. Effects of Planting Density on Yield and Growth of Different Maize Varieties. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[7] 孙继, 顾万荣, 魏湜, 李晶, 赵东旭, 王泳超, 原立地. 黑龙江省寒地不同种植密度下高产春玉米冠层结构及光辐射特征. 玉米科学, 2012, 20(6): 70-75.
Sun J, Gu W R, Wei S, Li J, Zhao D X, Wang Y C, Yuan L D. Canopy structure and light radiation characteristics of high-yielding spring maize under different planting densities in cold regions of Heilongjiang province. J Maize Sci, 2012, 20(6): 70-75. (in Chinese with English abstract)
[8] 赵江, 张怡明, 牛兴奎, 刘鑫, 李少昆, 张凤路. 不同密度条件玉米根系性状在不同土层中的分布研究. 华北农学报, 2011, 26(增刊1): 99-103.
Zhao J, Zhang Y M, Niu X K, Liu X, Li S K, Zhang F L. Studies on the distribution of maize root characteristics at different soil layers and densities. Acta Agric Boreali-Sin, 2011, 26(S1): 99-103. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2011.S1.021
[9] Zhang P, Yan Y, Gu S C, Wang Y Y, Xu C L, Sheng D C, Li Y B, Wang P, Huang S B. Lodging resistance in maize: a function of root-shoot interactions. Eur J Agron, 2022, 132: 126393.
doi: 10.1016/j.eja.2021.126393
[10] 郭晓霞. 光辐射和密度对不同品种春玉米形态、根冠关系及产量的影响. 石河子大学硕士学位论文, 新疆石河子, 2020.
Guo X X. Effects of Solar Radiation and Density on Root Morphology, Root-Shoot Relationship and Yield of Different Spring Maize Cultivar. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2018. (in Chinese with English abstract)
[11] 鄂玉江, 戴俊英, 顾慰连. 玉米根系的生长规律及其与产量关系: I. 玉米根系生长和吸收能力与地上部分的关系. 作物学报, 1988, 14: 149-154.
E Y J, Dai J Y, Gu W L. The growth law of maize root system and its relationship with yield: I. The relationship between growth and absorption capacity of maize root system and overground part. Acta Agron Sin, 1988, 14: 149-154. (in Chinese)
[12] 张明, 宋振伟, 陈涛, 闫孝贡, 朱平, 任军, 邓艾兴, 张卫建. 不同春玉米品种干物质生产和子粒灌浆对种植密度的响应. 玉米科学, 2015, 23(3): 57-65.
Zhang M, Song Z W, Chen T, Yan X G, Zhu P, Ren J, Deng A X, Zhang W J. Differences in responses of biomass production and grain-filling to planting density between spring maize cultivars. J Maize Sci, 2015, 23(3): 57-65. (in Chinese with English abstract)
[13] 刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011, 37: 1301-1307.
doi: 10.3724/SP.J.1006.2011.01301
Liu W, Zhang J W, Lyu P, Yang J S, Liu P, Dong S T, Li D H, Sun Q Q. Effect of plant density on grain yield dry matter accumulation and partitioning in summer maize cultivar Denghai 661. Acta Agron Sin, 2011, 37: 1301-1307 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.01301
[14] Li J, Xie R Z, Wang K R, Ming B, Guo Y Q, Zhang G Q, Li S K. Variations in maize dry matter, harvest index, and grain yield with plant density. Agron J, 2015, 107: 829-834.
doi: 10.2134/agronj14.0522
[15] Li J, Wu M, Wang K R, Ming B, Chang X, Wang X B, Yang Z S, Xie R Z, Li S K. Identifying ways to narrow maize yield gaps based on planting density experiments. Agron J, 2020, 10: 281.
doi: 10.2134/agronj1918.00021962001007-80003x
[16] 严云, 廖成松, 张福锁, 李春俭. 密植条件下玉米冠根生长抑制的因果关系. 植物营养与肥料学报, 2010, 16: 257-265.
Yan Y, Liao C S, Zhang F S, Li C J. The causal relationship of the decreased shoot and root growth of maize plants under higher plant density. Plant Nutr Fert Sci, 2010, 16: 257-265. (in Chinese with English abstract)
[17] Pugnaire F I, Luque M T. Changes in plant interactions along a gradient of environmental stress. Oikos, 2001, 93: 42-49.
doi: 10.1034/j.1600-0706.2001.930104.x
[18] 李健. 西北超高产(15 t hm-2以上)春玉米群体结构特征研究. 石河子大学博士学位论文, 新疆石河子, 2015.
Li J. Study on the Canopy Structure Characteristics of Super-high-yield (More Than 15 t hm-2) Spring Maize in the Northwest of China. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2015 (in Chinese with English abstract).
[19] 陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36: 1153-1160.
doi: 10.3724/SP.J.1006.2010.01153
Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin, 2010, 36: 1153-1160. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01153
[20] 马达灵. 产量提高过程中玉米植株形态特征与产量性状的演变规律. 石河子大学博士学位论文, 新疆石河子, 2014.
Ma D L. Evolution of Plant Morphological Characteristics and Yield Traits of Maize (Zea mays L.) during Yield per Hectare Improvement. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2014. (in Chinese with English abstract)
[21] 牛兴奎. 春玉米产量提升过程中产量性能与群体结构的变化. 中国农业科学院博士学位论文, 北京, 2012.
Niu X K. Changes in Yield Capability and Population Structure of Spring Maize Resulted of Yield Improvements. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2012. (in Chinese with English abstract)
[22] 罗洋, 岳玉兰, 郑金玉, 郑洪兵, 李伟堂, 刘武仁. 玉米品种郑单958合理种植密度的研究. 吉林农业科学, 2008, 33(6): 11-12.
Luo Y, Yue Y L, Zheng J Y, Zheng H B, Li W T, Liu W R. Studies on proper planting density of maize variety ‘Zhengdan 958’. J Jilin Agric Sci, 2008, 33(6): 11-12 (in Chinese with English abstract).
[23] Ioannis S T, Metaxia T E T. Benefits from using maize density-independent hybrids. Maydica, 2005, 50: 9-17.
[24] 徐文娟. 不同种植密度条件下玉米生长发育对光照强度的响应. 石河子大学博士学位论文, 新疆石河子, 2017.
Xu W J. Response of Maize Growth to Light Intensities under Different Plant Densities. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2017 (in Chinese with English abstract).
[25] 薛珠政, 卢和顶, 林建新, 杨人震. 种植密度对玉米单株和群体效应的影响. 玉米科学, 1999, 7(2): 52-54.
Xue Z Z, Lu H D, Lin J X, Yang R Z. Effects of planting density on individual plant and population effect of maize. J Maize Sci, 1999, 7(2): 52-54. (in Chinese)
[26] 李少昆, 涂华玉, 张旺峰, 杨刚. 玉米根系在土壤中的分布及与地上部分的关系. 新疆农业科学, 1992, (3): 99-103.
Li S K, Tu H Y, Zhang W F, Yang G. Distribution of maize root system in soil and its relationship with above-ground part. Xinjiang Agric Sci, 1992, (3): 99-103. (in Chinese)
[27] 管建慧, 郭新宇, 刘洋, 刘克礼, 王纪华, 郭小东. 不同密度处理下玉米根系干重空间分布动态的研究. 玉米科学, 2007, 15(4): 105-108.
Guan J H, Guo X Y, Liu Y, Liu K L, Wang J H, Guo X D. Study on dynamic variation of root dry weight space distribution on different densities of maize. J Maize Sci, 2007, 15(4): 105-108. (in Chinese with English abstract)
[28] 张凤路, 牛兴奎, 张怡明, 李少昆, 谢瑞芝, 刘鑫, 修文雯. 提高密度对根冠发育及其产量的影响研究. 华北农学报, 2012, 27(2): 146-151.
doi: 10.3969/j.issn.1000-7091.2012.02.028
Zhang F L, Niu X K, Zhang Y M, Li S K, Xie R Z, Liu X, Xiu W W. Studies on the effect of density on the root-shoot relationship and yield in maize. Acta Agric Boreali-Sin, 2012, 27(2): 146-151. (in Chinese with English abstract)
[29] 罗方, 杨恒山, 张玉芹, 柳宝林. 春玉米根系特征对种植密度的响应. 内蒙古民族大学学报(自然科学版), 2017, 32: 494-498.
Luo F, Yang H S, Zhang Y Q, Liu B L. Response of root system characteristics of spring maize to planting density. J Inner Mongolia Univ Nat (Nat Sci Edn), 2017, 32: 494-498. (in Chinese with English abstract)
[30] Brouwer R. Distribution of dry matter in the plant. J Netherlands Agric Sci, 1962, 10: 361-376.
[31] 李栋浩, 姜雪连, 佟玲. 种植密度对制种玉米根冠生长及耗水量的影响. 排灌机械工程学报, 2014, 32: 1091-1097.
Li D H, Jiang X L, Tong L. Effect of planting density on root- shoot growth and water utilization efficiency of seed corn. J Drain Irrig Mach Eng, 2014, 32: 1091-1097. (in Chinese with English abstract)
[32] 李宗新, 陈源泉, 王庆成, 刘开昌, 张秀清, 刘霞, 张慧, 刘书聪, 刘春晓, 高旺盛, 隋鹏. 密植条件下种植方式对夏玉米群体根冠特性及产量的影响. 生态学报, 2012, 32: 7391-7401.
Li Z X, Chen Y Q, Wang Q C, Liu K C, Zhang X Q, Liu X, Zhang H, Liu S C, Liu C X, Gao W S, Sui P. Effect of different planting methods on root-shoot characteristics and grain yield of summer maize under high densities. Acta Ecol Sin, 2012, 32: 7391-7401. (in Chinese with English abstract)
[33] 李少昆, 刘景德, 张旺峰, 魏邦军, 杨刚, 赵海. 不同密度玉米根系在大田土壤中的分布、重量的调节及与地上部分的关系. 玉米科学, 1993, 1(3): 43-49.
Li S K, Liu J D, Zhang W F, Wei B J, Yang G, Zhao H. Regulation of distribution weight of maize root in field soil with different density and its relationship with above-ground part. J Maize Sci, 1993, 1(3): 43-49. (in Chinese with English abstract)
[34] 罗瑶年, 张健华. 玉米叶片衰老田间因素的分析及其与产量的关系. 玉米科学, 1995, 3(4): 34-38.
Luo Y N, Zhang J H. Investigation on field factors of leaf senescence and their relation to yield in maize. J Maize Sci, 1995, 3(4): 34-38. (in Chinese with English abstract)
[35] 翟娟, 薛军, 张园梦, 张国强, 沈东萍, 王群, 刘朝巍, 李少昆. 水肥一体化条件下施氮量对密植春玉米茎秆抗倒伏性状的影响. 玉米科学, 2021, 29(5): 137-144.
Zhai J, Xue J, Zhang Y M, Zhang G Q, Shen D P, Wang Q, Liu C W, Li S K. Effect of nitrogen application rate on lodging resistance of spring maize stalks under integrated irrigation with water and fertilizer. J Maize Sci, 2021, 29(5): 137-144. (in Chinese with English abstract)
[36] 宋日, 刘利, 吴春胜, 马丽艳. 根系生长空间对玉米生长和养分吸收的影响. 西北农林科技大学学报(自然科学版), 2009, 37(6): 58-64.
Song R, Liu L, Wu C S, Ma L Y. Effects of root growth space on growth and N and P uptake in corn (Zea mays L.). J Northwest A&F Univ (Nat Sci Edn), 2009, 37(6): 58-64. (in Chinese with English abstract)
[1] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[2] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[3] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[4] LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016–2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131.
[5] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[6] WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078.
[7] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
[8] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[9] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[10] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[11] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[12] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[13] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[14] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[15] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .