Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1122-1131.doi: 10.3724/SP.J.1006.2023.23031

• RESEARCH NOTES • Previous Articles     Next Articles

Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016-2020

LUAN Yi1(), BAI Yan2, LU Shi3, LI Lei-Xin4, WANG De-Qiang5, GAO Ting-Ting3, SHI Jie6,*(), YANG Hong-Ming1,*(), LU Ming3,*()   

  1. 1Jilin Provincial Seed Management Station, Changchun 130033, Jilin, China
    2National Agro-Technical Extension and Service Center, Beijing 100125, China
    3Jilin Academy of Agricultural Sciences/National Engineering Research Center of Major Food Crops/National Engineering Research Center for Maize (Jilin)/Key Laboratory Biology and Genetic Improvement of Maize in Northeast Region, Ministry of Agriculture and Rural Affairs, Changchun 130033, Jilin, China
    4Service Center for Agricultural Development in Liaoning Province, Shenyang 110034, Liaoning, China
    5Heilongjiang Seed Technology Service Centre, Harbin 150008, Heilongjiang, China
    6Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, Hebei, China
  • Received:2022-04-13 Accepted:2022-07-22 Online:2023-04-12 Published:2022-08-19
  • Contact: *E-mail: lum7893@163.com;E-mail: yhmym@126.com;E-mail: shij99@163.com
  • Supported by:
    National Key Research and Development Program of China(2021YFD1201002);Horizontal Scientific Research Program of National Agro-Technical Extension and Service Center

Abstract:

Diseases have been major biological adversity affecting maize production. Developing disease resistant varieties is the most economical, effective, and environment-friendly strategy for maize disease prevention. In this study, the disease identification data of 724 tested varieties in the national regional test (early-medium maturity, medium maturity, and late-medium maturity) were analyzed in Northeast and North China from 2016 to 2020, including northern corn leaf blight, head smut, fusarium stalk rot, gray leaf spot, and fusarium ear rot. The results revealed that medium resistance and susceptibility dominated the five disease resistance categories, accounting for 82.94%, 84.12%, and 72.46% in the early-medium maturity, medium maturity, and late-medium maturity groups, respectively. The varieties with early-medium maturity, medium maturity, and late-medium maturity groups with medium resistance (MR) or above accounted for 50.24%, 56.37%, and 69.33% of the total varieties, with high resistance (HR) accounting for 4.52%, 4.41%, and 7.84% of the total, respectively. Northern corn leaf blight and gray leaf spot antigens were few, and no high-resistance varieties existed. Fusarium stalk rot, head smut, fusarium ear rot, gray leaf spot, and northern corn leaf blight were ranked from high to low in terms of resistance (R) in early-medium maturity. The medium maturity group was fusarium ear rot, fusarium stalk rot, head smut, gray leaf spot, and northern corn leaf blight. The order of late-medium maturity group was fusarium ear rot, fusarium stalk rot, head smut, northern corn leaf blight, and gray leaf spot, respectively. Climate and environment had an impact on inter-annual identification results, and the overall performance in 2020 was worse. The varieties with the five kinds of diseases in the early-medium maturity, medium maturity, and late-medium maturity groups reaching the medium resistance (MR) or above at the same time accounted for 2.78%, 6.37%, and 15.67%, respectively. However, only one variety (Chengyu 88) passed the test, demonstrating that breeding high yielding, disease-resistant green maize variants was challenging. It was recommended that a disease-resistant green maize variety test group could be established, that disease-resistant green maize varieties be identified more successfully, and that green maize varieties be promoted more effectively and rapidly. This study clarifies the main disease resistance level of northeast and north spring maize test varieties in recent year, and provides a reference for future variety breeding, validation, and promotion, so as to support the green development of China’s maize seed industry.

