Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 772-783.doi: 10.3724/SP.J.1006.2023.24061

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations

FANG Ya-Ting(), REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei()   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-03-19 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-16
  • Contact: LU Jian-Wei E-mail:fangyating@webmail.hzau.edu.cn;lunm@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32172678);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662020ZHPY005)

Abstract:

The application of nitrogen (N), phosphorus (P), and potassium (K) fertilizers is an important measure to increase yield in agricultural production. Continuous upland and paddy-upland anniversary multiple cropping rotation is the main planting mode of winter oilseed rape in the Yangtze River basin in China. In order to explore the effects and differences of N, P, and K on the yield and nutrient absorption and utilization of rapeseed in different rotations, a field experiment was carried out in Shayang County, Hubei Province for 3 years from 2017 to 2020. Two rotation modes of upland-oilseed rape (maize-rape) and paddy-oilseed rape (rice-rape) were adopted, and four treatments of nitrogen, phosphorus and potassium combined application (NPK), no nitrogen (-N), no phosphorus (-P), and no potassium (-K) applications on the basis of NPK were set in each rotation. The yield, yield components, and nutrient uptake of rapeseed were analyzed, the fertilizer use efficiency and soil indigenous nutrient supply were evaluated. The average results of the three-year trials showed that, compared with the NPK treatments, the -N, -P, and -K treatments in upland reduced rapeseed yields by 68.4%, 89.6%, and 7.0%, and by 71.0%, 84.7%, and 6.4% in paddy fields, respectively. Among the yield components, whether it was upland or paddy, fertilization had the greatest impact on the number of siliques, followed by the number of grains per silique, and had the least impact on the thousand-grain weight. Compared with NPK treatment, the number of siliques in upland and paddy fields was decreased by 61.6% and 52.0%, 82.0% and 67.8%, 16.2% and 19.7% due to N, P, and K deficiency, respectively. There were significant differences in the yield and nutrient absorption of rapeseed in upland and paddy field under different fertilization treatments. The yield of rapeseed in upland was about 27.2%, 15.2%, and 16.7% higher than that in paddy field in the -N, -K, and NPK treatments, while the yield of paddy rapeseed under -P treatment was 20.8% higher than that of upland. Nutrient accumulation trends were similar to the yield, except for -P treatment, the accumulation of N, P, and K in the upland oilseed rape under NPK treatment was 20.4%, 37.3%, and 4.2% higher than paddy oilseed rape, respectively. The soil indigenous N and K supply in upland was 15.0% and 20.9% higher than that in paddy field, while the supply of P in upland was 39.2% lower than that in paddy field. The recovery efficiency of N and P in upland were higher than that of paddy field, while K recovery efficiency was lower than that of paddy field. In summary, the combined application of nutrients could improve rapeseed yield and nutrient use efficiency. The significant differences in rapeseed yield and nutrient utilization among different crop rotations were affected by nutrient types. Compared with the upland, to supplement the nutrients deficiency in the soil and achieve high-yield and high-efficiency production of rapeseed, rapeseed in paddy fields needs to pay more attention to the application of N and K fertilizers, while rapeseed in upland needs to be appropriately increased in P fertilizers compared with paddy fields.

Key words: maize-oil seed rape rotation, rice-oil seed rape rotation, nitrogen, phosphorus, potassium, rapeseed yield

Fig. 1

Average temperature and monthly precipitation in oilseed rape growing season from 2017 to 2020"

Table 1

Yield of rapeseed with different fertilization input under continuous-upland and paddy-upland rotations (kg hm-2)"

处理
Treatment
旱地-油菜Upland-oilseed rape 水田-油菜Paddy-oilseed rape t检验
t-test
2017/2018 2018/2019 2019/2020 平均Average 2017/2018 2018/2019 2019/2020 平均Average
-N 361±24 b 717±36 b 1000±88 b 692 310±84 c 168±29 c 1156±214 b 544 0.553 ns
-P 258±43 b 92±3 c 334±160 c 228 317±57 c 141±36 c 405±6 c 288 0.011*
-K 1577±361 a 1377±245 a 3156±499 a 2036 1316±26 b 1011±125 b 2944±206 a 1757 0.025*
NPK 1690±269 a 1407±354 a 3471±162 a 2189 1668±139 a 1297±128 a 2665±78 a 1877 0.080 ns
平均Average 971 898 1990 1287 903 654 1792 1116
方差分析ANOVA FF-value F F-value
处理Treatment 452.2*** 146.7***
年份Year 323.6*** 76.6***
处理×年份Treatment×Year 33.9*** 14.2***

Table 2

Yield components of rapeseed with different fertilization input under continuous-upland and paddy-upland rotations"

产量构成
Yield components
处理
Treatment
旱地-油菜Upland-oilseed rape 水田-油菜Paddy-oilseed rape t检验
t-test
2018/2019 2019/2020 平均Average 2018/2019 2019/2020 平均Average
单株角果数
Number of pods
-N 106.7±6.7 d 147.3±24.5 b 127.0 26.9±4.7 c 214.7±45.3 b 120.8 0.867ns
-P 28.7±1.7 c 90.2±30.2 b 59.4 31.2±4.3 c 130.8±23.8 c 81.0 0.240 ns
-K 249.9±16.9 b 304.0±76.9 a 277.0 172.0±26.5 b 231.8±39.1 b 201.9 0.004**
NPK 310.5±5.5 a 350.1±12.5 a 330.3 201.4±10.2a 301.6±33.7 a 251.5 0.003**
平均Average 173.9 222.9 198.4 107.9 219.7 147.3
每角粒数
Seed number
-N 20.4±2.4 a 21.2±1.5 ab 20.8 18.0±4.0 a 20.2±0.8 a 19.1 0.316 ns
-P 12.6±2.5 b 18.7±2.4 b 15.7 18.8±1.0 a 19.2±1.5 a 19.0 0.103 ns
-K 20.4±0.3 a 21.9±1.0 ab 21.1 20.8±4.5 a 20.9±1.3 a 20.8 0.810 ns
NPK 23.5±1.2 a 22.5±2.1 a 23.0 18.8±2.6 a 21.4±0.5 a 20.1 0.062 ns
平均Average 19.3 21.1 20.2 19.1 20.4 19.8
千粒重
1000-seed weight
(g)
-N 3.01±0.03 b 3.77±0.14 a 3.39 3.51±0.03 a 3.98±0.02 a 3.74 0.005**
-P 2.71±0.01 c 3.16±0.05 c 2.94 2.91±0.10 c 3.64±0.02 b 3.27 0.004**
-K 3.11±0.08 a 3.52±0.18 b 3.32 3.24±0.01 b 3.71±0.09 b 3.47 0.050*
NPK 3.15±0.02 a 3.60±0.03 ab 3.38 3.43±0.03 a 3.66±0.04 b 3.54 0.030*
平均Average 2.99 3.52 3.25 3.27 3.75 3.51

Fig. 2

Nutrient uptake by different parts of rapeseed with different fertilization input under continuous-upland and paddy-upland rotations (three-year average) “UO” and “PO” refer to “Upland-Oilseed rape” and “Paddy-Oilseed rape”, respectively. Different lowercase letters indicate significant difference at P < 0.05 between fertilization treatments in the same rotation. “*” indicates the total shoot nutrition uptake differences between rotations under t-test, *: P < 0.05, **: P < 0.01, ***: P < 0.001, ns: no significant difference. Treatments are the same as those given in Table 1."

Table 3

N, P, and K Fertilizer use efficiency of oilseed rape under continuous-upland and paddy-upland rotations"

肥料利用率
Fertilizer use efficiency
年份
Year
氮Nitrogen 磷Phosphorus 钾Potassium
旱地-油菜
UO
水田-油菜
PO
旱地-油菜
UO
水田-油菜
PO
旱地-油菜
UO
水田-油菜
PO
肥料贡献率
Fertilizer contribution
rate (%)
2017/2018 78.7 81.4 84.7 81.0 6.7 21.1
2018/2019 49.0 87.0 93.5 89.1 2.1 22.1
2019/2020 71.2 56.6 90.4 84.8 9.1 -10.5
平均Average 66.3 75.0 89.5 85.0 6.0 10.9
农学利用率
Agronomic efficiency
(kg kg-1)
2017/2018 7.4 7.5 23.9 22.5 1.5 4.7
2018/2019 3.8 6.3 21.9 19.3 0.4 3.8
2019/2020 13.7 8.4 52.3 37.7 4.2 -3.7
平均Average 8.3 7.4 32.7 26.5 2.0 1.6
回收利用率
Recovery efficiency
(%)
2017/2018 26.3 28.6 27.7 19.2 0.0 20.8
2018/2019 14.8 20.2 20.7 17.3 0.0 33.6
2019/2020 61.5 42.9 94.4 63.7 47.3 66.9
平均Average 34.2 30.5 47.6 33.4 15.7 40.4

