Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 755-771.doi: 10.3724/SP.J.1006.2023.22016

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time

WU Dong-Qing1(), LI Zhou2, GUO Chun-Lin3, ZOU Jing-Nan1, PANG Zi-Qin3, LIN Fei-Fan1, HE Hai-Bin1, LIN Wen-Xiong1,3,*()   

  1. 1College of Life Sciences, Fujian Agriculture and Forestry University / Fujian Province Key Laboratory of Agro-Ecological Process and Safety Monitoring, Fuzhou 350002, Fujian, China
    2Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou 363005, Fujian, China
    3Key Laboratory of Crop Genetics and Integrated Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2022-03-18 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-24
  • Contact: LIN Wen-Xiong E-mail:wudq606@163.com;wenxiong181@163.com
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300508);National Key Research and Development Program of China(2017YFD0301602);National Key Research and Development Program of China(2018YFD0301105);Fujian-Taiwan Coordination Innovation Center for Plant Germplasm Creation and Green Cultivation(Fujian 2011 Project);Fujian-Taiwan Coordination Innovation Center for Plant Germplasm Creation and Green Cultivation(2015-75);Fujian Agriculture and Forestry University Science and Technology Development Fund Project(KF2015043)

Abstract:

It is of great theoretical and practical significance to study the dry matter accumulation and translocation properties of ratoon rice for further understanding the physiological mechanism of yield formation and exploring the potential of yield increase. In this study, two rice varieties, Jiafuzhan (conventional indica rice) and Yongyou 2640 (indica-japonica hybrid rice), popularly planted in Southeast China, were used as the test materials. The ratooning and main rice crops of the two cultivars were regulated to be heading and ripening in the similar temperature condition of late autumn. Differences of photosynthetic physiology, hormone content, dry matter production, NSC translocation, and 13C assimilate in aboveground and underground parts of ratooning rice and its main crop synchronized heading in late season were compared. The results showed that, compared with main crop (late season) synchronized in rice heading time, the growth period of ratooning rice of the two varieties was 50% shorter, but they had 50% increase of effective panicles and 10% increase of harvest indexes, so the final yield could still reach 55%-65% of the control yield; the photosynthetic rate and SPAD value of the ratooning rice at the early stage of grain filling were significantly higher, but they turned to be significantly lower from 20 days after full heading to maturity; the content of ZR and IAA in ratooning rice were higher at the full heading stage, but lower later; the content of ABA in ratooning rice was 10%-20% higher from full heading stage to 10 days or 20 days after full heading, while the content of GA3 in ratooning rice was generally lower; NSC translocation rates of stubble, leaf and stem-sheath of the two tested varieties were as high as 67%-78%, 59%-67%, and 52%-61%, respectively, and the contribution rate of NSC translocation to yield was also as high as 10%-18%, respectively. The distribution rate of 13C photochemical compounds in panicle of ratooning rice at maturity stage was up to 20.83%, and the translocation of 13C assimilates to underground part of ratooning rice was reduced by 5%, resulting in more effective panicles and higher harvest index. Therefore, ratooning rice can reduce translocation and allocation of photoassimilates to rhizosphere soil, improve harvest index, lessen CH4, and other greenhouse gas emissions, which is a high-benefit and environment-friendly rice cropping pattern.

Key words: ratooning season rice, 13C pulse labeling, non-structural carbohydrate, dry matter accumulation and translocation

Fig. 1

Monthly temperature and precipitation variation during the whole growth period of ratooning rice"

Table 1

Comparison between grain yield and its components of ratooning season rice and the late season rice (main crop) synchronized in heading time"

品种
Cultivar name
种植模式Cropping pattern 有效穗数
Effective panicles (m-2)
每穗粒数
No. of grains per panicles
结实率
Seed setting percentage (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
收获指数Harvest index (%)
2018 JFZ RCR 442.0±4.9 a 51.0±2.0 a 90.1±1.08 a 23.5±0.24 a 4.77±0.15 Aa 56.9±0.4 a
STLR 276.0±7.8 c 112.0±5.3 b 86.0±1.79 b 27.5±0.30 b 7.31±0.26 Bb 42.7±0.2 b
YY2640 RCR 336.0±10.6 b 112.7±4.4 b 63.7±2.49 c 22.3±0.17 c 5.38±0.10 Cc 53.5±0.2 c
STLR 224.0±7.3 c 293.7±7.5 c 70.6±1.73 c 22.6±0.56 c 10.50 Dd 49.5±0.1 d
2019 JFZ RCR 441.7±8.8 a 49.5±1.2 a 90.3±2.39 a 23.4±0.28 a 4.62±0.13 Aa 55.3±0.1 a
STLR 275.4±3.3 c 111.2±3.1 b 85.6±2.54 b 27.0±0.28 b 7.08±0.20 Bb 50.2±0.2 b
YY2640 RCR 307.0±7.7 b 115.1±6.9 b 82.6±1.31 b 22.6±0.40 c 6.58±0.30 Cc 54.3±0.4 c
STLR 209.1±5.1 c 284.3±10.6 c 80.3±2.42 b 22.2±0.32 c 10.6±0.24 Dd 49.4±0.1 d
自由度DF F-value
年度Year (Y) 1 NS NS NS NS NS NS
品种Cultivar (C) 159.6 8.64** 18.101*** 16.725*** 7.649*** 6.971* NS
种植模式
Cropping system (S)
1 39.661*** 16.891*** NS 7.316* 24.08*** 16.055**
年度×品种Y×C 3 NS 5.49** 13.304*** NS NS NS
年度×种植模式Y×S 3 12.274*** 5.127** NS NS 7.448** 6.181**
品种×种植模式C×S 3 151.952*** 476.76*** 5.68** 9.79*** 31.023*** 6.62**
年度×品种×种植模式
Y×C×S
7 67.566*** 173.042*** 5.838** 3.437* 11.746*** 3.917*

Fig. 2

Net photosynthetic rate (NPR) of rice leaves detected in the different time courses at full heading and ripening stages sunder different rice cropping patterns HS, 10 DAH, 20 DAH and MS refer to heading stage, 10 days after full heading stage, 20 days after full heading stage, and maturity stage, respectively. * in the figure indicates significant difference at the 0.05 probability level in the comparison of NPR in the flag leaves of RCR and STLR detected in the same time courses of the heading and ripening stages. Abbreviations are the same as those given in Table 1."

Fig. 3

SPAD value of rice leaves detected detected in the different time courses at full heading and ripening stages sunder different rice cropping patterns * in the figure indicates significant difference at the 0.05 probability level in the comparison of SPAD values in the flag leaves of RCR and STLR detected in the same time courses of the heading and ripening stages. Abbreviations are the same as those given in Table 1 and Fig. 2."

Table 2

Variation of leaf area index and SPAD decay rate in different planting patterns at late stage in rice"

测定指标
Determination index
品种及稻作模式
Cultivar and cropping pattern
孕穗期
Booting
stage
抽穗期
Heading
stage
乳熟期
Milk
stage
成熟期
Maturity
stage
叶面积指数
Leaf area index
JFZ-RCR 1.0±0.10 a 2.10±0.20 a 2.20±0.20 a 2.30±0.40
JFZ-STLR 5.2±0.70 b 4.90±0.02 b 5.80±0.30 b 5.30±0.90
YY2640-RCR 2.4±0.50 a 2.40±0.50 a 2.40±0.50 a 2.40±0.50
YY2640-STLR 4.7±0.80 b 5.30±0.30 b 5.80±0.70 b 6.20±0.90
剑叶SPAD衰减率(降低值/d)
Decay rate of blade SPAD
JFZ-RCR 0.1±0.10 a 0.25±0.08 a 1.16±0.30 a 1.19±0.09
JFZ-STLR 0.1±0.04 a 0.16±0.03 b 0.70±0.07 b 0.87±0.12
YY2640-RCR 0.22±0.08 a 0.24±0.09 a 1.02±0.26 a 1.40±0.11
YY2640-STLR 0.05±0.01 b 0.10±0.08 b 0.59±0.12 b 0.95±0.04
单株叶重
Leaf weight per plant (g plants-1)
JFZ-RCR 10.00±1.77 a 5.30±1.15 a
JFZ-STLR 25.50±1.25 b 14.90±0.56 b
YY2640-RCR 15.10±1.87 a 7.90±1.85 a
YY2640-STLR 26.10±0.65 b 20.9±0.75 b

Fig. 4

Differences of hormone contents in roots, stems, leaves and spikelets of rice under different cropping patterns Abbreviations are the same as those given in Table 1 and Fig. 2. Different lowercase letters indicate signisicant difference at the 0.05 probability level."