Key words: 13th Five-Year, Northeast and North China, spring maize, variety, disease resistance

Table 1

Resistance identification of spring maize varieties in national regional test of northeast and north China from 2016 to 2020"

病害
Disease
熟期组
Ripe period
高抗
HR

R
中抗
MR

S
高感
HS
总计
Total
大斑病
Northern corn leaf blight
中早熟 Early-medium maturity 0 0 57 180 15 252
中熟 Medium maturity 0 0 64 137 3 204
中晚熟 Late-medium maturity 0 41 116 111 0 268
丝黑穗病
Head smut
中早熟 Early-medium maturity 0 31 57 156 8 252
中熟 Medium maturity 1 23 77 100 3 204
中晚熟 Late-medium maturity 35 64 59 109 1 268
茎腐
Stalk rot
中早熟 Early-medium maturity 56 57 120 18 1 252
中熟 Medium maturity 26 27 102 47 2 204
中晚熟 Late-medium maturity 39 65 124 30 10 268
灰斑病
Gray leaf spot
中早熟 Early-medium maturity 0 0 105 131 16 252
中熟 Medium maturity 0 11 92 101 0 204
中晚熟 Late-medium maturity 0 8 147 113 0 268
穗腐病
Ear rot
中早熟 Early-medium maturity 1 22 127 94 8 252
中熟 Medium maturity 18 47 87 51 1 204
中晚熟 Late-medium maturity 31 75 125 37 0 268

Fig. 1

Ratio of resistant and susceptible varieties to spring maize disease A: the early-medium maturity; B: the medium maturity; C: the late- medium maturity. Abbreviations of disease scales are the same as those given in Table 1."

Fig. 2

Ratio of resistant and susceptible varieties to spring maize disease from 2016 to 2020 A: northern corn leaf blight; B: head smut; C: stalk rot; D: gray leaf spot; E: ear rot. Abbreviations of disease scales are the same as those given in Table 1."

Fig. 3

Ratio of medium resistant varieties to one (or more) diseases from 2016 to 2020 A: the average ratios of three maturing dates; B: the early-medium maturity; C: the medium maturity; D: the late-medium maturity."