Fig. 3

Apparent nutrient balance of the oilseed rape season under continuous-upland and paddy-upland rotations with different fertilizer inputs (three-year average) Different lowercase letters indicate significant difference at P < 0.05 between different fertilization treatments under the same rotation; “*” indicates the total shoot nutrition uptake differences between rotations under t-test, *: P < 0.05; **: P < 0.01; ***: P < 0.001; ns: no significant difference. Treatments are the same as those given in Table 1."

Table 4

Soil indigenous nutrient supply and linear grey model of rapeseed season under continuous-upland and paddy-upland rotations"

土壤养分供应
Soil indigenous supply
年份
Year
旱地-油菜
Upland-oilseed rape
水田-油菜
Paddy-oilseed rape
土壤氮供应
Soil indigenous N supply
(kg N hm-2)
2017/2018 12.2±2.9ns 9.4±2.7
2018/2019 23.3±0.6*** 5.4±1.2
2019/2020 39.3±7.8ns 35.9±2.5
预测模型Prediction model Y = 31.3 T-21.8, R² = 0.9788 Y = 20.6 T-16.3, R² = 0.8455
土壤磷供应
Soil indigenous P supply
(kg P2O5 hm-2)
2017/2018 1.68±0.33ns 2.02±0.15
2018/2019 0.61±0.07* 0.88±0.12
2019/2020 3.03±1.39 ns 3.27±0.70
预测模型Prediction model Y = 1.82 T-0.54, R² = 0.8714 Y = 2.08 T-0.45, R² = 0.9002
土壤钾供应
Soil indigenous K supply
(kg K2O hm-2)
2017/2018 63.3±12.8ns 44.5±1.3
2018/2019 77.1±13.7* 42.5±5.2
2019/2020 137.6±20.9ns 122.7±32.9
预测模型Prediction model Y = 107.3 T-54.1, R² = 0.9742 Y = 82.6 T-51.5, R² = 0.9272
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1-8. (in Chinese with English abstract)
[3] Fageria N K, Baligar V C, Li Y C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr, 2008, 31: 1121-1157.
doi: 10.1080/01904160802116068
[4] Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[5] 刘秋霞. 氮肥施用调控直播冬油菜产量构成因子的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2020.
Liu Q X. Study on the Mechanism of Yield Components of Direct-sown Oilseed Rape (Brassica napus L.) under Regulation of Nitrogen Fertilizer. PhD Dissertation of Huazhong Agriculture University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[6] Duan X J, Jin K M, Ding G D, Wang C, Cai H M, Wang S L, White P J, Xu F S, Shi L. The impact of different morphological and biochemical root traits on phosphorus acquisition and seed yield of Brassica napus. Field Crops Res, 2020, 258: 107960.
doi: 10.1016/j.fcr.2020.107960
[7] 刘婷婷, 蒯婕, 孙盈盈, 杨阳, 吴莲蓉, 吴江生, 周广生. 氮、磷、钾肥用量对油菜角果抗裂性相关性状的影响. 作物学报, 2015, 41: 1416-1425.
doi: 10.3724/SP.J.1006.2015.01416
Liu T T, Kuai J, Sun Y Y, Yang Y, Wu L R, Wu J S, Zhou G S. Effects of N, P, and K fertilizers on silique shatter resistance and related traits of rapeseed. Acta Agron Sin, 2015, 4: 1416-1425. (in Chinese with English abstract)
[8] 李静, 闫金垚, 胡文诗, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响. 作物学报, 2019, 45: 941-948.
doi: 10.3724/SP.J.1006.2019.84146
Li J, Yan J Y, Hu W S, Li X K, Cong R H, Ren T, Lu J W. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2019, 45: 941-948. (in Chinese with English abstract)
[9] 任涛, 鲁剑巍. 中国冬油菜氮素养分管理策略. 中国农业科学, 2016, 49: 3506-3521.
Ren T, Lu J W. Integrated nitrogen management strategy for winter oilseed rape (Brassica napus L.) in China. Sci Agric Sin, 2016, 49: 3506-3521. (in Chinese with English abstract)
[10] 史校艳, 王志强, 谷庆昊, 常明娟, 胡俊杰, 任永哲, 辛泽毓, 林同保. 施氮量对不同茬口冬小麦产量及氮肥利用率的影响. 生态学杂志, 2019, 38: 2041-2048.