Table 3

Correlation among panicle weight per plant, chlorophyll SPAD, hormone content and dry matter translocation in the period from heading to maturity stage under different planting modes"

项目
Item
单株穗重
Panicle weight per plant
(g plant-1)
玉米素核苷
ZR
(μg g-1 FW)
赤霉素
GA3
(μg g-1 FW)
脱落酸
ABA
(μg g-1 FW)
生长素
IAA
(μg g-1 FW)
叶绿素SPAD值
SPAD value
转运量
Translocation amount
(g plant-1)
运转率
Translocation rate
(%)
单株穗重
Panicle weight per plant
(g plant-1)
1 -0.401 -0.667 0.612 -0.412 -0.411 0.800* 0.402
玉米素核苷
ZR (μg g-1 FW)
1 0.821* -0.711* 0.970** 0.990** -0.760* -1.000**
赤霉素GA3 (μg g-1 FW) 1 -0.975** 0.821* 0.821* -0.975** -0.821
脱落酸ABA (μg g-1 FW) 1 -0.700* -0.890* 1.000** 0.760*
生长素IAA (μg g-1 FW) 1 1.000** -0.770* -1.000**
叶绿素SPAD值
SPAD value
1 -0.760* -1.000**
转运量
Translocation amount
(g plant-1)
1 0.788*
运转率
Translocation rate (%)
1

Table 4

Dry matter translocation properties of rice plant after full heading stage under different rice cropping patterns"

年度
Year
品种
Cultivar
种植模式
Cropping pattern
干物质转运量
Translocation amount of
dry matter (kg hm-2)
干物质转运率
Translocation rate of
dry matter (%)
干物质贡献率
Contribution rate of
dry matter (%)
齐穗后干物质贡献率
Contribution rate of dry matter after full heading stage (%)
稻桩
Stubble
茎鞘
Stem-sheath
叶片
Leaf
稻桩
Stubble
茎鞘
Stem-sheath
叶片
Leaf
稻桩
Stubble
茎鞘
Stem-sheath
叶片
Leaf
2018 JFZ RCR 204.2 781.7 c 261.1 b 12.6 17.6 b 25.2 b 2.7 12.6 b 7.8 b 76.9 b
STLR 526.0 bc 254.8 b 7.9 c 9.6 d 8.5 c 4.1 c 87.4 a
YY2640 RCR 245.6 703.0 a 446.3 a 20.0 21.3 a 26.8 a 5.1 14.6 a 9.3 a 71.0 c
STLR 584.8 b 437.4 a 6.6 c 12.5 c 6.3 d 4.7 c 89.0 a
2019 JFZ RCR 246.3 819.4 ab 237.6 c 18.7 27.0 a 30.2 a 5.6 18.6 a 5.4 a 70.4 c
STLR 666.2 b 232.7 c 11.0 c 14.7 c 11.5 b 4.0 c 84.5 b
YY2640 RCR 269.6 941.6 a 321.4 b 16.2 23.4 b 28.4 b 4.7 16.6 a 5.6 a 73.1 c
STLR 684.0 b 396.4 a 7.8 d 12.3 d 7.7 c 4.5 b 87.8 a

Table 5

Accumulation and allocation characteristics of soluble sugars, starches and non-structural carbohydrates (NSC) in rice stems, sheaths and leaves under different planting patterns"

品种
Cultivar
稻作
模式
Cropping pattern
可溶性糖含量
Content of soluble sugars (g plant-1)
淀粉含量
Content of starches (g plant-1)
NSC含量
Content of NSC (g plant-1)

