Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (12): 1868-1879.doi: 10.3724/SP.J.1006.2019.93011


Effect of planting density on light interception within canopy and grain yield of different plant types of maize

Yan-Wen BAI,Yong-Hong YANG,Ya-Li ZHU,Hong-Jie LI,Ji-Quan XUE,Ren-He ZHANG()   

  1. College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Received:2019-03-04 Accepted:2019-06-24 Online:2019-12-12 Published:2019-07-22
  • Contact: Ren-He ZHANG E-mail:zhangrenhe1975@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300304);the Shaanxi Key Research and Development Program(2017ZDCXL-NY-02-02);the Shaanxi Technology Innovation and Guide Project(2019TG-002)


The objective of this study was to clarify the relationship between light interception in canopy and dry matter production and grain yield in different plant types of maize. The response of morphological characteristics, canopy light distribution, grain filling parameters and dry matter accumulation were studied using three different maize hybrids Shaandan 609 (SD609, compact), Qinlong 14 (QL14, semi-compact), and Shaandan 8806 (SD8806, flat) with four plant densities (4.5×10 4, 6.0×10 4, 7.5×10 4, and 9.0×10 4plants hm -2) in the field from 2016 to 2017. The average yields of SD609, QL14, and SD8806 were 12,176, 9624, and 8533 kg hm -2, respectively, within two years, reaching high yields under 9.0×10 4, 7.5×10 4, and 6×10 4 plants hm -2, with the yield increase of 26.9%, 20.4%, and 19.7% compared with those under 4.5×10 4 plants hm -2, respectively. With the increase of plant density, leaf area decreased, but LAI and leaf orientation value increased. The middle leaves of SD609 were more upright and larger than those of QL14 under 9×10 4 plants hm -2. With increasing plant density, Dmax (days to the maximum grain-filling rate), Wmax (kernel weight at the maximum grain filling rate), Gmax (maximum grain-filling rate), Gave (average grain-filling rate) and P (active filling period) decreased, the Dmax for SD609 was 1.4 days and 3.0 days earlier than that of QL14 and SD8806, and the Wmax and P were higher than those of SD636 (0.3 g and 3.3 d) and SD8806 (1.1 g and 5.4 d), respectively. The dry matter accumulation after silking and the contribution of dry matter transportation to grain yield increased and then decreased with the increase of plant density, the accumulation, transportation and contribution to grain of dry matter after anthesis were higher in SD609 than QL14 (5.1%, 36.0%, 33.5%) and SD8806 (26.6%, 46.7%, 59.1%). The light interception in the ear canopy was significantly correlated with yield (r = 0.631, P < 0.05), the dry matter accumulation after silking (r = 0.661) and average grain filling rate (r = 0.859) at P < 0.01. Thus, compared with QL14 and SD8806, SD609 could regulate the mid and upper leaves more vertical under close planting, improve the light distribution in the mid and lower canopy, maintain a higher area of green leaves, delay the senescence of canopy leaves, increase dry matter accumulation after anthesis and grain filling rate, so obtain a higher grain yield.

Key words: maize, plant type, plant density, canopy structure, dry matter accumulation and translocation, grain filling

Table 1

Effect of plant density on grain yield and components in different types of maize"