Shi X Y, Wang Z Q, Gu Q H, Chang M J, Hu J J, Ren Y Z, Xin Z S, Lin T B. Effects of nitrogen application on yield and nitrogen use efficiency of winter wheat with different former crops. Chin J Ecol, 2019, 38: 2041-2048. (in Chinese with English abstract)
[11] 张顺涛, 鲁剑巍, 丛日环, 任涛, 李小坤, 廖世鹏, 张跃强, 郭世伟, 周明华, 黄益国, 程辉. 油菜轮作对后茬作物产量的影响. 中国农业科学, 2020, 53: 2852-2858.
Zhang S T, Lu J W, Cong R H, Ren T, Li X K, Liao S P, Zhang Y Q, Guo S W, Zhou M H, Huang Y G, Cheng H. Effect of rapeseed rotation on the yield of next-stubble crops. Sci Agric Sin, 2020, 53: 2852-2858. (in Chinese with English abstract)
[12] Jeong Y, Park H, Jeon B, Seo B, Baek N, Yang H I, Kwak J, Lee S, Choi W. Land use types with different fertilization management affected isotope ratios of bulk and water-extractable C and N of soils in an intensive agricultural area. J Soil Sediment, 2021, 22: 429-442.
doi: 10.1007/s11368-021-03097-5
[13] 尹晓雷, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同轮作模式下土壤细菌群落特征及其对土壤全碳、全氮与温室气体释放潜力影响. 环境科学学报, 2021, 41(12): 1-13.
Yin X L, Li X D, Lin S Y, Yang X, Wang W Q, Zhang Y X. Effects of soil bacteria community characteristics on total carbon and total nitrogen contents and greenhouse gas emission potential under different rotation patterns. Acta Sci Circum, 2021, 41(12): 1-13. (in Chinese with English abstract)
[14] 陈明亮, 吕国安. 水旱轮作对土壤物理性质的影响. 华中农业大学学报, 1988, 7: 359-363.
Chen M L, Lyu G A. The influence of paddy rice and dryland crops rotation on soil physical properties. J Huazhong Agric Univ, 1988, 7: 359-363. (in Chinese with English abstract)
[15] 程传鹏, 万开元, 陶勇, 汤雷雷, 潘俊峰, 陈防. 不同轮作制度下施肥对冬小麦田间杂草群落及小麦生长的影响. 生态环境学报, 2013, 22: 370-378.
Cheng C P, Wan K Y, Tao Y, Tang L L, Pan J F, Chen F. The effects of fertilization on weed communities and wheat growth in winter wheat (Triticum aestivum L.) field under different cropping rotations. Ecol Environ Sci, 2013, 22: 370-378. (in Chinese with English abstract)
[16] Kukal S S, Rehana-Rasool, Benbi D K. Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice-wheat and maize-wheat systems. Soil Tillage Res, 2009, 102: 87-92.
doi: 10.1016/j.still.2008.07.017
[17] 刘桢. 不同花生品种在水旱轮作地和红壤旱地的生长发育和产量差异. 湖南农业大学硕士学位论文, 湖南长沙, 2014.
Liu Z. Growth and Development and Yield of Different Peanut Cultivars Grown in Paddy-upland Crops Rotation and Upland Red Earth Soil. MS Thesis of Hunan Agriculture University, Changsha, Hunan, China, 2014. (in Chinese with English abstract)
[18] 杨宇虹, 赵正雄, 李春俭, 华水金. 不同氮形态和氮水平对水田与旱地烤烟烟叶糖含量及相关酶活性的影响. 植物营养与肥料学报, 2009, 15: 1386-1394.
Yang Y H, Zhao Z X, Li C J, Hua S J. Effects of nitrogen fertilization on carbohydrate content and related metabolic enzymes of flue-cured tobacco in paddy field and highland. Plant Nutr Fert Sci, 2009, 15: 1386-1394. (in Chinese with English abstract)
[19] Liu X L, He Y Q, Zhang H L, Schroder J K, Li C L, Zhou J, Zhang Z Y. Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients. Pedosphere, 2010, 20: 666-673.
doi: 10.1016/S1002-0160(10)60056-2
[20] 元晋川, 王威雁, 赵德强, 侯玉婷, 吴伟, 刘杨, 温晓霞. 不同作物茬口对冬油菜养分积累和产量的影响. 中国油料作物学报, 2021, 43: 260-270.
Yuan J C, Wang W Y, Zhao D Q, Hou Y T, Wu W, Liu Y, Wen X X. Effect of different preceding cover crops on yield and nutrient accumulation of winter oilseed rape. Chin J Oil Crop Sci, 2021, 43: 260-270. (in Chinese with English abstract)
[21] 孙义, 史娟娟, 张建学. 不同作物茬口种植冬油菜对比试验. 基层农技推广, 2019, 7(1): 20-22.