Root
茎鞘
Stem-sheath

Leaf
稻桩
Stubble
籽粒
Grain

Root
茎鞘
Stem-sheath

Leaf
稻桩
Stubble
籽粒
Grain

Root
茎鞘
Stem-sheath

Leaf
稻桩
Stubble
籽粒
Grain
齐穗期 Full heading stage
JFZ RCR 0.57 c 2.14 b 0.44 d 0.43 a 0.25 c 0.67 b 2.38 d 0.32 c 0.52 b 0.02 d 1.24 c 4.52 c 0.76 d 0.95 a 0.27 c
STLR 1.65 a 2.62 b 0.72 c 0.26 c 1.22 a 5.66 b 0.53 b 0.05 c 2.87 a 8.28 ab 1.25 c 0.31 c
YY2640 RCR 0.86 b 2.42 b 1.03 b 0.34 b 0.26 c 0.66 b 4.25 c 0.85 ab 0.82 a 0.02 d 1.52 c 6.67 bc 1.88 b 1.16 a 0.28 c
STLR 1.35 ab 3.93 a 1.56 a 1.06 a 1.22 a 6.82 a 1.15 a 0.07 b 2.57 a 10.75 a 2.71 a 1.13 a
成熟期 Maturity stage
JFZ RCR 0.27 c 0.98 d 0.16 d 0.09 b 1.02 a 0.18 cd 1.18 c 0.19 c 0.12 b 17.22 c 0.45 c 2.16 c 0.35 d 0.21 b 18.24 c
STLR 1.08 a 3.22 a 0.64 c 0.58 b 0.67 a 2.59 a 0.33 b 28.51 b 1.75 a 5.81 a 0.97 b 29.09 b
YY2640 RCR 0.49 b 1.51 c 0.23 d 0.18 a 1.17 a 0.26 c 1.07 c 0.39 b 0.20 a 26.62 b 0.75 b 2.58 c 0.62 c 0.38 a 27.79 b
STLR 1.13 a 3.18 a 1.07 b 0.80 ab 0.59 ab 2.88 a 0.75 a 41.58 a 1.72 a 6.06 a 1.82 a 42.38 a

Table 6

Translocation characteristic of soluble sugars, starches and non-structural carbohydrates(NSC) of rice stems, sheaths and leaves in maturity stage under different planting patterns"

品种
Cultivar
稻作模式
Cropping Pattern
NSC转运量
Translocation amount of NSC (g plant-1)
NSC转运率
Translocation rate of NSC (%)
NSC转运对产量贡献率
Contribution rate of NSC translocation to production (%)

Root
茎鞘
Stem-sheath

Leaf

Stubble

Root
茎鞘
Stem-sheath

Leaf

Stubble
茎鞘
Stem-sheath

Leaf

Stubble
JFZ RCR 0.79 b 2.36 d 0.41 c 0.74 a 63.71 a 52.21 b 58.73 b 77.89 a 12.93 ab 2.24 b 4.05 a
STLR 1.12 a 2.47 d 0.28 d 39.02 c 29.83 d 22.40 d 8.49 c 0.96 d
YY2640 RCR 0.77 bc 4.09 b 1.26 a 0.78 a 50.65 b 61.31 a 67.02 a 67.02 a 14.71 a 4.43 a 2.81 b
STLR 0.85 b 4.69 a 0.89 b 33.07 d 43.62 c 32.84 c 11.06 b 2.10 b

Table 7

Contents of 13C assimilates of rice plant organs and soil in different cropping patterns"

品种
Cultivar
分配部位
Allocated part
齐穗期含量
Contents at full heading stage
(mg pot-1)
成熟期含量
Contents at maturity stage
(mg pot-1)
同品种成熟和齐穗期含量差异
The content difference of the same accessions at maturity and full heading stages (mg pot-1)
RCR STLR RCR STLR RCR STLR
JFZ 13C-土壤 13C-soil 4.87 Ecd* 0.40 d 3.02 Cbc 2.75 Cc -1.84 Db 2.35 Db*
13C-根系 13C-roots 1.54 Ed 2.66 Ed* 0.44 Cc 4.33 Cc* -1.10 Db 1.67 Db*
13C-稻桩 13C-stubbles 4.11 Ecd 1.30 Cc -2.82 Db
13C-茎鞘 13C-stem-sheath 38.57 EAb* 34.42 Ab 9.31 Bb 20.95 Ab* -29.25 Ac -13.46 Ad*
13C-叶 13C-leaves 6.30 Ec 7.73 Ec* 3.33 Cc 5.36 Cc* -2.97 Db -2.36 Dc
13C-穗 13C-panicles 70.25 Ba* 48.35 Ba 102.26 Aa* 60.97 Ba 32.01 Aa* 12.62 Aa
YY2640 13C-土壤 13C-soil 3.35 Ec* 0.41 Ed 2.36 Cc* 1.30 Cc -0.99 Db 0.89 Db*
13C-根系 13C-roots 0.97 Ec 1.41 Ed 0.30 Cc 2.74 Cc* -0.68 Db 1.34 Db*
13C-稻桩 13C-stubbles 2.04 Ec 0.91 Cc -1.13 Db
13C-茎鞘 13C-stem-sheath 19.12 Db 20.53 Db* 9.13 Bb 16.39 Bb* -9.99 Cc -4.13 Cc*
13C-叶 13C-leaves 3.00 Ec 9.95 Ec* 1.88 Cc 4.05 Cc* -1.12 Db* -5.89 Cd
13C-穗 13C-panicles 89.07 Ca* 62.77 Ca 104.93 Aa* 70.22 Ba 15.87 Ba* 7.46 Ba

Table 8

Distribution rate of 13C assimilates in different rice organs and soil under different rice cropping patterns"

品种
Cultivar
分配部位
Allocated part
齐穗后10 d 分配率
Distribution rate at 10 days after full heading (%)
成熟期分配率
Distribution rate at
maturity stage (%)
同品种成熟和齐穗期分配差异
The distribution difference of the same accessions at maturity and full heading stages (%)
RCR STLR RCR STLR RCR STLR
JFZ 13C-土壤 13C-soil 3.88 Dc* 0.43 De 2.53 Bc 2.92 Ce* -1.35 Cbc 2.49 Bb*
13C-根系 13C-roots 1.22 Dd 2.85 Dd* 0.37 Be 4.59 Cd* -0.86 Cb 1.74 Bb*
13C-稻桩 13C-stubbles 3.27 Dc 1.08 Bd -2.19 Cc
13C-茎鞘 13C-stem-sheath 30.81 Cb 36.81 Cb* 7.83 Bb 22.24 Bb* -22.98 Ad -14.56 Ad*
13C-叶 13C-leaves 5.01 Dc 8.26 Dc* 2.78 Bc 5.68 Cc* -2.23 Cc -2.58 Bc
13C-穗 13C-panicles 55.88 Aa* 51.70 Aa 85.45 Aa* 64.62 Aa 29.57 Aa* 12.93 Aa
YY2640 13C-土壤 13C-soil 2.85 Dc* 0.43 Dd 1.98 Bc* 1.37 Ce -0.87 Cbc 0.94 Bb*
13C-根系 13C-roots 0.83 Df 1.48 Dd* 0.25 Bf 2.90 Cd* -0.58 Cb 1.41 Bb*
13C-稻桩 13C-stubbles 1.74 De 0.77 Be -0.97 Cc
13C-茎鞘 13C-stem-sheath 16.27 Cb 21.75 Cb* 7.65 Bb 17.36 Bb* -8.62 Bd -4.39 Bc*
13C-叶 13C-leaves 2.55 Dd 10.48 Dc* 1.57 Bd 4.28 Cc* -0.98 Cc* -6.20 Bd
13C-穗 13C-panicles 75.77 Ba* 65.97 Ba 87.79 Aa* 74.13 Aa 12.02 Ba* 8.16 Aa
[1] 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究. 中国水稻科学, 2019, 33: 47-56.
doi: 10.16819/j.1001-7216.2019.8078
He A B, Yu P C, Chen Q, Jiang G L, Wang W Q, Nie L X. Optimizing the nitrogen management for Yongyou 4949 and Chaoyou 1000 in ratoon rice system in Central China. Chin J Rice Sci, 2019, 33: 47-56. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2019.8078
[2] 黄锦文, 吴珈谊, 陈鸿飞, 张志兴, 方长旬, 邵彩虹, 林伟伟, 翁佩莹, 林文雄. 头季稻氮肥运筹对再生稻根际机能及产量的影响. 中国水稻科学, 2021, 35: 383-395.
doi: 10.16819/j.1001-7216.2021.200603
Huang J W, Wu J Y, Chen H F, Zhang Z X, Fang C X, Shao C H, Lin W W, Weng P Y, Lin W X. Nitrogen fertilizer management for main crop rice and its carrying-over effect on rhizosphere function and yield of ratoon rice. Chin J Rice Sci, 2021, 35: 383-395. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.200603
[3] 林文雄, 陈鸿飞, 张志兴, 徐倩华, 屠乃美, 方长旬, 任万军. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23: 392-401.
Lin W X, Chen H F, Zhang Z X, Xu Q H, Tu N M, Fang C X, Ren W J. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chin J Eco-Agric, 2015, 23: 392-401. (in Chinese with English abstract)
[4] Lin W X. Developmental status and problems of rice rationing. J Integr Agric, 2019, 18: 246-247.
doi: 10.1016/S2095-3119(19)62568-2
[5] Zheng C, Wang Y C, Yuan S, Xiao S, Sun Y T, Huang J L, Peng S B. Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice rationing system. Crop J, 2022, 10: 280-285.
doi: 10.1016/j.cj.2021.06.003
[6] 易镇邪, 屠乃美, 陈平平. 杂交稻新组合再生稻头季及再生季源库特征分析. 中国水稻科学, 2005, 19: 243-248.
Yi Z X, Tu N M, Chen P P. Source-sink characteristics of main crop and ratooning rice of several new hybrid rice combinations. Chin J Rice Sci, 2005, 19: 243-248. (in Chinese with English abstract)
[7] 朱校奇, 邓启云, 陈春光, 龙世平, 尹文雅, 庄文. 超级杂交稻再生稻和主季稻源库关系比较. 亚热带农业研究, 2009, 5(2): 73-78.
Zhu X Q, Deng Q Y, Chen C G, Long S P, Yin W Y, Zhuang W. Comparison on source-sink relationship of ratooning rice and main crop of super hybrid rice. Subtrop Agric Res, 2009, 5(2): 73-78. (in Chinese with English abstract)
[8] 易镇邪, 周文新, 秦鹏, 屠乃美. 再生稻与同期抽穗主季稻源库流特性差异研究. 作物学报, 2009, 35: 140-148.
Yi Z X, Zhou W X, Qin P, Tu N M. Differences in characteristics of source, sink, and flow between ratooning rice and its same-term heading main-crop rice. Acta Agron Sin, 2009, 35: 140-148. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00140
[9] Huang J W, Wu J Y, Chen H F, Zhang Z X, Fang C X, Shao C H, Lin W W, Weng P Y, Khan M U, Lin W X. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in southeast China. J Integr Agric, 2022, 21: 2-15.
[10] Huang J W, Pan Y P, Chen H F, Zhang Z X, Fang C X, Shao C H, Amjad H, Lin W W, Lin W X. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Res, 2020, 258: 107962.
doi: 10.1016/j.fcr.2020.107962
[11] He A B, Wang W Q, Jiang G L, Sun H J, Jiang M, Man J G, Cui K H, Huang J L, Peng S B, Nie L X. Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crops Res, 2019, 236: 155-164.
doi: 10.1016/j.fcr.2019.04.001
[12] 谢华安. 超级稻作再生稻高产栽培特性的研究. 杂交水稻, 2010, 25(增刊1): 17-26.
Xie H A. Studies on high-yielding cultivation characteristics of super hybrid rice grown as ratoon rice. Hybrid Rice, 2010, 25(S1): 17-26. (in Chinese)
[13] 张上守, 卓传营, 姜照伟, 李义珍, 郭聪华. 超高产再生稻产量形成和栽培技术分析. 福建农业学报, 2003, (1): 1-6.
Zhang S S, Zhuo C Y, Jiang Z W, Li Y Z, Guo C H. Yield formation and cultivation techniques in super high-yielding ratoon rice. Fujian J Agric Sci, 2003, (1): 1-6 (in Chinese with English abstract).
[14] 张海峰, 黄育民, 林文, 李义珍. 再生稻的光合作用和物质生产. 福建稻麦科技, 1991, (4): 41-45.
Zhang H F, Huang Y M, Lin W, Li Y Z. Photosynthesis and material production in ratoon rice. Fujian Rice Wheat Technol, 1991, (4): 41-45. (in Chinese)
[15] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000. pp 111-114.
Zou Q. Experimental Guidance in Plant Physiology. Beijing: China Agriculture Press, 2000. pp 111-114. (in Chinese)
[16] 陈远平, 杨文钰. 卵叶韭休眠芽中GA3I、AA、ABA和 ZT的高效液相色谱法测定. 四川农业大学学报, 2005, (4): 498-500.
Chen Y P, Yang W Y. Determination of GA3I, AA, ABA and ZT in dormant buds of allium ovalifolium by HPLC. J Sichuan Agric Univ, 2005, (4): 498-500. (in Chinese with English abstract)
[17] 李洲. 低留桩再生稻产量形成的生理生态研究. 福建农林大学博士学位论文, 福建福州, 2020.
Li Z. Study on Physioecological Mechanism of Yield Formation of Ratooning Rice Generated from Low Stubbles of Main Crop. PhD Dissertation of Fujian Agricultural and Forestry University, Fuzhou, Fujian, China, 2020. (in Chinese with English abstract)
[18] Yang J, Zhang J. Grain filling of cereals under soil drying. New Phytol, 2006, 169: 223-236.
doi: 10.1111/j.1469-8137.2005.01597.x pmid: 16411926
[19] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ, 2010, 26: 1621-1631.
doi: 10.1046/j.1365-3040.2003.01081.x
[20] Harrell D L, Bond J A, Blanche S. Evaluation of main-crop stubble height on ratoon rice growth and development. Field Crops Res, 2009, 114: 396-403.
doi: 10.1016/j.fcr.2009.09.011
[21] 刘爱中, 邹冬生, 屠乃美, 刘飞. 留桩高度对再生稻生长发育及产量的影响. 安徽农业科学, 2007, 35: 5120-5121.
Liu A Z, Zou D S, Tu N M, Liu F. Effect of stubble height on growth and yield of ratooning rice. J Anhui Agric Sci, 2007, 35: 5120-5121. (in Chinese with English abstract)
[22] 熊绪穰. 谈谈再生稻的桩高问题. 杂交水稻, 1995, (3): 45.
Xiong X R. A discussion on the stubble height of ratoon rice. Hybrid Rice, 1995, (3): 45. (in Chinese)
[23] 易镇邪, 周文新, 屠乃美. 留桩高度对再生稻源库性状与物质运转的影响. 中国水稻科学, 2009, 23: 509-516.
doi: 10.3969/j.issn.10017216.2009.05.10
Yi Z X, Zhou W X, Tu N M. Effects of stubble height of the main crop on source-sink characteristics and assimilates transportation in ratooning rice. Chin J Rice Sci, 2009, 23: 509-516. (in Chinese with English abstract)
[24] Daliri M S, Eftekhari A, Mobasser H R, Tari D B, Porkalhor H. Effect of cutting time and cutting height on yield and yield components of ratoon rice (Tarom Langrodi Variety). Asian J Plant Sci, 2009, 8: 89-91.
doi: 10.3923/ajps.2009.89.91
[25] Yazdpour H, Shahri M M, Soleymani A, Shahrajabian M H. Effects of harvesting time and harvesting height on grain yield and agronomical characters in rice ratoon (Oryza sativa L.). J Food Agric Environ, 2012, 10: 438-440.
[26] 王嘉佳, 唐中华. 可溶性糖对植物生长发育调控作用的研究进展. 植物学研究, 2014, 3(3): 71-76.
Wang J J, Tang Z H. The regulation of soluble sugars in the growth and development of plants. Bot Res, 2014, 3(3): 71-76. (in Chinese with English abstract)
[27] 周驰燕, 李国辉, 许轲, 郭保卫, 戴其根, 霍中洋, 魏海燕, 张洪程. 水稻茎鞘非结构性碳水化合物转运机理及栽培调控研究进展. 生命科学, 2021, 33: 111-120.
Zhou C Y, Li G H, Xu K, Guo B W, Dai Q G, Huo Z Y, Wei H Y, Zhang H C. Advances in translocation mechanism and cultivation regulation of nonstructural carbohydrate in rice stem and sheath. Chin Bull Life Sci, 2021, 33: 111-120. (in Chinese with English abstract)
[28] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究. 作物学报, 2021, 47: 2278-2289.
doi: 10.3724/SP.J.1006.2021.02070
Huang S H, Lin X Y, Lei Z P, Ding Z S, Zhao M. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability. Acta Agron Sin, 2021, 47: 2278-2289. (in Chinese with English abstract)
[29] 杨东, 陈鸿飞, 卓传营, 林文雄. 头季不同施氮方式对再生稻生理生化的影响. 中国生态农业学报, 2009, 17: 643-646.
Yang D, Chen H F, Zhuo C Y, Lin W X. Effect of different N application modes in the first cropping rice on the physiobiochemistry of the first cropping rice and its ratoon rice. Chin J Eco-Agric, 2009, 17: 643-646. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2009.00643
[30] 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702-1717.
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702-1717. (in Chinese with English abstract)
[31] Yu S M, Lo S F, Ho T H D. Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015, 20: 844-856.
doi: 10.1016/j.tplants.2015.10.009
[32] Su J, Hu C, Yan X, Jin Y, Chen Z, Guan Q, Wang Y, Zhong D, Jansson C, Wang F, Schnurer A, Sun C. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature, 2015, 523: 602-606.