(×104 plants hm-2)
Ears hm-2
No. ear-1
100-kernels weight
Grain yield
(kg hm-2)
2016 陕单609 4.5 44689±851 d 589±11.2 a 37.8±0.0 a 9950±448 d
Shaandan 609 6.0 57807±1002 c 561±10.1 b 35.4±0.1 b 11483±1038 c
7.5 74482±2658 b 514±11.5 c 33.8±0.3 c 12940±885 b
9.0 90713±3321 a 486±11.6 d 31.8±0.1 d 14020±921 a
秦龙14 4.5 48802±1568 d 553±14.5 a 31.3±0.6 a 8447±236 c
Qinlong14 6.0 61142±1258 c 528±11.4 b 29.7±1.1 b 9588±682 b
7.5 74814±995 b 492±11.2 c 28.7±0.8 c 10564±965 a
9.0 90601±3584 a 402±8.2 d 26.8±1.1 d 9761±689 b
陕单8806 4.5 46912±2214 d 538±15.3 a 30.8±1.5 a 7774±398 c
Shaandan 8806 6.0 60695±3654 c 515±15.6 b 29.5±0.1 b 9221±991 a
7.5 73591±2256 b 441±7.8 c 26.1±0.1 c 8470±786 b
9.0 88800±1502 a 371±8.1 d 24.3±0.0 d 8006±683 c
差异来源Source of variation
密度 Density (D) ** ** ** **
品种 Hybrids (H) ns ** ** **
密度×品种 D×H ns ** ** **
2017 陕单609 4.5 47083±2523 d 613±19.8 a 35.7±0.8 a 10304±1211 c
Shaandan 609 6.0 59444±2216 c 588±21.5 b 33.6±1.1 b 11744±923 b
7.5 76389±3650 b 547±11.1 c 31.8±0.9 c 13288±1065 a
9.0 89361±4026 a 502±10.6 d 30.5±0.5 d 13682±689 a
秦龙14 4.5 46750±2601 d 574±10.3 a 32.1±1.1 a 8614±738 d
Qinlong 14 6.0 60417±668 c 528±9.6 b 30.8±1.2 b 9825±456 b
7.5 74027±2789 b 501±11.2 c 29.3±0.5 c 10867±669 a
9.0 86806±1269 a 410±12.3 d 26.2±0.7 d 9325±359 c
陕单8806 4.5 43639±754 d 545±16.8 a 31.5±1.1 a 7492±775 d
Shaandan 8806 6.0 61917±2105 c 518±19.2 b 30.6±0.4 b 9814±486 a
7.5 71639±1526 b 455±9.3 c 28.4±0.6 c 9257±698 b
9.0 82639±3058 a 386±6.3 d 25.8±0.0 d 8230±668 c
差异来源 Source of variation
密度 Density (D) ** ** ** **
品种 Hybrids (H) * ** ** **
密度×品种 D×H * ** ** **

Table 2

Regression equation between yield components and planting densities of different types of maize"

Regression equation
穗粒数 陕单609 Shaandan 609 y= -24.3x+714.3 0.992**
Kernel number 秦龙14 Qinlong 14 y= -33.6x+725.3 0.930**
陕单8806 Shaandan 8806 y= -37.2x+722.0 0.964**
粒重 陕单609 Shaandan 609 y= -1.2x+42.1 0.994**
Kernel weight 秦龙14 Qinlong 14 y= -1.1x+36.9 0.974**
陕单8806 Shaandan 8806 y= -1.4x+37.9 0.975**

Fig. 5

Effect of plant density on grain-filling rate of different types of maize Abbreviations are the same as those given in Figure 1."

Table 3

Effect of plant density on grain-filling parameters of different types of maize"

Density (×104 plant hm-2)
Richards equation
R2 Dmax
(g 100-kernel-1)
(g kernel-1 d-1)
(g kernel-1 d-1)
2016 陕单609 4.5 y=36.8/[1+exp(1.87-0.11x)]^3.3 0.9993 28.7±0.3 a 15.6±0.1 a 1.27±0.06 a 0.86±0.01 a 54.2±1.3 a
Shaandan 609 6.0 y=35.4/[1+exp(2.58-0.11x)]^2.2 0.9995 28.4±0.3 b 15.4±0.2 b 1.17±0.02 b 0.79±0.02 b 52.6±0.9 b
7.5 y=34.7/[1+exp(1.85-0.10x)]^3.1 0.9993 28.1±0.4 c 14.6±0.3 c 1.07±0.02 c 0.73±0.01 c 51.5±1.1 c
9.0 y=33.2/[1+exp(1.51-0.09x)]^3.8 0.9989 27.9±0.4 d 13.7±0.3 d 0.98±0.01 d 0.66±0.00 d 50.1±0.7 d
秦龙14 4.5 y=33.2/[1+exp(1.15-0.09x)]^4.4 0.9992 30.5±0.2 a 13.9±0.4 a 1.03±0.02 a 0.70±0.00 a 52.6±0.9 a
Qinlong 14 6.0 y=32.3/[1+exp(1.73-0.09x)]^2.8 0.9988 30.2±0.3 b 13.7±0.1 b 0.93±0.02 b 0.65±0.01 b 51.5±1.2 b
7.5 y=30.2/[1+exp(2.62-0.10x)]^1.8 0.9989 30.1±0.6 c 13.6±0.1 b 0.89±0.03 c 0.62±0.02 c 50.2±1.1 c
9.0 y=29.5/[1+exp(2.36-0.09x)]^1.9 0.9976 29.7±0.3 c 13.2±0.2 c 0.79±0.04 d 0.58±0.03 d 49.5±0.8 d
陕单8806 4.5 y=30.7/[1+exp(4.55-0.15x)]^0.8 0.9992 31.8±0.3 a 13.8±0.5 a 1.01±0.06 a 0.70±0.00 a 49.3±0.7 a
Shaandan 8806 6.0 y=29.0/[1+exp(4.11-0.14x)]^0.9 0.9993 31.7±0.1 b 13.6±0.1 b 0.97±0.01 b 0.64±0.01 b 47.1±1.1 b
7.5 y=28.6/[1+exp(3.71-0.13x)]^1.0 0.9997 31.4±0.6 c 13.4±0.4 c 0.90±0.04 c 0.60±0.01 c 46.7±0.6 c
9.0 y=28.8/[1+exp(0.68-0.08x)]^1.5 0.9993 31.2±0.5 d 12.9±0.2 d 0.84±0.02 d 0.53±0.04 d 45.7±0.3 d
2017 陕单609 4.5 y=37.6/[1+exp(2.88-0.11x)]^7.8 0.9992 29.6±0.2 a 14.9±0.2 a 1.07±0.03 a 0.87±0.01 a 55.1±0.5 a
Shaandan 609 6.0 y=34.8/[1+exp(0.66-0.08x)]^5.4 0.9991 29.4±0.2 b 13.9±0.3 b 0.95±0.01 b 0.83±0.01 b 53.7±0.8 b
7.5 y=33.3/[1+exp(0.91-0.08x)]^4.4 0.9994 29.1±0.5 c 13.5±0.2 c 0.88±0.04 c 0.75±0.00 c 52.4±0.3 c
9.0 y=32.2/[1+exp(0.59-0.08x)]^5.5 0.9995 28.9±0.4 d 12.8±0.4 d 0.84±0.03 d 0.69±0.00 d 51.9±1.2 d
秦龙14 4.5 y=30.8/[1+exp(1.68-0.08x)]^1.1 0.9996 30.6±0.3 a 13.7±0.5 a 0.96±0.02 a 0.69±0.01 a 52.5±0.3 a
Qinlong 14 6.0 y=28.8/[1+exp(1.77-0.08x)]^1.1 0.9994 30.2±0.7 b 13.2±0.3 b 0.92±0.06 b 0.67±0.02 a 52.1±0.2 b
7.5 y=29.9/[1+exp(2.01-0.09x)]^2.3 0.9992 29.9±0.1 c 13.0±0.3 c 0.86±0.04 c 0.63±0.01 b 51.4±0.8 c
9.0 y=26.9/[1+exp(3.39-0.12x)]^1.4 0.9994 29.6±0.2 d 12.7±0.3 d 0.82±0.02 d 0.58±0.03 c 46.0±1.1 d
陕单8806 4.5 y=32.4/[1+exp(1.06-0.09x)]^4.3 0.9995 32.3±0.4 a 13.4±0.4 a 0.96±0.01 a 0.67±0.04 a 49.4±1.0 a
Shaandan 8806 6.0 y=31.1/[1+exp(1.75-0.10x)]^2.8 0.9993 32.1±0.2 a 13.2±0.1 a 0.95±0.01 a 0.65±0.01 a 48.1±0.3 a
7.5 y=29.8/[1+exp(1.30-0.09x)]^3.8 0.9994 31.8±0.3 b 12.3±0.3 b 0.91±0.00 b 0.61±0.01 b 46.6±0.5 b
9.0 y=28.8/[1+exp(0.68-0.08x)]^5.6 0.9903 31.5±0.5 c 11.5±0.2 c 0.80±0.07 c 0.51±0.02 c 45.5±0.4 c

Table 4

Accumulation and transportation of dry matter after silking of different types of maize"

(×104 plant hm-2)
(kg hm-2)
(kg hm-2)
(kg hm-2)
2016 陕单609 4.5 7797.5±205 d 13689.1±894 d 1756.8±102 d 27.8±1.1 c
Shaandan 609 6.0 9756.1±189 c 15885.1±954 c 2812.5±135 c 29.5±1.6 b
7.5 10088.2±697 b 19356.0±1011 b 3048.5±205 b 35.0±0.5 a
9.0 11189.6±1035 a 20995.1±1242 a 4105.3±152 a 36.4±0.6 a
秦龙14 4.5 6791.6±305 c 11735.0±899 d 1665.8±88 c 14.0±0.5 d
Qinlong 14 6.0 7856.6±195 b 14659.2±1168 c 2020.2±105 b 21.0±0.9 c
7.5 9964.2±558 a 16185.1±942 b 3165.0±119 a 33.0±0.5 a
9.0 9285.8±386 a 18526.1±1049 a 2534.0±168 b 27.0±1.1 b
陕单8806 4.5 7761.3±411 d 11089.0±863 d 1687.0±99 c 11.9±0.1 d
Shaandan 8806 6.0 8397.0±414 c 13560.2±756 c 2812.0±136 a 22.3±0.6 a
7.5 9654.2±765 b 14996.1±1269 b 2630.3±166 b 19.2±0.4 b
9.0 9479.3±669 a 17200.8±1036 a 1942.2±104 c 16.6±0.6 c
2017 陕单609 4.5 8181.2±319 d 13058.4±693 d 2144.2±99 d 26.3±1.3 c
Shaandan 609 6.0 9547.5±406 c 16113.1±528 c 2765.8±188 c 31.6±0.8 b
7.5 9998.1±546 b 18859.1±1466 b 3326.4±205 b 34.2±0.5 a
9.0 10636.2±735 a 21144.0±1389 a 4023.6±86 a 35.0±0.6 a
秦龙14 4.5 6103.8±365 d 10996.2±1022 d 1896.3±68 d 17.6±0.4 d
Qinlong 14 6.0 7764.6±532 c 13986.2±689 c 2156.9±139 c 22.6±0.4 c
7.5 9688.5±489 a 16785.4±779 b 2989.0±125 a 30.5±1.5 a
9.0 9105.9±759 b 19205.3±823 a 2675.0±165 b 27.6±0.5 b
陕单8806 4.5 7722.6±532 c 11356.8±996 d 1612.3±131 c 14.1±0.3 c
Shaandan 8806 6.0 8180.3±418 b 14259.6±668 c 2655.2±158 a 21.4±1.1 a
7.5 9059.4±398 a 15119.6±1044 b 2388.9±201 b 19.5±0.5 b
9.0 9103.5±564 a 18004.2±916 a 2113.2±122 b 15.8±0.4 c

Table 5

Correlation analysis of dry matter transfer, light interception, and kernels formation"

光能截获率 The fraction of light interception
H1 H2 H3 H4
籽粒产量 Grain yield -0.101 0.020 0.631* 0.465*
平均灌浆速率 Average grain-filling rate 0.782** 0.803** 0.859** 0.541**
花后干物质积累量 Dry matter accumulation after silking -0.302 0.205 0.661** 0.527**
花后干物质转运量 Transfer amount of dry matter 0.478* 0.369 0.689* 0.696**

Fig. 1

Effect of plant density on leaf areas at different positions of different types of maize (silking stage) SD609: Shaandan 609; QL14: Qinlong 14; SD8806: Shaandan 8806."

Fig. 2

Effect of plant density on leaf area index of different types of maize V6: jointing; V12: trumpeting; VT: silking; R3: milk; R6: maturity. Abbreviations are the same as those given in Fig. 1."

Fig. 3

Effect of plant density on leaf orientation values (LOV) of different types of maize"

Fig. 4

Effect of plant density on photosynthetically active radiation (PAR) transmission in canopies of different types of maize H1 is 15 cm above the ground, H2 is distance from the soil surface to the ear, H3 is the ear height, H4 is distance from the ear to the canopy top, and H5 is the top canopy. Abbreviations are the same as those given in Fig. 1."