Sun Y, Shi J J, Zhang J X. Comparison experiment of winter rapeseed planting at different stubble crops. Prim Agric Technol Extens, 2019, 7(1): 20-22. (in Chinese)
[22] 张福锁, 陈新平, 陈清. 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009. pp 68-72.
Zhang F S, Chen X P, Chen Q. Fertilizer Recommendations for Major Crops in China. Beijing: China Agricultural University Press, 2009. pp 68-72. (in Chinese)
[23] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114. (in Chinese)
[24] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[25] 邹娟, 鲁剑巍, 陈防, 李银水. 长江流域油菜氮磷钾肥料利用率现状研究. 作物学报, 2011, 37: 729-734.
Zou J, Lu J W, Chen F, Li Y S. Status of nutrient use efficiencies of rapeseed in the Yangtze River Basin. Acta Agron Sin, 2011, 37: 729-734. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00729
[26] 刘思峰, 杨英杰, 吴利丰. 灰色系统理论及其应用(第7版). 北京: 科学出版社, 2018. pp 238-252.
Liu S F, Yang Y J, Wu L F. The Theory of Grey Systems and Its Application, 7th edn. Beijing: Science Press, 2018. pp 238-252. (in Chinese)
[27] 宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170-176.
doi: 10.3724/SP.J.1006.2010.00170
Song F P, Hu L Y, Zhou G S, Wu J S, Fu T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin, 2010, 36: 170-176 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00170
[28] Macholdt J, Piepho H, Honermeier B. Mineral NPK and manure fertilization affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur J Agron, 2019, 102: 14-22.
doi: 10.1016/j.eja.2018.10.007
[29] Ren T, Li H, Lu J W, Bu R Y, Li X K, Cong R H, Lu M X. Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.). Crop J, 2015, 3: 396-404.
doi: 10.1016/j.cj.2015.04.007
[30] 卜容燕. 稻油和棉油轮作模式下油菜季土壤氮素供应差异及其机制研究. 华中农业大学博士学位论文, 湖北武汉, 2017.
Bu R Y. Difference and Mechanism of Soil Nitrogen Supply in Oilseed Rape Planting Season under Different Rotation Systems. PhD Dissertation of Huazhong Agriculture University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[31] 杨丞, 吴耀卿, 李著纲, 张永毅, 龚元成, 李文品, 张万洋, 肖能武. 鄂西北旱地和水田油菜缓释专用肥施用效果比较. 中国农技推广, 2019, 35(增刊1): 108-110.
Yang C, Wu Y Q, Li Z G, Zhang Y Y, Gong Y C, Li W P, Zhang W Y, Xiao N W. Comparison of oilseed rape special fertilizer in upland and paddy fields in northwest Hubei. China Agric Technol Extens, 2019, 35(S1): 108-110. (in Chinese)
[32] 陈明霞, 黄见良, 崔克辉, 聂立孝, 彭少兵. 不同氮效率基因型水稻植株氨挥发速率及其与氮效率的关系. 作物学报, 2010, 36: 879-884.
doi: 10.3724/SP.J.1006.2010.00879
Chen M X, Huang J L, Cui K H, Nie L X, Peng S B. Genotypic variation in ammonia volatilization rate of rice shoots and its relationship with nitrogen use efficiency. Acta Agron Sin, 2010, 36: 879-884. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00879
[33] 顾芹芹. 磷钾镁肥对不同茬口油菜物质生产及氮磷钾分配的影响. 扬州大学硕士学位论文, 江苏扬州, 2006.
Gu Q Q. Effects of P, K and Mg Fertilizers Application on Growth and NPK Distribution under Different Rotation Systems in Rapeseed. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2006. (in Chinese with English abstract)
[34] Briat J F, Gojon A, Plassard C, Rouached H, Lemaire G. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur J Agron, 2020, 116: 126069.
doi: 10.1016/j.eja.2020.126069
[35] 王景. 厌氧和好气条件下作物秸秆的腐解特征研究. 安徽农业大学硕士学位论文, 安徽合肥, 2015.
Wang J. Study on the Decomposition of Crop Straw under Anaerobic and Aerobic Condition. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2015. (in Chinese with English abstract)