doi: 10.1038/nature14673
[33] Firous S, Nikkhah A, Aminpanah H. Rice single cropping or ratooning agro-system: which one is more environment-friendly. Environ Sci Poll Res, 2018, 25: 32246-32256.
doi: 10.1007/s11356-018-3076-x
[34] 张浪, 徐华勤, 李林林, 陈元伟, 郑华斌, 唐启源, 唐剑武. 再生稻和双季稻田CH4排放对比研究. 中国农业科学, 2019, 52: 2101-2113.
Zhang L, Xu H Q, Li L L, Chen Y W, Zheng H B, Tang Q Y, Tang J W. Comparative study on CH4emission from ratoon rice and double-cropping rice fields. Sci Agric Sin, 2019, 52: 2101-2113. (in Chinese with English abstract)
[35] 邓桥江, 曹凑贵, 李成芳. 不同再生稻栽培模式对稻田温室气体排放和产量的影响. 农业环境科学学报, 2019, 38: 1373-1380.
Deng J Q, Cao C G, Li C F. Effects of different ratooning cultivation modes on greenhouse gas emissions and grain yields in paddy fields. J Agro-Environ Sci, 2019, 38: 1373-1380. (in Chinese with English abstract)
[36] 林志敏, 李洲, 翁佩莹, 吴冬青, 邹京南, 庞孜钦, 林文雄. 华东南再生稻田温室气体排放特征及碳足迹. 应用生态学报, 2022.
Lin Z M, Li Z, Weng P Y, Wu D Q, Zou J N, Pang Z Q, Lin W X. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice in southeast China. Chin J Appl Ecol, 2022. (in Chinese with English abstract)
[37] Denier van der gon H A C, Kropff M J, Van Breemen N, Wassmann R, Lantin R S, Aduna E, Corton T M, Van Laar H H. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc Natl Acad Sci USA, 2002, 99: 12021-12024.
pmid: 12189212
[1] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[2] WU Ya-Wei, PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao. Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance [J]. Acta Agronomica Sinica, 2021, 47(5): 915-928.
[3] Yan-Wen BAI,Yong-Hong YANG,Ya-Li ZHU,Hong-Jie LI,Ji-Quan XUE,Ren-He ZHANG. Effect of planting density on light interception within canopy and grain yield of different plant types of maize [J]. Acta Agronomica Sinica, 2019, 45(12): 1868-1879.
[4] Tian-Jun XU, Tian-Fang LYU, Jiu-Ran ZHAO, Rong-Huan WANG, Chuan-Yong CHEN, Yue-E LIU, Xiu-Zhi LIU, Yuan-Dong WANG, Chun-Ge LIU. Photosynthetic Characteristics, Dry Matter Accumulation and Translocation, Grain Filling Parameter of Three Main Maize Varieties in Production [J]. Acta Agronomica Sinica, 2018, 44(03): 414-422.
[5] DONG Qian,YONG Tai-Wen,LIU Xiao-Ming,LIU Wen-Yu,XU Ting,SONG Chun,WANG Xiao-Chun,YANG Wen-Yu. Effect of Nitrogen Application Methods on Crop Yield and Grain Filling Characteristics of Maize in Maize-Soybean Relay Strip Intercropping System [J]. Acta Agron Sin, 2014, 40(11): 2028-2039.
[6] TANG Yong-Lu,LI Chao-Su,WU Chun,WU Xiao-Li,HUANG Gang,HE Gang. Yield Component and Dry Matter Accumulation in Wheat Varieties with 9000 kg ha−1 Yield Potential in Sichuan Basin [J]. Acta Agron Sin, 2014, 40(01): 134-142.
[7] ZHANG Ren-He,GUO Dong-Wei,ZHANG Xing-Hua,LU Hai-Dong,LIU Jian-Chao,LI Feng-Yan,HAO Yin-Chuan,XUE Ji-Quan. Effects of Drought Stress on Physiological Characteristics and Dry Matter Production in Maize Silking Stage [J]. Acta Agron Sin, 2012, 38(10): 1884-1890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .