Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1052-1064.doi: 10.3724/SP.J.1006.2023.24051

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean

WU Zong-Sheng1,**(), XU Cai-Long1,**(), LI Rui-Dong1, XU Yi-Fan1,2, SUN Shi1, HAN Tian-Fu1, SONG Wen-Wen1,*(), WU Cun-Xiang1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Soybean Industrial Technology R&D Center, Beijing 100081, China
    2College of Agronomy, Northeast Agricultural University, Harbin 150006, Heilongjiang, China
  • Received:2022-03-08 Accepted:2022-09-05 Online:2023-04-12 Published:2022-09-15
  • Contact: *E-mail: wucunxiang@caas.cn;E-mail: songwenwen@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000900);China Agriculture Research System of MOF and MARA(CARS-04);National Natural Science Foundation of China(32101845);Agriculture Science and Technology Innovation Program in CAAS

Abstract:

Huang-Huai-Hai Rivers region is the main producing area of soybean with high protein content in China. However, the previous wheat straw seriously restricts the production of summer soybean in this area. The traditional farming system with high input and low output cannot meet the demand for high-quality soybean. In this experiment, the soil temperature, soil moisture content, soil apparent density, and soil aggregate structure of the topsoil, yield and yield composition of soybean under different crop system were investigated. The aim of this study is to analyze the regulation mechanism of no-tillage combined with straw mulching on surface soil structure and soybean yield, and to provide theoretical reference for the selection of the best crop system for soybean in the Huang-Huai-Hai Rivers region. A split-plot experimental design was adopted in the experiment. The main plot was fertilizer treatment [fertilization (F: 225 kg hm-2) and no fertilization (NF)]. The subplot was straw treatment [no-tillage without straw returning (SR), no-tillage with straw mulching (SM), and no-tillage with straw crushing returning (SC)]. The results showed that: (1) The effect of no-tillage combined with straw returning on the surface layer was mainly concentrated in soil depth of 0-10 cm. (2) Compared with SR, the soil temperature of SM and SC decreased by 0.21°C and 0.17°C, respectively. The soil water content increased by 13.18% and 9.07%, respectively. Compared with SR and SC, the soil apparent density of SM decreased by 2.61% and 2.87%, respectively, the solid phase proportion of the plough layer decreased by 2.60% and 3.01%, respectively, and the soil aggregate >2 mm increased by 6.84% and 3.14%, respectively. (3) Compared with SR, the number of pods per plant in SM and SC treatments increased by 22.41% and 9.49%, the 100-seed weight of soybean under SM and SC increased by 1.18% and 2.40%, while the number of grains per plant under SM and SC increased by18.20% and 7.51%, respectively. In addition, compared with SR, the yield and yield per plant were increased by 11.56% and 39.16% in SM and 5.43% and 18.07% in SC, respectively. In this study, the fertilization can promote yield increase effects on straw returning, and SM has a more significant yield increase effect than SC. In conclusion, no-tillage plus straw mulching and precise sowing cultivation technology for summer soybean after winter wheat has significant advantages in optimizing soybean root layer environment and promoting yield formation.

Key words: soybean, soil temperature, soil physical properties, yield

Fig. 1

Precipitation and temperature during the experimental periods"

Fig. 2

Effect of straw returning on topsoil temperature SR: straw removing; SM: straw mulching; SC: straw crushing."

Fig. 3

Effect of straw returning and fertilizer on soil water content S: straw; F: fertilization; NF: no fertilization; SR: straw removing; SM: straw mulching; SC: straw crushing. ** means significant difference at the 0.01 probability level. Ns: not significant. VE: emergence; V3: the third trifoliolate; R1: beginning bloom; R3: beginning pod; R5: beginning seed; R7: beginning maturity; R8: full maturity."

Fig. 4

Effect of straw returning on soil apparent density SR: straw removing; SM: straw mulching; SC: straw crushing. Different lowercase letters indicate significant difference at the 0.05 probability level."

Fig. 5

Effect of straw returning on three-phase ratio of soil SR: straw removing; SM: straw mulching; SC: straw crushing; BEST: optimum three-phase ratio."

Table 1

Effect of straw returning and fertilizer on soil structural stability"

粒级
Aggregate size
0-5 cm 5-10 cm 10-20 cm
<0.25 mm 0.25-2 mm >2 mm <0.25 mm 0.25-2 mm >2 mm <0.25 mm 0.25-2 mm >2 mm
秸秆Straw (S) Ns ** ** Ns ** ** ** ** **
施肥Fertilization (F) Ns ** Ns Ns ** ** * * **
秸秆×施肥S×F * Ns * * ** ** * ** **

Fig. 6

Effect of straw returning and fertilizer on aggregate structure of topsoil F: fertilization; NF: no fertilization; SR: straw removing; SM: straw mulching; SC: straw crushing."

Table 2

Effect of straw returning and fertilizer on yield components of soybean"

年份 Year 处理
Treatment
百粒重
100-seed weight (g)
单株荚数
Pods number per plant
单株粒数
Seeds number per plant
单株产量
Yield per plant (g)
2020 NF SR 17.49±0.32 a 38.00±0.69 c 83.80±5.32 b 14.31±0.30 b
SM 17.05±0.27 a 46.93±1.60 a 101.13±2.72 a 17.34±0.65 a
SC 17.59±0.21 a 41.90±0.52 b 84.50±3.18 b 16.05±0.83 ab
F SR 18.20±0.09 a 44.80±0.92 b 99.20±4.85 b 16.02±0.53 b
SM 17.68±0.30 a 58.53±1.00 a 131.33±1.21 a 20.11±1.12 a
SC 18.30±0.53 a 49.07±1.92 b 117.40±3.23 a 18.61±0.31 a
2021 NF SR 21.79±0.07 b 37.40±1.50 b 83.10±0.94 b 16.59±0.33 c
SM 22.64±0.19 a 46.36±1.51 a 91.00±1.14 a 28.93±0.54 a
SC 22.26±0.01 a 42.64±1.31 a 85.73±2.99 ab 22.61±0.65 b
年份 Year 处理
Treatment
百粒重
100-seed weight (g)
单株荚数
Pods number per plant
单株粒数
Seeds number per plant
单株产量
Yield per plant (g)
2021 F SR 21.31±0.04 b 57.60±0.77 b 126.10±2.25 b 23.98±0.25 b
SM 22.63±0.01 a 64.23±1.65 a 139.00±1.04 a 32.51±0.66 a
SC 22.65±0.16 a 60.00±1.49 b 135.80±0.83 a 25.82±1.05 b
施肥Fertilization (F) Ns ** ** **
秸秆还田Straw (S) ** ** ** **
F×S ** Ns Ns Ns

Fig. 7

Effect of straw returning and fertilizer on yield of soybean S: straw; F: fertilization; ** indicates significant difference at the 0.01 probability level, respectively. Ns: not significant. Different lowercase letters indicate significant difference at the 0.05 probability level."

Table 3

Analysis on the interannual effect of straw returning and fertilizer application"

年份 Year NF-SR NF-SM NF-SC F-SR F-SM F-SC
荚数
Pod number
2020 38.00 a 46.93 a 41.90 a 44.80 b 58.53 a 49.07 b
2021 37.40 a 46.36 a 42.64 a 57.60 a 64.23 a 60.00 a
粒数
Seed number
2020 83.80 a 101.13 a 84.50 a 99.20 b 131.33 a 117.40 b
2021 83.10 a 91.00 a 85.73 a 126.10 a 139.00 a 135.80 a
百粒重
100-seed weight (g)
2020 17.49 b 17.05 b 17.59 b 18.20 b 17.68 b 18.30 b
2021 21.79 a 22.64 a 22.26 a 21.31 a 22.63 a 22.65 a
单株产量
Yield per plant (g)
2020 14.31 b 17.34 b 16.05 b 16.02 b 20.11 b 18.61 b
2021 16.59 a 28.93 a 22.61 a 23.98 a 32.51 a 25.82 a
>2 mm团粒
>2 mm aggregate (%)
2020 41.39 b 49.95 b 47.42 b 40.41 b 44.27 b 42.73 b
2021 55.56 a 62.02 a 59.41 a 56.98 a 55.24 a 56.43 a
单位面积产量
Yield (kg hm-2)
2020 3525.56 b 3874.74 b 3833.43 a 4544.23 b 4800.05 b 4699.55 a
2021 3909.92 a 4616.35 a 4134.33 a 4726.53 a 5323.49 a 4907.06 a
年份 Year NF-SR NF-SM NF-SC F-SR F-SM F-SC
SR SM SC
容重
Bulk density (g cm-3)
2020 1.54 a 1.47 a 1.50 a
2021 1.41 b 1.39 a 1.45 a
总孔隙度
Total porosity (%)
2020 41.46 b 44.51 a 43.50 a
2021 46.89 a 47.08 a 44.79 a

Fig. 8

Principal components analysis SR: straw removing; SM: straw mulching; SC: straw crushing."

Fig. 9

Comprehensive analysis of different treatment results SR: straw removing; SM: straw mulching; SC: straw crushing."

[1] 尹阳阳, 徐彩龙, 宋雯雯, 胡水秀, 吴存祥. 密植是挖掘大豆产量潜力的重要栽培途径. 土壤与作物, 2019, 8: 361-367.
Yin Y Y, Xu C L, Song W W, Hu S X, Wu C X. Increasing planting density is an important approach to achieve the potential of soybean yield. Soils Crops, 2019, 8: 361-367. (in Chinese with English abstract)
[2] 宋雯雯, 秦培友, 杨修仕, 任贵兴, 韩天富. 中国大豆品质性状的地理分布. 大豆科技, 2013, (3): 5.
Song W W, Qin P Y, Yang X S, Ren G X, Han T F. Geographical distribution of soybean quality traits in China. Soybean Sci Technol, 2013, (3): 5. (in Chinese with English abstract)
[3] 徐彩龙, 韩天富, 吴存祥. 黄淮海麦茬大豆免耕覆秸精量播种栽培技术研究. 大豆科学, 2018, 37: 197-201.
Xu C L, Han T F, Wu C X. No-tillage plus straw mulching and precise sowing cultivation technology research for soybean after winter wheat in Huang-Huai-Hai region. Soybean Sci, 2018, 37: 197-201. (in Chinese with English abstract)
[4] 赵明, 周宝元, 马玮, 李从锋, 丁在松, 孙雪芳. 粮食作物生产系统定量调控理论与技术模式. 作物学报, 2019, 45: 485-498.
doi: 10.3724/SP.J.1006.2019.83051
Zhao M, Zhou B Y, Ma W, Li C F, Ding Z S, Sun X F. Theoretical and technical models of quantitative regulation in food crop production system. Acta Agron Sin, 2019, 45: 485-498. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83051
[5] Wang Y, Wu P, Mei F, Ling Y, Wang T. Does continuous straw returning keep China farmland soil organic carbon continued increase? a meta-analysis. J Environ Manage, 2021, 288: 112391.
doi: 10.1016/j.jenvman.2021.112391
[6] 王秋菊, 常本超, 张劲松, 韩东来, 隋玉刚, 陈海龙, 杨兴玉, 王雪冬, 焦峰, 新家宪, 刘峰. 长期秸秆还田对白浆土物理性质及水稻产量的影响. 中国农业科学, 2017, 50: 2748-2757.
Wang Q J, Chang B C, Zhang J S, Han D L, Sui Y G, Chen H L, Yang Y X, Wang X D, Jiao F, Xin J X, Liu F. Effects of albic soil physical properties and rice yield after long-term straw incorporation. Sci Agric Sin, 2017, 50: 2748-2757. (in Chinese with English abstract)
[7] 白伟, 安景文, 张立祯, 逄焕成, 孙占祥, 牛世伟, 蔡倩. 秸秆还田配施氮肥改善土壤理化性状提高春玉米产量. 农业工程学报, 2017, 33(15): 168-176.
Bai W, An J W, Zhang L Z, Pang H C, Sun Z X, Niu S W, Cai Q. Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer. Trans CSAE, 2017, 33(15): 168-176. (in Chinese with English abstract)
[8] 白伟, 孙占祥, 张立祯, 郑家明, 冯良山, 蔡倩, 向午燕, 冯晨, 张哲. 耕层构造对土壤三相比和春玉米根系形态的影响. 作物学报, 2020, 46: 759-771.
doi: 10.3724/SP.J.1006.2020.93044
Bai W, Sun Z X, Zhang L Z, Zheng J M, Feng L S, Cai Q, Xiang W Y, Feng C, Zhang Z. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China. Acta Agron Sin, 2020, 46: 759-771. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93044
[9] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048-3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci Agric Sin, 2020, 53: 3048-3058. (in Chinese with English abstract).
[10] Xu C L, Li R D, Song W W, Wu T T, Sun S, Shen W L, Hu S X, Han T F, Wu C X. Integrating straw management and seeding to improve seed yield and reduce environmental impacts in soybean production. Agronomy, 2021, 11: 1033-1033.
doi: 10.3390/agronomy11061033
[11] 王幸, 吴存祥, 齐玉军, 徐泽俊, 王宗标, 韩天富. 麦秸处理和播种方式对夏大豆农艺性状及土壤物理性状的影响. 中国农业科学, 2016, 49: 1453-1465.
Wang X, Wu C X, Qi Y J, Xu Z J, Wang Z B, Han T F. Effects of straw management and sowing methods on soybean agronomic traits and soil physical properties. Sci Agric Sin, 2016, 49: 1453-1465. (in Chinese with English abstract)
[12] 赵俊卿, 任建军, 卢为国, 陈海涛, 朱贝贝, 段国占, 韩天富, 吴存祥. 免耕覆秸精量播种对大豆生长发育和产量构成因素的影响. 大豆科学, 2012, 31: 734-738.
Zhao J Q, Ren J J, Lu W G, Chen H T, Zhu B B, Duan G Z, Han T F, Wu C X. Effects of no-tillage and straw mulching precise sowing on growth, development and yield components of post- wheat summer-sowing soybean in Huang-Huai-Hai region. Soybean Sci, 2012, 31: 734-738. (in Chinese with English abstract)
[13] Krauss M, Wiesmeier M, Don A, Cuperus F, Gattinger A, Gruber S, Haagsma W K, Peigné J, Palazzoli M C, Schulz F, van der Heijden M G A, Wittwer R A, Zikeli S, Steffens M. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res, 2022, 216: 105262.
doi: 10.1016/j.still.2021.105262
[14] 张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53: 317-331.
Zhang W L, Kolbe H, Zhang R L. Research progress of SOC functions and transformation mechanisms. Sci Agric Sin, 2020, 53: 317-331. (in Chinese with English abstract)
[15] 李全起, 陈雨海, 于舜章, 吴巍, 周勋波, 董庆裕, 余松烈. 灌溉与秸秆覆盖条件下冬小麦农田小气候特征. 作物学报, 2006, 32: 306-309.
Li Q Q, Chen Y H, Yu S Z, Wu W, Zhou X B, Dong Q Y, Yu S L. Micro-climate of winter wheat field under the conditions of irrigation and straw mulching. Acta Agron Sin, 2006, 32: 306-309. (in Chinese with English abstract)
[16] 邓浩亮, 张恒嘉, 肖让, 张永玲, 田建良, 李福强, 王玉才, 周宏, 李煊. 陇中半干旱区不同覆盖种植方式对土壤水热效应和玉米产量的影响. 中国农业科学, 2020, 53: 273-287.
Deng H L, Zhang H J, Xiao R, Zhang Y L, Tian J L, Li F Q, Wang Y C, Zhou H, Li X. Effects of different covering planting patterns on soil moisture, temperature characteristics and maize yield in semi-arid region of the loess plateau. Sci Agric Sin, 2020, 53: 273-287. (in Chinese with English abstract)
[17] Qin X L, Huang T T, Lu C, Dang P F, Zhang M M, Guan X K, Wen P F, Wang T C, Chen Y L, Siddique K H M. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agric Water Manag, 2021, 256: 107128.
doi: 10.1016/j.agwat.2021.107128
[18] 殷文, 柴强, 胡发龙, 樊志龙, 范虹, 于爱忠, 赵财. 干旱内陆灌区不同秸秆还田方式下春小麦田土壤水分利用特征. 中国农业科学, 2019, 52: 1247-1259.
Yin W, Chai Q, Hu F L, Fan Z L, Fan H, Yu A Z, Zhao C. Characteristics of soil water utilization in spring wheat field with different straw retention approaches in dry inland irrigation areas. Sci Agric Sin, 2019, 52: 1247-1259. (in Chinese with English abstract).
[19] 赵云, 徐彩龙, 杨旭, 李素真, 周静, 李继存, 韩天富, 吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响. 作物杂志, 2018, (4): 114-120.
Zhao Y, Xu C L, Yang X, Li S Z, Zhou J, Li J C, Han T F, Wu C X. Effects of sowing methods on seeding and production profit of summer soybean under wheat-soybean system. Crops, 2018, (4): 114-120. (in Chinese with English abstract)
[20] 普雪可, 吴春花, 勉有明, 苗芳芳, 侯贤清, 李荣. 不同覆盖方式对旱作马铃薯生长及土壤水热特征的影响. 中国农业科学, 2020, 53: 734-747.
Pu X K, Wu C H, Mian Y M, Miao F F, Hou X Q, Li R. Effects of different mulching patterns on growth of potato and characteristics of soil water and temperature in dry farmland. Sci Agric Sin, 2020, 53: 734-747. (in Chinese with English abstract)
[21] Zhao J, Lu Y, Tian H L, Jia H L, Guo M Z. Effects of straw returning and residue cleaner on the soil moisture content, soil temperature, and maize emergence rate in China’s three major maize producing areas. Sustainability, 2019, 11: 5796.
doi: 10.3390/su11205796
[22] 马永财, 滕达, 衣淑娟, 刘少东, 王汉羊. 秸秆覆盖还田及腐解率对土壤温湿度与玉米产量的影响. 农业机械学报, 2021, 52(10): 90-99.
Ma Y C, Teng D, Yi S J, Liu S D, Wang H Y. Effects of straw mulching and decomposition rate on soil temperature and humidity and maize yield. Trans CSAM, 2021, 52(10): 90-99 (in Chinese with English abstract).
[23] Yan Z J, Zhou J, Yang L, Gunina A, Yang Y D, Peixoto L, Zeng Z H, Zang H D, Kuzyakov Y. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: results of three fractionation methods. Sci Total Environ, 2022, 824: 153878.
doi: 10.1016/j.scitotenv.2022.153878
[24] 郭孟洁, 李建业, 李健宇, 齐佳睿, 张兴义. 实施16年保护性耕作下黑土土壤结构功能变化特征. 农业工程学报, 2021, 37(22): 108-118.
Guo M J, Li J Y, Li J Y, Qi J R, Zhang X Y. Changes of soil structure and function after 16-year conservation tillage in back soil. Trans CSAE, 2021, 37(22): 108-118. (in Chinese with English abstract)
[25] Huang T T, Yang N, Lu C, Qin X L, Siddique K H M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res, 2021, 214: 105171.
doi: 10.1016/j.still.2021.105171
[26] Anning D K, Qiu H Z, Zhang C H, Ghanney P, Zhang Y J, Guo Y J. Maize straw return and nitrogen rate effects on potato performance and soil physicochemical characteristics in northwest China. Sustainability, 2021, 13: 5508.
doi: 10.3390/su13105508
[27] 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54: 596-607.
Zheng F J, Wang X, Li S P, Liu X T, Liu Z P, Lu J J, Wu X P, Xi J L, Zhang J C, Li Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Sci Agric Sin, 2021, 54: 596-607. (in Chinese with English abstract)
[28] 苗芳芳, 勉有明, 普雪可, 吴春花, 周永瑾, 侯贤清. 耕作覆盖对宁南旱区土壤团粒结构及马铃薯水分利用效率的影响. 中国农业科学, 2021, 54: 2366-2376.
Miao F F, Mian Y M, Pu X K, Wu C H, Zhou Y J, Hou X Q. Effects of tillage with mulching on soil aggregate structure and water use efficiency of potato in dry-farming area of southern Ningxia. Sci Agric Sin, 2021, 54: 2366-2376. (in Chinese with English abstract)
[29] 汤文光, 肖小平, 唐海明, 张海林, 陈阜, 陈中督, 薛建福, 杨光立. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响. 应用生态学报, 2015, 26: 168-176.
Tang W G, Xiao X P, Tang H M, Zhang H L, Chen F, Chen Z D, Xue J F, Yang G L. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration. Chin J Appl Ecol, 2015, 26: 168-176. (in Chinese with English abstract)
[30] Zhang L, Mao L L, Yan X Y, Liu C M, Song X L, Sun X Z. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Ind Crops Prod, 2022, 177: 114472.
doi: 10.1016/j.indcrop.2021.114472
[31] 高中超, 宋柏权, 王翠玲, 高文超, 张丽丽, 孙磊, 郝小雨, 刘峰. 不同机械深耕的改土及促进作物生长和增产效果. 农业工程学报, 2018, 34(12): 79-86.
Gao Z C, Song B Q, Wang C L, Gao W C, Zhang L L, Sun L, Hao X Y, Liu F. Soil amelioration by deep ploughing of different machineries and its effect on promoting crop growth and yield. Trans CSAE, 2018, 34(12): 79-86. (in Chinese with English abstract).
[32] Cui H X, Luo Y L, Chen J, Jin M, Li Y, Wang Z L. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur J Agron, 2022, 133: 126436.
doi: 10.1016/j.eja.2021.126436
[33] 杨竣皓, 骆永丽, 陈金, 金敏, 王振林, 李勇. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析. 中国农业科学, 2020, 53: 4415-4429.
Yang J H, Luo Y L, Chen J, Jin M, Wang Z L, Li Y. Effects of main food yield under straw return in China: a meta-analysis. Sci Agric Sin, 2020, 53: 4415-4429. (in Chinese with English abstract).
[34] Zhao J H, Liu Z X, Gao F, Wang Y, Lai H J, Pan X Y, Yang D Q, Li X D. A 2-year study on the effects of tillage and straw management on the soil quality and peanut yield in a wheat-peanut rotation system. J Soils Sediments, 2021, 21: 1698-1712.
doi: 10.1007/s11368-021-02908-z
[35] 刘艳慧, 王双磊, 李金埔, 秦都林, 张美玲, 聂军军, 毛丽丽, 宋宪亮, 孙学振. 棉花秸秆还田对土壤速效养分及微生物特性的影响. 作物学报, 2016, 42: 1037-1046.
doi: 10.3724/SP.J.1006.2016.01037
Liu Y H, Wang S L, Li J P, Qin D L, Zhang M L, Nie J J, Mao L L, Song X L, Sun X Z. Effects of cotton straw returning on soil available nutrients and microbial characteristics. Acta Agron Sin, 2016, 42: 1037-1046. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01037
[36] Ma L J, Kong F X, Wang Z, Luo Y, Lyu X B, Zhou Z G, Meng Y L. Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input. Field Crops Res, 2019, 243: 107616.
doi: 10.1016/j.fcr.2019.107616
[37] Zhao J L, Wang X G, Zhuang J, Cong Y J, Lu Y, Guo M Z. Fine-crush straw returning enhances dry matter accumulation rate of maize seedlings in northeast China. Agronomy, 2021, 11: 1144.
doi: 10.3390/agronomy11061144
[38] 安俊朋, 李从锋, 齐华, 隋鹏祥, 张文可, 田平, 有德宝, 梅楠, 邢静. 秸秆条带还田对东北春玉米产量、土壤水氮及根系分布的影响. 作物学报, 2018, 44: 774-782.
doi: 10.3724/SP.J.1006.2018.00774
An J P, Li C F, Qi H, Sui P X, Zhang W K, Tian P, You D B, Mei N, Xing J. Effects of straw strip returning on spring maize yield, soil moisture, nitrogen contents and root distribution in northeast China. Acta Agron Sin, 2018, 44: 774-782. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00774
[39] 邹文秀, 韩晓增, 陆欣春, 陈旭, 郝翔翔, 严君. 秸秆还田后效对玉米氮肥利用率的影响. 中国农业科学, 2020, 53: 4237-4247.
Zou W X, Han X Z, Lu X C, Chen X, Hao X X, Yan J. Effect of Maize straw return aftereffect on nitrogen use efficiency of maize. Sci Agric Sin, 2020, 53: 4237-4247. (in Chinese with English abstract)
[40] Huang Y W, Tao B, Zhu X C, Yang Y J, Liang L, Wang L X, Jacinthe P A, Tian H Q, Ren W. Conservation tillage increases corn and soybean water productivity across the Ohio River Basin. Agric Water Manag, 2021, 254: 106962.
doi: 10.1016/j.agwat.2021.106962
[41] Zhang W Z, Chen X Q, Wang H Y, Wei W X, Zhou J M. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an anthrosol with rice-wheat rotations in China. J Integr Agric, 2020, 21: 521-531.
doi: 10.1016/S2095-3119(20)63592-4
