Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1079-1089.doi: 10.3724/SP.J.1006.2023.21022

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity

WU Xiang-Qi1(), LIU Bo1, ZHANG Wei1, YANG Xue-Ni1, GUO Zi-Yan1, LIU Tie-Ning1, ZHANG Xu-Dong1,*(), HAN Qing-Fang1,2,*()   

  1. 1Key Laboratory of Crop Ecophysiology and Tillage in Northwest Loess Plateau, Ministry of Agriculture and Rural Affairs/College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Key Laboratory of Agricultural Water and Soil Engineering in Arid and Semi-Arid Areas, Ministry of Education/China Research Institute of Water-Saving Agriculture in Arid Regions, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-03-20 Accepted:2022-09-05 Online:2023-04-12 Published:2022-10-18
  • Contact: *E-mail: xudongzhang@nwsuaf.edu.cn;E-mail: hanqf88@nwafu.edu.cn
  • Supported by:
    National High-Tech Research and Development Program of China during the 12th Five-Year Plan(2013AA102902);National Key Research and Development Project during the 14th Five-Year Plan(2021YFD1901102)

Abstract:

To investigate the effects of wheat and pea intercropping on population photosynthetic characteristics and productivity, a field experiment with two treatments [two strip cropping treatments of four rows of wheat + two rows of peas (W4P2), two rows of wheat + two rows of peas (W2P2), and single-crop wheat (CKW) and single-crop pea (CKP) as the controls] was conducted in Guanzhong region of Shaanxi Province from 2019 to 2021. The leaf photosynthetic rate (Pn), canopy apparent photosynthesis (CAP), dry matter accumulation and population productivity of wheat and pea were analyzed. The results showed that, compared with the monoculture, the W2P2 and W4P2 intercropping treatments significantly increased the SPAD and Pn of wheat leaves, but decreased the SPAD and Pn of pea leaves to different degrees. Intercropping wheat with peas significantly increased the preflowering population photosynthetic rate. The CAP of W4P2 increased by 6.2%-8.0% compared to its control population photosynthetic CAPCK42 (2/3CAPCKW+1/3CAPCKP), while the CAP of W2P2 increased 6.2%-8.5% compared to its control population photosynthetic CAPCK22 (1/2CAPCKW+1/2CAPCKP). Compared with CKW, the W4P2 and W2P2 intercropping treatments significantly enhanced the dry matter accumulation capacity per unit area of wheat, significantly increased the number of effective spikes and spikes at maturity stage, and increased the seed yield by 7.8%-9.4% and 18.9%-19.0%, respectively. Compared with CKP, the two intercropping treatments had a weakening trend in the dry matter accumulation and yield composition indexes of peas, and reduced the seed yield by 9.9%-12.2% and 6.8%-9.0%, respectively. The competitiveness evaluation revealed that the land equivalent ratios of W4P2 and W2P2 intercropping treatments were higher than 1 (W4P2: 1.02; W2P2: 1.06), indicating that wheat and pea intercropping increased the crop population yield advantage and the encroachment of the dominant crop wheat compared to pea was higher in the W2P2 intercropping model (0.27) than in W4P2 (0.20). In conclusion, in the wheat and pea intercropping system, compared to the broad-banded type (W4P2), the narrow-banded type (W2P2) was able to increase the population photosynthetic rate by increasing the photosynthetic capacity of the dominant crop wheat, thus promoting the use of light resources by the population and further exploiting the composite population production advantage.

Key words: intercropping, canopy apparent photosynthesis, individual leaf photosynthesis, dry matter, yield

Fig. 1

Relative chlorophyll content (SPAD) of wheat and pea leaves in different treatments Different lowercase letters in the graph indicate significant differences at the 0.05 probability level between the treatments. W4P2: 4 rows of wheat interplanted with 2 rows of peas; W2P2: 2 rows of wheat interplanted with 2 rows of peas; CKW: monoculture wheat; CKP: monoculture pea."

Fig. 2

Pn and Gs of wheat leaf with different treatments Different lowercase letters in the graph indicate significant differences at the 0.05 probability level between the treatments. Abbreviations are the same as those given in Fig. 1."

Fig. 3

Pn and Gs of pea leaves with different treatments Different lowercase letters in the graph indicate significant differences at the 0.05 probability level between the treatments. Abbreviations are the same as those given in Fig. 1."

Fig. 4

Canopy photosynthetic rate of different treatments Different lowercase letters in the graph indicate significant differences at the 0.05 probability level between the treatments. Abbreviations are the same as those given in Fig. 1."

Fig. 5

Effects of different treatments on dry matter accumulation of wheat and pea Different lowercase letters in the graph indicate significant differences at the 0.05 probability level between the treatments. Abbreviations are the same as those given in Fig. 1."

Table 1

Effects of different treatments on wheat and pea yield and its components"

年度
Year
处理
Treatment
小麦Wheat 豌豆Pea 籽粒总产量
Total grain yield
(kg hm-2)
穗数
No. of
productive ear (0.2 m2)
穗粒数
No. of spike
千粒重
1000-kernel weight (g)
籽粒产量
Grain yield
(kg hm-2)
单株荚数
Pods per plant
荚粒数
Seeds per pod
百粒重
100-grain weight (g)
籽粒产量
Grain yield
(kg hm-2)
2019-
2020
W4P2 108.7 b 34.0 a 38.0 a 4247 4.7 b 4.2 a 15.9 a 742 4989
W2P2 114.5 a 35.2 a 39.2 a 3461 5.3 b 3.8 a 16.7 a 1153 4614
CKW 107.0 b 33.8 a 39.1 a 5822 5822
CKP 6.6 a 3.8 a 16.4 a 2534 2534
2020-
2021
W4P2 110.8 b 37.0 b 38.6 a 4278 7.6 b 3.2 a 17.7 ab 774 5052
W2P2 117.2 a 40.3 a 39.8 a 3541 7.9 b 3.4 a 18.5 a 1201 4742
CKW 108.5 b 35.5 b 39.3 a 5954 5954
CKP 11.3 a 4.4 a 16.8 b 2577 2577

Table 2

Correlation coefficient between photosynthetic characteristics and dry matter accumulation at different growth stages"

光合指标
Photosynthetic
index
小麦干物质累积量Dry matter accumulation of wheat 豌豆干物质累积量Dry matter accumulation of peas
拔节期
Jointing stage
扬花期
Flowering stage
灌浆期
Filling stage
分枝期
Branching stage
开花期
Flowering stage
结荚期
Podding stage
SPAD 0.641** 0.552* 0.560* 0.636** 0.684** 0.844**
Pn 0.308 0.583* 0.420 0.569* 0.797** 0.766**

Table 3

Correlation analysis of canopy apparent photosynthesis with population dry matter accumulation and population yield at different growth stages"

变量
Variable
群体光合速率Population photosynthetic rate
拔节期/分枝期
Jointing stage/Branching stage
扬花期/开花期
Flowering stage/Flowering stage
灌浆期/结荚期
Filling stage/Podding stage
群体干物质积累量
Population dry matter accumulation
0.275 0.898** 0.475*
群体产量
Population yield
0.210 0.877** 0.275

Table 4

Evaluation of competitiveness of different intercropping treatments"

处理
Treatment
土地当量比 LER 侵占力 Awp
2019-2020 2020-2021 2019-2020 2020-2021
W4P2 1.02 1.02 0.22 0.18
W2P2 1.05 1.06 0.28 0.26
[1] 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30: 1057-1066.
Wang Z K, Wu P T, Zhao X N, Li Z Z, Fu X J. A review of light interception and utilization by intercropped canopies. J Nat Resour, 2015, 30: 1057-1066. (in Chinese with English abstract)
[2] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47: 929-941.
doi: 10.3724/SP.J.1006.2021.01047
Wang Y F, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agron Sin, 2021, 47: 929-941. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01047
[3] Suroshe S S, Chorey A B, Thakur M R. Productivity and economics of maize-based intercropping systems in relation to nutrient management. Res Crop, 2009, 10: 38-41.
[4] Connie M, Blessing M, Christian T. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder conservation agriculture farmers in Zimbabwe. Agric Syst, 2020, 185: 103127.
[5] Chen G D, Chai Q, Huang G B, Yu A Z, Feng F X, Mu Y P, Kong X F, Huang P. Belowground interspecies interaction enhances productivity and water use efficiency in maize-pea intercropping systems. Crop Sci, 2015, 55: 420-428.
doi: 10.2135/cropsci2014.06.0439
[6] 吴玉环, 王自奎, 刘亚男, 马千虎. 带幅设计对玉米/苜蓿间作群体光环境特征及光能利用效率的影响. 草业学报, 2022, 31(3): 144-155.
Wu Y H, Wang Z Q, Liu Y N, Ma Q H. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping. Acta Pratac Sin, 2022, 31(3): 144-155. (in Chinese with English abstract)
[7] Zhang Y, Sun Z X, Su Z C, Du G J, Bai W, Wang Q, Wang R N, Nie J Y, Sun T R, Feng C, Zhang Z, Yang N, Zhang X, Evers J B, van der Werf W, Zhang L Z. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Res, 2022, 282: 108523.
doi: 10.1016/j.fcr.2022.108523
[8] 陈元凯, 冯铃洋, Muhammad A R, 范元芳, 谌俊旭, 雍太文, 杨文钰, 杨峰. 四川地区玉米/大豆带状套作对大豆形态、叶绿素荧光特征及系统产量的影响. 中国生态农业学报, 2019, 27: 870-879.
Chen Y K, Feng Z Y, Muhammad A R, Fan Y F, Chen J X, Yong T W, Yang W Y, Yang F. Effect of maize/soybean relay strip intercropping system on soybean morphology, chlorophyll fluorescence, and yield in Sichuan area. Chin J Eco-Agric, 2019, 27: 870-879. (in Chinese with English abstract)
[9] 王旭, 曾昭海, 朱波, 胡跃高. 箭筈豌豆与燕麦不同间作混播模式对产量和品质的影响. 作物学报, 2007, 33: 1892-1895.
Wang X, Zeng Z H, Zhu B, Hu Y G. Effect of different intercropping and mixture modes on forage yield and quality of oat and common vetch. Acta Agron Sin, 2007, 33: 1892-1895. (in Chinese with English abstract)
[10] Chen X F, Sun N, Gu Y, Zheng H Y, Li J F, Wu C S, Wang Z M. Photosynthetic and chlorophyll fluorescence responses in maize and soybean strip intercropping system. Int J Agric Biol, 2020, 24: 799-811.
[11] Elise P, Mathieu B, David M, Guénaëlle C H, Christophe N, Mehdi A R, Edouard B, Laurent B, Véronique B, Patrick B, Benoit C, Daniel D, Damien F, Bernard G, Laurence G, Marie C M, Bertrand O, Loïc P, Morgane Y, Eric J, Marie-Hélène J. Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur J Agron, 2012, 40: 39-53.
doi: 10.1016/j.eja.2012.01.010
[12] Hauggaard-Nielsen H, Andersen M K, Jornsgaard B, Jensena E S. Density and relative frequency effects on competitive interactions and resource use in pea-barley intercrops. Field Crops Res, 2006, 95: 256-267.
doi: 10.1016/j.fcr.2005.03.003
[13] 陈磊, 张朝春, 张信吉, 秦雪梦, 焦念元. 施磷对不同间作体系间作优势与磷肥利用的影响. 中国农学通报, 2013, 29(6): 137-141.
Chen L, Zhang C C, Zhang X J, Qin X M, Jiao N Y. Effects of phosphate fertilizer on intercropping advantage and phosphate fertilizer utilization of different intercropping system. Chin Agric Sin Bull, 2013, 29(6): 137-141. (in Chinese with English abstract)
[14] 刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控. 作物学报, 2014, 40: 143-153.
doi: 10.3724/SP.J.1006.2014.00143
Liu T N, Xu C L, Gu L M, Dong S T. Effects of leaf removal on canopy apparent photosynthesis and individual leaf photosynthetic characteristics in summer maize under high plant density. Acta Agron Sin, 2014, 40: 143-153 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00143
[15] 赵德强, 李彤, 侯玉婷, 元晋川, 廖允成. 玉米大豆间作模式下干物质积累和产量的边际效应及其系统效益. 中国农业科学, 2020, 53: 1971-1985.
Zhao D Q, Li T, Hou Y T, Yuan J C, Liao Y C. Benefits and marginal effect of dry matter accumulation and yield in maize and soybean intercropping patterns. Sci Agric Sin, 2020, 53: 1971-1985. (in Chinese with English abstract)
[16] Mead R, Willey R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric, 1980, 16: 217-228.
doi: 10.1017/S0014479700010978
[17] Willey R W, Rao M R. A competitive ratio for quantifying competition between intercrops. Exp Agric, 1980, 16: 117-125.
doi: 10.1017/S0014479700010802
[18] 程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Raza A, 张熠, Ahmad I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54: 4084-4096.
Cheng B, Liu W G, Wang L, Xu M, Qin S S, Lu J J, Gao Y, Li S X, Raza A, Zhang Y, Ahmad I, Jing S Z, Liu R J, Yang W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Sci Agric Sin, 2021, 54: 4084-4096. (in Chinese with English abstract)
[19] Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil, 2004, 262: 45-54.
doi: 10.1023/B:PLSO.0000037019.34719.0d
[20] 王雅梅, 许彦骁, 王亚露, 李静, 张海芳, 杨殿林, 赵建宁, 轩清霞. 玉米-大豆不同宽幅间作对大豆光合特性及群体产量的影响. 农业环境科学学报, 2020, 39: 2587-2595.
Wang Y M, Xu Y X, Wang Y L, Li J, Zhang H F, Yang D L, Zhao J N, Xu Q X. Effects of maize-soybean intercropping with different widths on photosynthetic characteristics of soybean and population yield. J Agro-Environ Sci, 2020, 39: 2587-2595. (in Chinese with English abstract)
[21] 李智, 王宏富, 王钰云, 杨净, 鱼冰星, 黄珊珊. 谷子大豆间作对作物光合特性及产量的影响. 中国农业科技导报, 2020, 22(6): 168-175.
doi: 10.13304/j.nykjdb.2019.0807
Li Z, Wang H F, Wang Y Y, Yang J, Yu B X, Huang S S. Impact of millet and soybean intercropping on their photosynthetic characteristics and yield. J Agric Sci Technol, 2020, 22(6): 168-175. (in Chinese with English abstract)
[22] 任永福, 陈国鹏, 蒲甜, 陈诚, 曾瑾汐, 彭霄, 马艳玮, 杨文钰, 王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应. 作物学报, 2019, 45: 728-739.
doi: 10.3724/SP.J.1006.2019.83040
Ren Y F, Chen G P, Pu T, Chen C, Zeng J S, Peng X, Ma Y W, Yang W Y, Wang X C. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system. Acta Agron Sin, 2019, 45: 728-739. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83040
[23] 曹娜, 于海秋, 王绍斌, 于挺, 曹敏建. 高产玉米群体的冠层结构及光合特性分析. 玉米科学, 2006, 14(5): 94-97.
Cao N, Yu H Q, Wang S B, Yu T, Cao M J. Analysis on canopy structure and photosynthetic characteristics of high yield maize population. J Maize Sci, 2006, 14(5): 94-97. (in Chinese with English abstract)
[24] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47: 1489-1501.
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014, 47: 1489-1501. (in Chinese with English abstract)
[25] 高阳, 段爱旺, 刘祖贵, 孙景生, 陈金平, 王和洲. 间作种植模式对玉米和大豆干物质积累与产量组成的影响. 中国农学通报, 2009, 25(2): 214-221.
Gao Y, Duan A W, Liu Z G, Sun J S, Chen J P, Wang H Z. Effect of intercropping patterns on dry matter accumulation and yield components of maize and soybean. Chin Agric Sci Bull, 2009, 25(2): 214-221. (in Chinese with English abstract)
[26] Latati M, Bargaz A, Belarbi B, Lazail M, Benlahrech S, Tellah S, Kaci G, Drevon J J, Ounane S M. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur J Agron, 2008, 72: 80-90.
doi: 10.1016/j.eja.2015.09.015
[27] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析. 作物学报, 2021, 47: 1978-1987.
doi: 10.3724/SP.J.1006.2021.04226
Ren Y Y, Zhang L, Yu Y C, Zhang Y J, Zhang S Q. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems. Acta Agron Sin, 2021, 47: 1978-1987. (in Chinese with English abstract)
[28] 孟维伟, 王旭清, 刘佳, 戴海英, 尹庆良, 张正. 玉米大豆间作对资源利用及产量、效益影响的研究进展. 山东农业科学, 2013, 45(3): 132-135.
Meng W W, Wang X Q, Liu J, Dai H Y, Yin Q L, Zhang Z. Research advances on resource utilization, yield and economic benefit in maize-soybean intercropping system. Shandong Agric Sci, 2013, 45(3): 132-135. (in Chinese with English abstract)
[29] 冯良山. 花生谷子间作水分养分高效利用机制研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2013.
Feng L S. Mechanism Research for Improving Water and Nutrient Use Efficiency in Peanut and Foxtail Millet Intercropping. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2013. (in Chinese with English abstract)
[30] Chen X F, Sun N, Gu Y, Liu Y L, Li J F, Wu C S, Wang Z M. Maize-soybean strip intercropping improved lodging resistance and productivity of maize. Int J Agric Biol, 2020, 24: 1383-1392.
[31] 张桂国, 董树亭, 杨在宾. 苜蓿+玉米间作系统产量表现及其种间竞争力的评定. 草业学报, 2011, 20(1): 22-30.
Zhang G G, Dong S T, Yang Z B. Production performance of alfalfa+maize intercropping systems and evaluation of interspecies competition. Acta Pratac Sin, 2011, 20(1): 22-30. (in Chinese with English abstract)
[32] 王利立, 朱永永, 殷文, 郑德阳, 柴强. 大麦/豌豆间作系统种间竞争力及产量对地下作用和密度互作的响应. 中国生态农业学报, 2016, 24: 265-273.
Wang L L, Zhu Y Y, Yin W, Zheng D Y, Chai Q. Competitiveness and yield response to belowground interaction and density in barley-pea intercropping system. Chin J Eco-Agric, 2016, 24: 265-273. (in Chinese with English abstract)
[33] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 642-650.
doi: 10.3724/SP.J.1006.2015.00642
Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G, Yang W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agron Sin, 2015, 41: 642-650. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00642
[34] 杨春杰, 谭春燕, 陈佳琴, 刘作易, 龚丽娜, 朱星陶. 间作玉米对大豆鼓粒期产量与农艺性状及干物质积累的影响. 贵州农业科学, 2015, 43(11): 38-42.
Yang C J, Tan C Y, Chen J Q, Liu Z Y, Gong L N, Zhu X T. Effects of corn and soybean interplanting on yield, agronomic traits and dry matter accumulation of soybean during seed filling period. Guizhou Agric Sci, 2015, 43(11): 38-42. (in Chinese with English abstract)
[1] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[2] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[3] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[4] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[5] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[6] LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807.
[7] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[8] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[9] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[10] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[11] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[12] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[13] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[14] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[15] XU Tong, LYU Yan-Jie, SHAO Xi-Wen, GENG Yan-Qiu, WANG Yong-Jun. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities [J]. Acta Agronomica Sinica, 2023, 49(2): 472-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!