[36] Fuhrmann I, He Y, Lehndorff E, Brüggemann N, Amelung W, Wassmann R, Siemens J. Nitrogen fertilizer fate after introducing maize and upland-rice into continuous paddy rice cropping systems. Agric Ecosyst Environ, 2018, 258: 162-171.
doi: 10.1016/j.agee.2018.02.021
[37] Zhang Z, Peng X H. Bio-tillage: a new perspective for sustainable agriculture. Soil Tillage Res, 2021, 206: 104844.
doi: 10.1016/j.still.2020.104844
[38] 黄东迈, 朱培立, 高家骅. 有机、无机态肥料氮在水田和旱地的残留效应. 中国科学, 1982, 1(10): 907-912.
Huang D M, Zhu P L, Gao J H. Residual effect of organic and inorganic fertilizer nitrogen in paddy fields and dry lands. Chin Sci, 1982, 1(10): 907-912. (in Chinese)
[39] 薛欣欣. 水稻钾素营养特性及钾肥高效施用技术研究. 华中农业大学博士学位论文, 湖北武汉, 2016.
Xue X X. Study on the Characteristics of Potassium Nutrition and High-efficient Application Technologies of Potassium Fertilizer in Rice. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[40] 张水清, 黄绍敏, 聂胜伟, 郭斗斗, 林杉. 长期定位施肥对夏玉米钾素吸收及土壤钾素动态变化的影响. 植物营养与肥料学报, 2014, 20: 56-63.
Zhang S Q, Huang S M, Nie S W, Guo D D, Lin S. Effects of long-term fertilization on potassium uptake of summer maize and potassium dynamics of fluvo-aquic soil. J Plant Nutr Fert, 2014, 20: 56-63. (in Chinese with English abstract)
[41] Nishiyama S, Okazaki M, Baba M, Quevedo M A. Quantification of Cs, K, and Rb in rice (Oryza sativa) cultivated under paddy and upland conditions. Microchem J, 2016, 127: 22-29.
doi: 10.1016/j.microc.2016.01.019
[42] 肖作义, 马飞, 柳开楼, 赵学强, 郑春丽, 张昊青, 王嘉林, 沈仁芳. 红壤区旱地和水田土壤磷素状况及其流失风险. 中国土壤与肥料, 2021, (1): 282-288.
Xiao Z Y, Ma F, Liu K L, Zhao X Q, Zheng C L, Zhang H Q, Wang J L, Shen R F. Current phosphorus status of red soil in drylands and paddy fields and its loss risks. Chin Soil Fert, 2021, (1): 282-288. (in Chinese with English abstract)
[43] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X, Wang Y, Li J, Wang Y, Xia H Y, Mei P, Wang X E, Zhao J H, Yu R P, Zhang W P, Che Z X, Gui L, Callaway R M, Tilman D, Li L. Long-term increased grain yield and soil fertility from intercropping. Nat Sustain, 2021, 4: 943-950.
doi: 10.1038/s41893-021-00767-7
[44] Wei L, Ge T, Zhu Z, Ye R Z, Peñuelas J, Li Y H, Lynn T M, Jones D L, Wu J S, Kuzyakov Y. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers. Agric Ecosyst Environ, 2022, 326: 107798.
doi: 10.1016/j.agee.2021.107798
[45] De Long J R, Fry E L, Veen G F, Kardol P. Why are plant-soil feedbacks so unpredictable, and what to do about it? Funct Ecol, 2018, 33: 118-128.
doi: 10.1111/1365-2435.13232
[1] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[2] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[3] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[4] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[5] FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820.
[6] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[7] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[8] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[9] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[10] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[11] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[12] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[13] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[14] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[15] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .