Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1065-1078.doi: 10.3724/SP.J.1006.2023.23032

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages

WU Xi1(), WANG Jia-Rui1, HAO Miao-Yi1, ZHANG Hong-Jun2, ZHANG Ren-He1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Shaanxi Seed Work Station, Xi’an 710003, Shaanxi, China
  • Received:2022-04-14 Accepted:2022-09-05 Online:2023-04-12 Published:2022-09-15
  • Contact: *E-mail: zhangrenhe1975@163.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD03000304);Shaanxi Advantage Characteristic Agricultural Industry Project(SXNY-2021-02)

Abstract:

The objective of this study is to explore the response of maize solar and heat utilization, material production, and yield formation to density at different maturity stages, in order to provide a theoretical basis for high yield and efficiency cultivation of spring maize in Northern Shaanxi irrigation area. In 2019 and 2020, the field experiments were conducted by using two maize hybrids [Dongdan 60 (middle-late-maturing) and Dafeng 30 (middle-early-maturing)] with four planting density treatments [45,000 (D1), 60,000 (D2), 75,000 (D3), and 90,000 (D4) plants hm-2]. Leaf area index, canopy solar distribution, material production and transport, solar and heat utilization, yield and its composition were measured. The results showed that, compared with the low density, Dafeng 30 and Dongdan 60 reached the highest yield of 18,787.5 kg hm-2 and 16,953.0 kg hm-2 under the density of 90,000 plants hm-2 and 75,000 plants hm-2 and increased by 37.7 % and 41.4 %, respectively. The grain moisture content of Dafeng 30 was 11.5 % lower than that of Dongdan 60 under high yield. With the increase of planting density, the leaf area index of the population and the interception rate of solar energy in the upper canopy increased significantly, while the solar interception rate of the middle canopy decreased significantly, and Dongdan 60 decreased more than Dafeng 30. There was no significant difference in the interception rate of the lower canopy. For the utilization of solar radiation, the pre-silking intercepted photosynthetically active radiation and radiation use efficiency of Dafeng 30 were 7.9% and 1.7% higher than those of Dongdan 60, respectively. The post-silking intercepted photosynthetically active radiation and radiation use efficiency of Dafeng 30 were 9.5% and 14.9% lower than those of Dongdan 60, respectively. The correlation between radiation use efficiency and planting density revealed that the increase of planting density was more obvious in improving the light radiation utilization efficiency of Dafeng 30. Under D4 density, the growth period of Dafeng 30 was shortened by 4.3 days on average compared with that of Dongdan 60, and the average effective accumulated temperature of Dafeng 30 was 25.3°C less than that of Dongdan 60, but the temperature use efficiency was 25.3% higher than that of Dongdan 60, and the accumulated temperature required to reach the maximum dry matter accumulation rate was less than that of Dongdan 60. The pre-anthesis dry matter accumulation and post-anthesis dry matter transport rate of Dongdan 60 and Dafeng 30 were 26.7%, 34.6%, and 43.7%, 55.8% higher than those of D1, respectively. The post-silking dry matter accumulation and post-silking dry matter transport rate of Dafeng 30 were 14.5% and 12.3% higher than those of Dongdan 60, respectively. In comclusion, the population structure of Dafeng 30 was reconstructed under the dense planting can improve solar energy interception in the middle canopy, increase growth rate of dry matter and advance dry matter to reach the maximum growth rate, promote dry matter accumulation and transportat, improve solar and heat resource utilization efficiency, and achieve high yield and efficiency of spring maize in this area. Meanwhile, the lower moisture content of grain was suitable for mechanical harvesting.

Key words: spring maize, planting density, solar and heat resources, accumulated transport of substances, mechanical grain harvesting

Fig. 1

Variations of temperature and solar radiation during maize growth period in 2019 and 2020"

Table 1

Effects of plant density on yield and its components of maize varieties at different growth stages"

年份
Year
品种
Variety name
密度
Density
穗粒数
Grains per ear (spike hm-2)
百粒重
100-kernel weight
(g)
籽粒产量
Grain yield
(kg hm-2)
籽粒含水率
Grain moisture content
(%)
2019 东单60
Dongdan 60
D1 712.9 a 38.6 a 13,052.8 d 25.5 a
D2 686.3 b 37.6 a 15,673.6 c 24.4 ab
D3 675.1 b 34.9 b 17,099.3 a 22.3 bc
D4 646.8 c 32.8 b 16,370.6 b 22.1 c
大丰30
Dafeng 30
D1 732.4 a 42.9 a 14,174.3 d 22.2 a
D2 678.0 b 40.9 b 15,549.3 c 21.0 ab
D3 653.7 c 40.2 b 17,848.0 b 20.4 ab
D4 648.7 c 38.3 c 19,126.5 a 20.0 b
2020 东单60
Dongdan 60
D1 623.7 a 37.4 a 11,570.3 d 26.2 a
D2 605.8 b 36.8 a 14,093.0 c 25.0 a
D3 575.1 c 35.3 b 16,806.6 a 24.5 a
D4 565.9 c 33.5 c 14,911.5 b 22.5 b
大丰30
Dafeng 30
D1 692.2 a 40.8 a 12,396.4 c 23.9 a
D2 676.1 b 38.6 b 14,944.2 b 23.6 a
D3 650.1 b 37.8 b 17,332.9 a 22.5 ab
D4 565.1 c 35.6 c 18,448.4 a 21.4 b
变异来源
Source of variation
年份Year (Y) ** ** ** **
品种Variety (V) ** ** ** **
密度Density (D) ** ** ** **
Y×V ** ** * ns
Y×D ** ns * ns
V×D ** ns ** ns
Y×V×D ** ns ** ns

Fig. 2

Relationship between planting density and yield, grain moisture content of maize varieties at different growth stages"

Table 2

Regression relationship between light energy interception rate and grain yield at different levels of canopy"

项目
Item
回归方程
Regression
决定系数
R2
产量
Yield
(kg hm-2)
Y=29,386.2ΔT1+27,614.9ΔT2
-7874.3ΔT3-2798.8
0.818**
Y=36,773.9ΔT-14,617.0 0.620**

Fig. 3

Effects of density on leaf area index of maize varieties at different growth stages DD60: Dongdan 60; DF30: Dafeng 30; V6: jointing stage; V12: trumpet stage; R1: silking stage. Treatments are the same as those given in Table 1. Values within the same column followed by different letters are significant difference at P < 0.05 among different treatments."

Table 3

Growth process and effective accumulated temperature utilization of maize varieties at different growth stages under different densities"

品种
Variety
密度
Density
播种期
Sowing date (M/D)
吐丝期
R1
(M/D)
生理成熟期
R6
(M/D)
吐丝前
有效积温
EATBS (℃)
吐丝后
有效积温
EATAS (℃)
生育期
Total growth
(d)
总有效积温
TEAT
(℃)
温度利用效率TUE
(kg hm-2-1)
2019
东单60
Dongdan 60
D1 4/30 7/14 9/28 683.79 771.63 149 1455.42 9.19 d
D2 4/30 7/14 9/27 683.79 765.54 148 1449.33 11.06 c
D3 4/30 7/14 9/27 683.79 765.54 148 1449.33 12.06 b
D4 4/30 7/14 9/26 683.79 758.66 147 1442.45 11.67 a
大丰30
Dafeng 30
D1 4/30 7/14 9/23 671.06 759.03 145 1430.09 10.44 d
D2 4/30 7/14 9/22 683.79 740.86 144 1424.65 11.49 c
D3 4/30 7/14 9/22 683.79 740.86 144 1424.65 13.19 b
D4 4/30 7/14 9/20 683.79 730.56 142 1414.35 14.29 a
2020
东单60
Dongdan 60
D1 5/1 7/14 9/29 724.91 754.40 149 1497.31 8.18 d
D2 5/1 7/14 9/28 724.91 749.06 148 1491.97 10.01 c
D3 5/1 7/14 9/28 724.91 749.06 148 1491.97 11.93 b
D4 5/1 7/14 9/27 724.91 743.75 147 1486.66 10.70 a
大丰30
Dafeng 30
D1 5/1 7/13 9/24 731.02 748.32 145 1479.34 9.11 d
D2 5/1 7/13 9/24 731.02 748.32 145 1479.34 11.02 c
D3 5/1 7/14 9/22 742.91 727.21 143 1470.12 12.79 b
D4 5/1 7/14 9/21 742.91 721.19 142 1464.10 13.73 a

Table 4

Effect of density on solar radiation utilization efficiency of maize varieties at different growth stages"

品种
Variety
密度
Density
吐丝前Pre-silking 吐丝后Post-silking 全生育期Total growth period
IPAR
(MJ m-1)
RUE
(g MJ-1)
IPAR
(MJ m-1)
RUE
(g MJ-1)
IPAR
(MJ m-1)
RUE
(g MJ-1)
2019
东单60
Dongdan 60
D1 1030.00 1.09 b 965.37 1.19 a 1995.37 1.14 b
D2 1048.29 1.13 b 979.38 1.24 a 2027.67 1.18 ab
D3 1091.91 1.24 a 1012.78 1.30 a 2104.69 1.27 a
D4 1046.57 1.24 a 978.06 1.26 a 2024.63 1.25 a
大丰30
Dafeng 30
D1 1095.59 1.12 b 839.01 1.32 c 1934.60 1.21 c
D2 1124.11 1.14 b 860.86 1.39 bc 1984.97 1.25 bc
D3 1183.46 1.19 b 906.31 1.46 b 2089.77 1.31 b
D4 1193.06 1.33 a 913.66 1.67 a 2106.71 1.48 a
2020
东单60
Dongdan 60
D1 958.20 0.97 b 818.58 1.19 b 1776.78 1.07 c
D2 1015.44 1.04 ab 860.25 1.23 ab 1875.69 1.13 bc
D3 1078.04 1.16 a 905.82 1.30 a 1983.86 1.22 a
D4 1028.39 1.11 a 869.68 1.27 ab 1898.07 1.18 ab
大丰30
Dafeng 30
D1 1005.41 0.98 c 731.98 1.31 c 1737.39 1.12 d
D2 1063.68 1.03 c 774.41 1.37 bc 1838.09 1.18 c
D3 1132.20 1.12 b 824.29 1.43 ab 1956.48 1.25 b
D4 1153.42 1.21 a 839.74 1.52 a 1993.17 1.34 a

Fig. 4

Effects of density on canopy light energy interception rate of maize varieties at different growth stages Bars super-scripted by different letters are significantly different among treatments at P < 0.05. Treatments and abbreviations are the same as those given in Table 1 and Fig. 3, respectively."

Fig. 5

The relationship between solar radiation use efficiency and planting density of maize varieties at different growth stages Abbreviations are the same as those given in Fig. 3."

Table 5

Effect of density on matter production and transport of maize varieties at different growth stages"

品种
Variety
密度
Density
总生物量
Total biomass (kg hm-2)
花前干物质积累量DMABS
(kg hm-2)
花后干物积累量DMAAS
(kg hm-2)
花后转运率
DMTR
(%)
花后干物质转运对籽粒的贡献率CGDMT (%)
2019
东单60
Dongdan 60
D1 22,757.70 d 11,233.57 b 11,524.13 b 19.52 b 16.08 b
D2 24,024.00 c 11,865.98 b 12,158.02 ab 21.59 b 17.38 b
D3 26,692.83 a 13,544.67 a 13,147.90 a 29.70 a 23.46 a
D4 25,223.08 b 12,931.67 a 12,291.42 ab 27.44 a 22.40 a
大丰30
Dafeng 30
D1 23,320.67 c 12,273.15 c 11,047.52 c 21.53 b 19.42 c
D2 24,744.67 c 12,787.20 bc 11,957.47 bc 22.57 b 19.47 c
D3 27,298.08 b 14,101.00 b 13,197.08 b 30.33 a 24.48 b
D4 31,115.23 a 15,832.80 a 15,282.43 a 32.70 a 25.30 a
品种
Variety
密度
Density
总生物量
Total biomass (kg hm-2)
花前干物质积累量DMABS
(kg hm-2)
花后干物积累量DMAAS
(kg hm-2)
花后转运率
DMTR
(%)
花后干物质转运对籽粒的贡献率CGDMT (%)
2020
东单60
Dongdan 60
D1 19,049.50 d 9317.36 c 9732.14 a 19.61 a 15.94 b
D2 21,142.13 c 10,564.45 bc 10,577.68 a 24.38 a 19.71 ab
D3 24,279.00 a 12,492.13 a 11,786.87 a 26.51 a 22.39 a
D4 22,458.63 b 11,441.93 ab 11,016.70 a 25.84 a 21.31 a
大丰30
Dafeng 30
D1 19,474.16 d 9887.67 d 9589.50 d 18.99 b 16.45 c
D2 21,634.72 c 10,989.60 c 10,645.12 c 27.89 a 22.34 b
D3 24,487.11 b 12,731.80 b 11,755.31 b 30.18 a 24.63 a
D4 26,732.58 a 13,975.67 a 12,756.92 a 30.41 a 25.00 a

Fig. 6

Dynamics of dry matter accumulation of maize varieties at different growth stages under different density configurations Treatments and abbreviations are the same as those given in Table 1 and Fig. 3."

Fig. 7

Correlation analysis of material production, utilization efficiency of solar and heat resources and yield IPARBS: intercepted photosynthetically active radiation before silking; IPARAS: intercepted photosynthetically active radiation after silking; TEAT: total effective accumulated temperature; RUE: radiation use efficiency; TUE: temperature use efficiency; DMABS: dry matter accumulation before silking; DMAAS: dry matter accumulation after silking; DMTR: dry matter transport rate; GMC: grain moisture content; GM: grain yield. Abbreviations are the same as those given in Fig. 3. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[2] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, Li S K, Hou P. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017, 212: 126-134.
doi: 10.1016/j.fcr.2017.05.006
[3] Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. Eur J Agron, 2020, 117: 126073.
doi: 10.1016/j.eja.2020.126073
[4] 万泽花, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化. 作物学报, 2019, 45: 1446-1453.
doi: 10.3724/SP.J.1006.2019.83078
Wan Z H, Ren B C, Zhao B, Liu P, Zhang J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agron Sin, 2019, 45: 1446-1453. (in Chinese with English abstract)
[5] 柏延文, 张宏军, 朱亚利, 郑学慧, 杨梅, 李从锋, 张仁和. 不同株型玉米冠层光氮分布、衰老特征及光能利用对增密的响应. 中国农业科学, 2020, 53: 3059-3070.
Bai Y W, Zhang H J, Zhu Y L, Zheng X H, Yang M, Li C F, Zhang R H. Responses of canopy radiation and nitrogen distribution, leaf senescence and radiation use efficiency on increased planting density of different variety types of maize. Sci Agric Sin, 2020, 53: 3059-3070. (in Chinese with English abstract)
[6] Chen S, Yin M, Zheng X, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agron J, 2019, 111: 1-10.
doi: 10.2134/agronj2018.10.0657
[7] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50: 2463-2475.
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017, 50: 2463-2475. (in Chinese with English abstract).
[8] 崔晓朋, 郭家选, 刘秀位, 张喜英, 孙宏勇. 不同种植模式对夏玉米光能利用率和产量的影响. 华北农学报, 2013, 28: 231-238.
doi: 10.7668/hbnxb.2013.05.039
Cui X P, Guo J X, Liu X W, Zhang X Y, Sun H Y. Effect of different planting patterns on radiation use efficiency and yield of summer maize. Acta Agric Boreali-Sin, 2013, 28: 231-238. (in Chinese with English abstract)
[9] 唐心龙, 刘莹, 秦喜彤, 张雨寒, 王腾, 李博, 薛瑞锋, 李济, 李昊, 石武良, 李斌, 李秋祝, 王洪预, 崔金虎, 姜文洙, 曹宁, 张玉斌. 玉米光能利用率和产量对密度、施氮量及其互作的响应. 植物营养与肥料学报, 2021, 27: 1864-1873.
Tang X L, Liu Y, Qin X T, Zhang Y H, Wang T, Li B, Xue R F, Li J, Li H, Shi W L, Li B, Li Q Z, Wang H Y, Cui J H, Jiang W Z, Cao N, Zhang Y B. Response of light use efficiency and grain yield of maize to planting density and nitrogen application rate. J Plant Nutr Fert, 2021, 27: 1864-1873. (in Chinese with English abstract)
[10] Cao Y J, Wang L C, Gu W R, Wang Y J, Zang J H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J Integr Agric, 2021, 20: 494-510.
doi: 10.1016/S2095-3119(20)63378-0
[11] 吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响. 作物学报, 2008, 34: 718-723.
doi: 10.3724/SP.J.1006.2008.00718
Lyu L H, Tao H B, Wang P, Liu M, Zhao M, Wang R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agron Sin, 2008, 34: 718-723. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00718
[12] 陈静, 任佰朝, 赵斌, 刘鹏, 杨今胜, 张吉旺. 基于品种生育期有效积温确定夏玉米适宜播期. 中国农业科学, 2021, 54: 3632-3646.
Chen J, Ren B C, Zhao B, Liu P, Yang J S, Zhang J W. Determination on suitable sowing date of summer maize hybrids based on effective accumulated temperature in growth period. Sci Agric Sin, 2021, 54: 3632-3646. (in Chinese with English abstract)
[13] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47: 507-519.
doi: 10.3724/SP.J.1006.2021.03024
Zhu Y L, Wang C G, Yang M, Zheng X H, Zhao C F, Zhang R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agron Sin, 2021, 470: 507-519. (in Chinese with English abstract)
[14] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018, 44: 414-422.
doi: 10.3724/SP.J.1006.2018.00414
Xu T J, Lyu T F, Zhao J R, Wang R H, Chen C Y, Liu Y E, Liu X Z, Wang Y D, Liu C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agron Sin, 2018, 44: 414-422. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00414
[15] 钱春荣, 王荣焕, 于洋, 徐田军, 宫秀杰, 郝玉波, 姜宇博, 赵久然. 生态区对不同熟期玉米品种生长发育与有效积温生产效率的影响. 黑龙江农业科学, 2020, (9): 1-8.
Qian C R, Wang R H, Yu Y, Xu T J, Gong X J, Hao Y B, Jiang Y B, Zhan J R. Effects of ecological zone on growth and development and effective accumulated temperature production efficiency of maize varieties differing in maturity. Heilongjiang Agric Sci, 2020, (9): 1-8. (in Chinese with English abstract)
[16] 王洪章, 刘鹏, 董树亭, 张吉旺, 赵斌, 任佰朝. 夏玉米产量与光温生产效率差异分析——以山东省为例. 中国农业科学, 2019, 52: 1355-1367.
Wang H Z, Liu P, Dong S T, Zhang J W, Zhao B, Ren B C. Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize: taking Shandong province as an example. Sci Agric Sin, 2019, 52: 1355-1367. (in Chinese with English abstract)
[17] 于胜男, 高聚林, 明博, 王振, 张宝林, 于晓芳, 孙继颖, 梁红伟, 王志刚. 基于热量定量密植协同提升春玉米粒收品种产量及热量利用效率. 中国生态农业学报, 2021, 29: 2046-2060.
Yu S N, Gao J L, Ming B, Wang Z, Zhang B L, Yu X F, Zhang J Y, Liang H W, Wang Z G. Quantification planting density based on heat resource for enhancing grain yield and heat utilization efficiency of grain mechanical harvesting maize. Chin J Eco-Agric, 2021, 29: 2046-2060. (in Chinese with English abstract)
[18] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017, 35: 265-272.
Li S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci Edn), 2017, 35: 265-272. (in Chinese with English abstract)
[19] 严定春, 朱艳, 曹卫星. 水稻栽培适宜品种选择的知识模型. 南京农业大学学报. 2004, 27(4): 20-25.
Yan D C, Zhu Y, Cao W X. A knowledge model for selection of suitable variety in rice production. J Nanjing Agric Univ, 2004, 27(4): 20-25. (in Chinese with English abstract)
[20] Ma L, Zhang X, Lei Q Y, Liu F. Effects of drip irrigation nitrogen coupling on dry matter accumulation and yield of summer maize in arid areas of China. Field Crops Res, 2012, 274:108321
doi: 10.1016/j.fcr.2021.108321
[21] Ren X M, Sun D B, Wang Q S. Modeling the effects of plant density on maize productivity and water balance in the loess plateau of China. Agric Water Manag, 2016, 171: 40-48.
doi: 10.1016/j.agwat.2016.03.014
[22] Mao L L, Zhang L Z, Zhao X H, Liu S D, Werf W V D, Zhang S P, Spiertz H, Li Z H. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Res, 2014, 155: 67-76.
doi: 10.1016/j.fcr.2013.09.021
[23] Wang X Y, Wang X L, Xu C C, Tan W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing emaize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019, 59: 2794-2805.
doi: 10.2135/cropsci2019.04.0218
[24] 杨胜举, 佟玲, 吴宣毅, 陈阳. 玉米冠层辐射分布和产量对种植密度和水分的响应研究. 灌溉排水学报, 2021, 40: 19-26.
Yang S J, Tong L, Wu X Y, Chen Y. Changes in radiation in canopy and the yield of maize in response to planting density and irrigation amounts. J Irrig Drain, 2021, 40: 19-26. (in Chinese with English abstract)
[25] 郭江, 肖凯, 郭新宇, 张凤路, 赵春江. 玉米冠层结构、光分布和光合作用研究综述. 玉米科学, 2005, 13(2): 55-59.
Guo J, Xiao K, Guo X Y, Zhang F L, Zhao C J. Review on maize canopy structure, light distributing and canopy photosynthesis. J Maize Sci, 2005, 13(2): 55-59. (in Chinese with English abstract)
[26] Chen S, Yin M, Zheng X, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agron J, 2019, 111: 1-10.
doi: 10.2134/agronj2018.10.0657
[27] 司转运, 高阳, 李双, 张传更, 刘俊明, 段爱旺. 不同灌水条件下施氮量对滴灌夏棉冠层指标的影响. 灌溉排水学报, 2019, 38: 31-36.
Si Z Y, Gao Y, Li S, Zhang C G, Liu J M, Yin A W. Response of canopy traits of summer cotton to different fertigation. J Irrig Drain, 2019, 38: 31-36. (in Chinese with English abstract)
[28] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048-3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci Agric Sin, 2020, 53: 3048-3058. (in Chinese with English abstract)