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明 . 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M . Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] 王元东, 段民孝, 邢锦丰, 王继东, 张春原, 张雪原, 赵久然 . 玉米理想株型育种的研究进展与展望. 玉米科学, 2008,16(3):47-50.
Wang Y D, Duan M X, Xing J F, Wang J D, Zhang C Y, Zhang X Y, Zhao J R . Progress and prospect in ideal plant type bre eding in maize. J Maize Sci, 2008,16(3):47-50 (in Chinese with English abstract).
[3] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然 . 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012,38:80-85.
doi: 10.3724/SP.J.1006.2012.00080
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R . Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron Sin, 2012,38:80-85 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00080
[4] Pierik R, De Wit M . Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. J Exp Bot, 2014,65:2815.
doi: 10.1093/jxb/ert389
[5] Zhu J, Vos J, van der Werf W, van der Putten P E, Evers J B . Early competition shapes maize whole-plant development in mixed stands. J Exp Bot, 2014,65:641-653.
doi: 10.1093/jxb/ert408
[6] Xue J, Gou L, Zhao Y S, Yao M N, Yao H S, Tian J S, Zhang W F . Effects of light intensity within the canopy on maize lodging. Field Crops Res, 2016,188:133-141.
doi: 10.1016/j.fcr.2016.01.003
[7] Pepper G E, Pearce R B, Mock J J . Leaf orientation and yield of maize. Crop Sci, 1977,17:883-886.
doi: 10.2135/cropsci1977.0011183X001700060017x
[8] Huang S B, Gao Y B, Li Y B, Xu L N, Tao H B, Wang P . Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J, 2017,5:52-62.
doi: 10.1016/j.cj.2016.06.018
[9] Gou L, Xue J, Qi B Q, Ma B Y, Zhang W F . Morphological variation of maize cultivars in response to elevated plant densities. Agron J, 2017,109:1443.
doi: 10.2134/agronj2016.11.0675
[10] Yan P, Chen Y Q, Sui P, Vogel A, Zhang X P . Effect of maize plant morphology on the formation of apical kernels at different sowing dates and under different plant densities. Field Crops Res, 2018,223:83-92.
doi: 10.1016/j.fcr.2018.04.008
[11] Wei S S, Wang X Y, Jiang D, Dong S T . Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density. BMC Plant Biol, 2018,18:378.
doi: 10.1186/s12870-018-1607-8
[12] 魏珊珊, 王祥宇, 董树亭 . 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014,25:441-450.
Wei S S, Wang X Y, Dong S T . Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014,25:441-450 (in Chinese with English abstract).
[13] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, Li S K, Hou P . Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017,212:126-134.
doi: 10.1016/j.fcr.2017.05.006
[14] Haro R J, Baldessari J, Otegui M E . Genetic improvement of peanut in Argentina between 1948 and 2004: light interception, biomass production and radiation use efficiency. Field Crops Res, 2017,204:222-228.
doi: 10.1016/j.fcr.2017.01.021
[15] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁 . 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018,44:414-422.
doi: 10.3724/SP.J.1006.2018.00414
Xu T J, Lyu T F, Zhao J R, Wang R H, Chen C Y, Liu Y E, Liu X Z, Wang Y D, Liu C G . Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agron Sin, 2018,44:414-422 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00414
[16] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全 . 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017,50:2238-2246.
doi: 10.3864/j.issn.0578-1752.2017.12.005
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q . Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Sci Agric Sin, 2017,50:2238-2246 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.12.005
[17] Mueller S M, Vyn T J . Maize plant resilience to N stress and post-silking N capacity changes over time: a review. Front Plant Sci, 2016,7(7):53.
[18] 肖万欣, 刘晶, 史磊, 赵海岩, 王延波 . 氮密互作对不同株型玉米形态、光合性能及产量的影响. 中国农业科学, 2017,50:3690-3701.
doi: 10.3864/j.issn.0578-1752.2017.19.006
Xiao W X, Liu J, Shi L, Zhao H Y, Wang Y B . Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield. Sci Agric Sin, 2017,50:3690-3701 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.19.006
[19] Richards F J . A flexible growth function for empirical use. J Exp Bot, 1959,10:290-301.
doi: 10.1093/jxb/10.2.290
[20] 郭江, 郭新宇, 郭程瑾, 张凤路, 赵春江, 肖凯 . 密度对不同株型玉米群体结构的调控效应. 华北农学报, 2008,23(1):149-153.
doi: 10.7668/hbnxb.2008.01.033
Guo J, Guo X Y, Guo C J, Zhang F L, Zhao C J, Xiao K . The effect of density on population structure of maize with different plant types. Acta Agric Boreali-Sin, 2008,23(1):149-153 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2008.01.033
[21] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军 . 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017,50:2463-2475.
doi: 10.3864/j.issn.0578-1752.2017.13.006
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J . Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017,50:2463-2475 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.13.006
[22] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭 . 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018,44:920-930.
doi: 10.3724/SP.J.1006.2018.00920
Hu D D, Zhang J W, Liu P, Zhao B, Dong S T . Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agron Sin, 2018,44:920-930 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00920
[23] 李荣发, 刘鹏, 杨清龙, 任昊, 董树亭, 张吉旺, 赵斌 . 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响. 作物学报, 2018,44:1032-1042.
Li R F, Liu P, Yang Q L, Ren H, Dong S T, Zhang J W, Zhao B . Effects of lower leaf senescence on carbon and nitrogen distribution and yield formation in maize (Zea mays L.) with high planting density. Acta Agron Sin, 2018,44:1032-1042 (in Chinese with English abstract).
[24] 黄润东, 董树亭, 刘鹏, 张吉旺, 赵斌 . 密植条件下去叶对夏玉米籽粒灌浆特性及产量的影响. 山东农业科学, 2017,49(11):29-36.
Huang R D, Dong S T, Liu P, Zhang J W, Zhao B . Effects of leaf removal on grain filling and yield of summer maize under high planting density. J Shandong Agric Sci, 2017,49(11):29-36 (in Chinese with English abstract).
[25] Lindquist J L, Arkebauer T J, Walters D T, Cassman K . Maize radiation use efficiency under optimal growth conditions. Agron J, 2005,97:72-78.
doi: 10.2134/agronj2005.0072
[26] Liu T N, Huang R D, Cai T, Han Q F . Optimum leaf removal increases nitrogen accumulation in kernels of maize grown at high density. Sci Rep, 2017,7:39601.
doi: 10.1038/srep39601
[27] Mao L L, Zhang L Z, Zhao X H, Dong L S . Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Res, 2014,155:67-76.
doi: 10.1016/j.fcr.2013.09.021
[28] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春 . 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014,47:3557-3565.
doi: 10.3864/j.issn.0578-1752.2014.18.004
Wang X H, Zhang L, Liu S L, Cao Y J, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C . Grain filling characteristics of maize hybrids differing in maturities. Sci Agric Sin, 2014,47:3557-3565 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.18.004
[29] 张丽, 张吉旺, 樊昕, 刘鹏, 董树亭 . 玉米籽粒比重与灌浆特性的关系. 中国农业科学, 2015,48:2327-2334.
doi: 10.3864/j.issn.0578-1752.2015.12.005
Zhang L, Zhang J W, Fan X, Liu P, Dong S T . Study on correlation between specific gravity of maize grains and grain filling characteristics. Sci Agric Sin, 2015,48:2327-2334 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.12.005
[30] 钱春荣, 王荣焕, 赵久然, 于洋, 郝玉波, 徐田军, 姜宇博, 宫秀杰, 李梁, 葛选良 . 不同熟期玉米品种的籽粒灌浆特性及其与温度关系研究. 中国农业科技导报, 2017,19(8):105-114.
Qian C R, Wang R H, Zhao J R, Yu Y, Hao Y B, Xu T J, Jiang Y B, Gong X J, Li L, Ge X L . Study on the grain filling characteristics and their relationship with temperature of maize hybrids differing in maturities. J Agric Sci & Technol, 2017,19(8):105-114 (in Chinese with English abstract).
[31] 高佳, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺 . 夏玉米籽粒胚乳细胞增殖及产量对不同光照的响应. 作物学报, 2017,43:1548-1558.
doi: 10.3724/SP.J.1006.2017.01548
Gao J, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W . Response of endosperm cell proliferation and grain yield of summer maize to different light condition. Acta Agron Sin, 2017,43:1548-1558 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01548
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[10] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[11] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[12] YANG Jin, BAI Ai-Ning, BAI Xue, CHEN Juan, GUO Lin, LIU Chun-Ming. Phenotypic and genetic analyses of a rice mutant eed1 with defected embryo and endosperm development [J]. Acta Agronomica Sinica, 2022, 48(2): 292-303.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Full text



No Suggested Reading articles found!