[1] 张鑫, 张宗英, 韩成贵, 王颖, 杨普云. 东北三省玉米病害发生和防治现状. 见:彭友良, 王琦主编. 中国植物病理学会2018年学术年会论文集. 北京: 中国农业科学技术出版社, 2018. p 531.
Zhang X, Zhang Z Y, Han C G, Wang Y, Yang P Y. The occurrence and control Status of maize diseases in three provinces of Northeast China. In: Peng Y L, Wang Q, eds. Proceedings of Annual Meeting of Chinese Society for Plant Pathology (2018). Beijing: China Agricultural Science and Technology Press, 2018. p 531. (in Chinese)
[2] 刘杰, 姜玉英, 曾娟. 2012年玉米大斑病重发原因与控制对策. 植物保护, 2013, 39(6): 86-90.
Liu J, Jiang Y Y, Zeng J. Analysis of northern corn leaf blight epidemic in 2012 and control countermeasures. Plant Prot, 2013, 39(6): 86-90. (in Chinese with English abstract)
[3] 王作英, 王晓鸣, 晋齐鸣, 李亚军. 2002年东北地区玉米丝黑穗病发生情况初报. 杂粮作物, 2003, (4): 233-234.
Wang Z Y, Wang X M, Jin Q M, Li Y J. Preliminary report on the occurrence of maize head smut in northeast China in 2002. Rain Fed Crops, 2003, (4): 233-234. (in Chinese)
[4] 陈楠, 潘晓静, 姚远, 刘博, 刘限, 高增贵. 东北地区玉米茎腐病镰孢菌EF-1α基因序列分析鉴定. 玉米科学, 2015, 23(4): 143-148.
Chen N, Pan X J, Yao Y, Liu B, Liu X, Gao Z G. Sequence analysis of EF-1α gene in Fusarium species causing the maize stalk rot in northeast China. J Maize Sci, 2015, 23(4):143-148. (in Chinese with English abstract)
[5] 董怀玉, 王大为, 王丽娟, 刘可杰, 姜钰, 徐秀德, 左驰. 北方春玉米区玉米穗腐病禾谷镰孢菌复合种SCAR类型测定. 东北农业大学学报, 2015, 46(10): 23-28.
Dong H Y, Wang D W, Wang L J, Liu K J, Jiang Y, Xu X D, Zuo C. SCAR type detection of Fusarium graminearum clade species complex on spring maize producing areas of north China. J Northeast Agric Univ, 2015, 46(10): 23-28. (in Chinese with English abstract)
[6] 李志勇, 梅丽艳. 玉米灰斑病发生趋势研究. 黑龙江农业科学, 2008, (5): 72-74.
Li Z Y, Mei L Y. Study on investigation of gray leaf spot of maize in Heilongjiang province. Heilongjiang Agric Sci, 2008, (5): 72-74. (in Chinese)
[7] Zuo W L, Chao Q, Zhang N, Ye J R, Tan G Q, Li B L, Xing Y X, Zhang B Q, Liu H J, Fengler K A, Zhao J, Zhao X R, Chen Y S, Lai J S, Yan J B, Xu M L. A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet, 2015, 47: 151-157.
doi: 10.1038/ng.3170 pmid: 25531751
[8] Wang C, Yang Q, Wang W X, Li Y P, Guo Y L, Zhang D F, Ma X N, Song W, Zhao J R, Xu M L. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol, 2017, 215: 1503-1515.
doi: 10.1111/nph.14688
[9] Ye J R, Zhong T, Zhang D F, Ma C Y, Wang L N, Yao L S, Zhang Q Q, Zhu M, Xu M L. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant, 2019, 12: 360-373.
doi: S1674-2052(18)30310-1 pmid: 30853061
[10] Yao L S, Li Y M, Ma C Y, Tong L X, Du F L, Xu M L. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535-1551.
doi: 10.1111/jipb.12911
[11] Lv X L, Song M X, Cheng Z X, Yang X Y, Zhang X C, Zhou Z Q, Zhang C S, Zheng L, Li Y, Lei K R, Wang H W, Du W L, Li F H, Weng J F. qGLS1.02, a novel major locus for resistance to gray leaf spot in maize. Mol Breed, 2020, 40: 59.
doi: 10.1007/s11032-020-01134-8
[12] Yao L S, Li Y M, Ma C Y, Tong L X, Xu M L. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535-1551.
doi: 10.1111/jipb.12911
[13] Sun H, Zhai L H, Teng F, Li Z H, Zhang Z X. qRgls1.06, a major QTL conferring resistance to gray leaf spot disease in maize. Crop J, 2021, 9: 342-350.
doi: 10.1016/j.cj.2020.08.001
[14] 李莉, 邢跃先, 赵贤容, 王丕武, 檀国庆. 利用分子标记辅助选择技术提高玉米对丝黑穗病的抗性. 植物保护学报, 2012, 39: 303-307.
Li L, Xing Y X, Zhao X R, Wang P W, Tan G Q. Improving head smut resistance in maize by marker-assisted selection technique. J Plant Prot, 2012, 39: 303-307. (in Chinese with English abstract).
[15] 余辉, 宋伟, 赵久然, 王凤格, 吴金凤. 分子标记辅助选择育成的玉米自交系京24单抗丝黑穗病和茎腐病改良材料性状分析. 分子植物育种, 2014, 12: 56-61.
Yu H, Song W, Zhao J R, Wang F G, Wu J F. Characters analysis on resistance improved materials of Jing 24 single-resistance to head smut and stalk rot bred with molecular marker-assisted selection. Mol Plant Breed, 2014, 12: 56-61. (in Chinese with English abstract)
[16] 王金萍, 刘永伟, 孙果忠, 王海波. 抗茎腐病分子标记在159份玉米自交系中的验证及实用性评价. 植物遗传资源学报, 2017, 18: 754-762.
Wang J P, Liu Y W, Sun G Z, Wang H B. Evaluation and validation of molecular markers associated with stalk rot resistance in 159 maize inbred lines. J Plant Genet Resour, 2017, 18: 754-762. (in Chinese with English abstract)
[17] 邸宏, 宫程旭, 孙培元, 刘显君, 王振华. 分子标记辅助选择改良玉米自交系昌7-2的丝黑穗病抗性. 玉米科学, 2021, 29(1): 20-25.
Di H, Gong C X, Sun P Y, Liu X J, Wang Z H. Improving head smut resistance in maize inbred line Chang7-2 by marker assisted selection. J Maize Sci, 2021, 29(1): 20-25. (in Chinese with English abstract)
[18] 孟剑, 裴二芹, 宋艳春, 石云素, 李永祥. 引进美国GEM材料的抗玉米青枯病和丝黑穗病种质资源筛选鉴定. 植物遗传资源学报, 2015, 16: 1098-1102.
Meng J, Pei E, Song Y, Shi Y, Li Y. Resistant identification of stalk rot and head smut for introduced U. S. GEM germplasm in maize. J Plant Genet Resour, 2015, 16: 1098-1102. (in Chinese with English abstract)
[19] 杨洋, 陈国康, 郭成, 张炜, 孙素丽, 王晓鸣, 朱振东, 段灿星. 玉米种质资源抗腐霉茎腐病鉴定. 作物学报, 2018, 44: 1256-1260.
doi: 10.3724/SP.J.1006.2018.01256
Yang Y, Chen G K, Guo C, Zhang W, Sun S L, Wang X M, Zhu Z D, Duan C X. Identification of maize germplasm for resistance to pythium stalk rot. Acta Agron Sin, 2018, 44: 1256-1260. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01256
[20] 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定. 作物学报, 2018, 44: 614-619.
doi: 10.3724/SP.J.1006.2018.00614
Xiao M G, Song F J, Sun B, Zuo X, Zhao G S, Xin A H, Li Z G. Exploration of foreign maize inbred lines with broad spectrum resistance to Northern corn leaf blight and preliminary identification of resistance genes. Acta Agron Sin, 2018, 44: 614-619. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00614
[21] 张艳, 张叶, 王梓钰, 闻竞, 韩四平, 郭嘉, 邢跃先. 44份玉米自交系对镰孢穗腐病的抗性鉴定. 植物遗传资源学报, 2019, 20: 276-283.
Zhang Y, Zhang Y, Wang Z Y, Wen J, Han S P, Guo J, Xing Y X. Evaluation of resistance to fusarium ear rot in 44 maize inbred lines. J Plant Genet Resour, 2019, 20: 276-283. (in Chinese with English abstract)
[22] 段灿星, 董怀玉, 李晓, 李红, 李春辉, 孙素丽, 朱振东, 王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定. 作物学报, 2020, 46: 1135-1145.
doi: 10.3724/SP.J.1006.2020.03003
Duan C X, Dong H Y, Li X, Li H, Li C H, Sun S L, Zhu Z D, Wang X M. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition. Acta Agron Sin, 2020, 46: 1135-1145. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.03003
[23] 赵子麒, 赵雅琪, 林昌朋, 赵永泽, 余宇潇, 孟庆立, 曾广莹, 薛吉全, 杨琴. 48份玉米自交系抗病性的精准鉴定. 中国农业科学, 2021, 54: 2510-2522.
Zhao Z Q, Zhao Y Q, Lin C P, Zhao Y Z, Yu Y X, Meng Q L, Zeng G Y, Xue J Q, Yang Q. Precise evaluation of 48 maize inbred lines to major diseases. Sci Agric Sin, 2021, 54: 2510-2522. (in Chinese with English abstract)
[24] 石洁, 何康来. 玉米骨干亲本对主要病害的抗性及其传递规律. 玉米科学, 2021, 29(3): 55-62.
Shi J, He K L. Characterization and genetic predisposition of diseases resistance of maize foundation parents. J Maize Sci, 2021, 29(3): 55-62. (in Chinese with English abstract)
[25] 段灿星, 曹言勇, 董怀玉, 夏玉生, 李红, 胡清玉, 杨知还, 王晓鸣. 玉米种质资源抗腐霉茎腐病和镰孢茎腐病精准鉴定. 中国农业科学, 2022, 55: 265-279.
Duan C X, Cao Y Y, Dong H Y, Xia Y S, Li H, Hu Q Y, Yang Z H, Wang X M. Precise characterization of maize germplasm for resistance to pythium stalk rot and Gibberella stalk rot. Sci Agric Sin, 2022, 55: 265-279. (in Chinese with English abstract)
[26] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155-2167.
doi: 10.3724/SP.J.1006.2022.13055
Duan C X, Cui L N, Xia Y S, Dong H Y, Yang Z H, Hu Q Y, Sun S L, Li X, Zhu Z D, Wang X M. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agron Sin, 2022, 48: 2155-2167. (in Chinese with English abstract)
[27] 浦子钢. 黑龙江省西部地区先玉335与改良先玉335大斑病病情发展对比动态分析. 玉米科学, 2013, 21(4): 119-123.
Pu Z G. Dynamic analysis on the disease progression of maize leaf blight between Xianyu 335 and improved Xianyu 335 in western region of Heilongjiang province. J Maize Sci, 2013, 21(4): 119-123. (in Chinese with English abstract)
[28] 刘可杰, 董怀玉, 姜钰, 胡兰, 徐婧, 王丽娟, 徐秀德. 300份玉米种质对两种灰斑病菌的抗性评价. 玉米科学, 2018, 26(4): 162-165.
Liu K J, Dong H Y, Jiang Y, Hu L, Xu J, Wang L J, Xu X D. Evaluation of 300 maize germplasms for resistance to Cercospora zeina and Cercospora zeae-maydis. J Maize Sci, 2018, 26(4): 162-165. (in Chinese with English abstract)
[29] 赵立萍, 王晓鸣, 段灿星, 龙书生, 李晓, 李洪连, 何月秋, 晋齐鸣, 武小菲, 宋凤景. 中国玉米灰斑病发生现状与未来扩散趋势分析. 中国农业科学, 2015, 48: 3612-3626.
Zhao L P, Wang X M, Duan C X, Long S S, Li X, Li H L, He Q Y, Jin Q M, Wu X F, Song F J. Occurrence status and future spreading areas of maize gray leaf spot in China. Sci Agric Sin, 2015, 48: 3612-3626. (in Chinese with English abstract)
[30] 王宝宝, 郭成, 孙素丽, 夏玉生, 朱振东, 段灿星. 玉米穗腐病致病禾谷镰孢复合种的遗传多样性、致病力与毒素化学型分析. 中国农业科学, 2020, 53: 4777-4790.
Wang B B, Guo C, Sun S L, Xia Y S, Zhu Z D, Duan C X. The genetic diversity, pathogenicity, and toxigenic chemotypes of Fusarium graminearum species complex causing maize ear rot. Sci Agric Sin, 2020, 53: 4777-4790. (in Chinese with English abstract).
[31] 胡颖雄, 刘玉博, 王慧, 靳林朋, 林凤, 张学才, 郑洪建. 玉米穗腐病抗性遗传与育种研究进展. 玉米科学, 2021, 29(2): 171-178.
Hu Y X, Liu Y B, Wang H, Jin L P, Lin F, Zhang X C, Zheng H J. Research progress on ear rot resistant genetics and breeding in maize. J Maize Sci, 2021, 29(2): 171-178. (in Chinese with English abstract)
[32] 郭成, 王宝宝, 杨洋, 王春明, 周天旺, 李敏权, 段灿星. 玉米茎腐病研究进展. 植物遗传资源学报, 2019, 20: 1118-1128.
Guo C, Wang B B, Yang Y, Wang C M, Zhou D W, Li M Q, Duan C X. Advances in studies of maize stalk rot. J Plant Genet Resour, 2019, 20: 1118-1128. (in Chinese with English abstract)
[33] 董怀玉, 刘可杰, 刘晶, 王丽娟, 刘培斌, 陈彦, 侯志研. 机收玉米品种收获期田间茎腐病抗性表型和植株倒伏状况调查. 玉米科学, 2021, 29(1): 170-176.
Dong H Y, Liu K J, Liu J, Wang L J, Liu P B, Chen Y, Hou Z Y. Investigation of the phenotypic to stalk rot and lodging resistance of maize varieties for mechanical grain-harvest at harvest stage. J Maize Sci, 2021, 29(1): 170-176. (in Chinese with English abstract)
[34] 孟玲敏, 贾娇, 张伟, 李红, 苏前富, 晋齐鸣, 潘立丽, 李文成. 防治玉米丝黑穗病药剂的筛选. 东北农业科学, 2018, 43(6): 25-27.
Meng L M, Jia J, Zhang W, Li H, Su Q F, Jin Q M, Pan L L, Li W C. Screening of fungicides for controlling corn head smut. J Northeast Agric Sci, 2018, 43(6): 25-27. (in Chinese with English abstract)
[35] 曹丽萍. 不同种衣剂处理对玉米丝黑穗病害的防治效果. 中国种业, 2022, (2): 76-79.
Cao L P. Control effects of different seed coating agent treatments on maize head smut disease. Chin Seed Ind, 2022, (2): 76-79. (in Chinese with English abstract)
[36] 赵久然, 王帅, 李明, 吕慧颖, 王道文, 葛毅强, 魏珣, 杨维才. 玉米育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 63-74.
Zhao J R, Wang S, Li M, Lyu H Y, Wang D W, Ge Y Q, Wei X, Yang W C. Current status and perspective of maize breeding. J Plant Genet Resour, 2018, 19: 63-74. (in Chinese with English abstract)
[37] Wang J, Zhou L, Shi H, Chern W, Yu H, Yi H, He M, Yin Y J, Zhu X B, Li Y, Li W T, Liu J L, Wang J C, Chen X Q, Qing H, Wang Y P, Liu G F, Wang W M, Li P, Wu X J, Zhu L H, Zhou J M, Ronald P, Li S G, Li J Y, Chen X W. A single transcription factor promotes both yield and immunity in rice. Science, 2018, 361:1026-1028.
doi: 10.1126/science.aat7675 pmid: 30190406
[38] Li S N, Lin D X, Zhang Y W, Deng M, Chen Y X, Lv B, Li B S, Lei Y, Wang Y P, Zhao L, Liang Y T, Liu J X, Che K L, Liu Z Y, Xiao J, Qiu J L, Gao C X. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 2022, 602: 455-460.
doi: 10.1038/s41586-022-04395-9
[1] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[2] WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078.
[3] XU Yunbi, WANG Bing-Bing, ZAHNG Jian, ZHANG Jia-Nan, LI Jian-Sheng. Enhancement of plant variety protection and regulation using molecular marker technology [J]. Acta Agronomica Sinica, 2022, 48(8): 1853-1870.
[4] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[5] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[6] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[9] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[10] DONG Ming-Hui, CHEN Pei-Feng, JIANG Yi, CAO Peng-Hui, SONG Yun-Sheng, GU Jun-Rong, XIE Yu-Lin, QIAO Zhong-Ying, ZHANG Wen-Di, HUANG Li-Fen. Response of yield of different growth types of japonica rice varieties to climatic factors at different sowing dates in Taihu region of Jiangsu province [J]. Acta Agronomica Sinica, 2021, 47(5): 952-963.
[11] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[12] DONG Yu-Xin, WEI Bing-Qi, WU Qiang, ZHANG Yong-Ping. Cropping effect and variety adaptability of winter-seeded spring wheat in Inner Mongolia Plain irrigation area [J]. Acta Agronomica Sinica, 2021, 47(3): 481-493.
[13] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[14] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[15] XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!