[29] 戴明宏, 单成钢, 王璞. 温光生态效应对春玉米物质生产的影响. 中国农业大学学报, 2009, 14(3): 35-41.
Dai M H, Shan C G, Wang P. Effect of temperature and solar ecological factors on spring maize production. J China Agric Univ, 2009, 14(3): 35-41. (in Chinese with English abstract)
[30] 胡旦旦, 李荣发, 刘鹏, 董树亭, 赵斌, 张吉旺, 任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量. 中国农业科学, 2021, 54: 1856-1868.
Hu D D, Li R F, Liu P, Dong S T, Zhao B, Zhang J W, Ren B C. Mixed-cropping improved on grain filling characteristics and yield of maize under high planting densities. Sci Agric Sin, 2021, 54: 1856-1868. (in Chinese with English abstract)
[31] 钱春荣, 王荣焕, 于洋, 徐田军, 宫秀杰, 郝玉波, 姜宇博, 李梁, 吕国依, 杨忠良, 赵久然. 不同熟期玉米品种在不同生态区的干物质积累、转运与分配特征. 玉米科学, 2021, 29: 60-68.
Qian C R, Wang R H, Yu Y, Xu T J, Gong X J, Hao Y B, Jiang Y B, Li L, Lu G Y, Yang Z L, Zhan J R. Characteristics of dry matter accumulation, transportation and distribution of maize varieties differing in maturities in different ecological zones. J Maize Sci, 2021, 29: 60-68. (in Chinese with English abstract)
[32] 赵继玉, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种生长发育特性与产量形成的关系. 中国农业科学, 2021, 54: 46-57.
Zhao J Y, Ren B C, Zhao B, Liu P, Zhang J W. Relationship between growth and development characteristics and yield formation of summer maize varieties differing in maturities. Sci Agric Sin, 2021, 54: 46-57. (in Chinese with English abstract)
[33] 童淑媛, 宋凤斌, 徐洪文. 不同品种玉米籽粒成熟期间叶片形态衰老的差异. 华北农学报, 2009, 24(1): 11-15.
doi: 10.7668/hbnxb.2009.01.004
Tong S Y, Song F B, Xu H W. Differences of morphological senescence of leaves in various maize varieties during mature period of seed. Acta Agric Boreali-Sin, 2009, 24(1): 11-15. (in Chinese with English abstract)
[34] 周琦, 张富仓, 李志军, 强生才, 田建柯, 李国栋, 范军亮. 施氮时期对夏玉米生长、干物质转运与产量的影响. 干旱地区农业研究, 2018, 36(1): 76-82.
Zhou Q, Zhang F C, Li Z J, Qiang S C, Tian J K, Li G D, Fan J L. Effects of nitrogen application at different stages on growth, yield, and dry matter transportation of summer maize. Agric Res Arid Areas, 2018, 36(1): 76-82. (in Chinese with English abstract)
[35] Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016
[1] LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016-2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131.
[2] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[3] WANG Li-Qing, YU Xiao-Fang, GAO Ju-Lin, MA Da-Ling, HU Shu-Ping, GUO Huai-Huai, LIU Ai-Ye. Response of grain yield formation to planting density of maize varieties in different eras [J]. Acta Agronomica Sinica, 2022, 48(10): 2625-2637.
[4] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[5] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[6] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[7] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[8] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[9] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
[10] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[11] LIU Peng-Zhao,SHI Zu-Jiao,NING Fang,WANG Rui,WANG Xiao-Li,LI Jun. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland [J]. Acta Agronomica Sinica, 2020, 46(8): 1225-1237.
[12] LI Rui-Jie,TANG Hui-Hui,WANG Qing-Yan,XU Yan-Li,WANG Qi,LU Lin,YAN Peng,DONG Zhi-Qiang,ZHANG Feng-Lu. Effects of 5-aminolevulinic acid and ethephon compound on carbon balance of source-sink of spring maize in Northeast China [J]. Acta Agronomica Sinica, 2020, 46(7): 1063-1075.
[13] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[14] Wei BAI,Zhan-Xiang SUN,Li-Zhen ZHANG,Jia-Ming ZHENG,Liang-Shan FENG,Qian CAI,Wu-Yan XIANG,Chen FENG,Zhe ZHANG. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China [J]. Acta Agronomica Sinica, 2020, 46(5): 759-771.
[15] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!