[42] 姜英, 王峥宇, 廉宏利, 王美佳, 苏业涵, 田平, 隋鹏祥, 马梓淇, 王英俨, 孟广鑫, 孙悦, 李从锋, 齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响. 中国农业科学, 2020, 53: 3071-3082.
Jiang Y, Wang Z Y, Lian H L, Wang M J, Su Y H, Tian P, Sui P X, Ma Z Q, Wang Y Y, Meng G X, Sun Y, Li C F, Qi H. Effects of tillage and straw incorporation method on root trait at silking stage and grain yield of spring maize in northeast China. Sci Agric Sin, 2020, 53: 3071-3082. (in Chinese with English abstract).
[43] Wang D, Sun C X, Cui M, Shen X B, Zhang Y L, Xiao J H, Liu P Y, Zhang Y, Xie H T. An integrated analysis of transcriptome and metabolome provides insights into the responses of maize (Zea mays L.) roots to different straw and fertilizer conditions. Environ Exp Bot, 2022, 194: 104732.
doi: 10.1016/j.envexpbot.2021.104732
[44] Xu X, Pang D W, Chen J, Luo Y L, Zheng M J, Yin Y P, Li Y X, Li Y, Wang Z L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Res, 2018, 221: 71-80.
doi: 10.1016/j.fcr.2018.02.009
[45] Gao F, Zhao B, Dong S, Liu P, Zhang J. Response of maize root growth to residue management strategies. Agron J, 2018, 110: 95-103.
doi: 10.2134/agronj2017.06.0307
[46] Fan Y, Gao J, Sun J, Liu J, Su Z, Wang Z, Yu X, Hu S. Effects of straw returning and potassium fertilizer application on root characteristics and yield of spring maize in China inner Mongolia. Agron J, 2021, 113: 4369-4385.
doi: 10.1002/agj2.20742
[47] Sui P, Tian P, Lian H, Wang Z, Ma Z, Qi H, Mei N, Sun Y, Wang Y, Su Y, Meng G, Jiang Y. Straw incorporation management affects maize grain yield through regulating nitrogen uptake, water use efficiency, and root distribution. Agronomy, 2020; 10: 324.
doi: 10.3390/agronomy10030324
[48] 陈梦云, 李晓峰, 程金秋, 任红茹, 梁健, 张洪程, 霍中洋. 秸秆全量还田与氮肥运筹对机插优质食味水稻产量及品质的影响. 作物学报, 2017, 43: 1802-1816.
doi: 10.3724/SP.J.1006.2017.01802
Chen M Y, Li X F, Cheng J Q, Ren H R, Liang J, Zhang H C, Huo Z Y. Effects of total straw returning and nitrogen application regime on grain yield and quality in mechanical transplanting japonica rice with good taste quality. Acta Agron Sin, 2017, 43: 1802-1816. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01802
[1] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice-oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[2] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerancea [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[3] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[4] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[5] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
[6] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[7] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[8] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[9] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
[10] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[11] LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807.
[12] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[13] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[14] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[15] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .