Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1090-1101.doi: 10.3724/SP.J.1006.2023.24087

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato

WU Shi-Yu1,2(), CHEN Kuang-Ji1,3, LYU Zun-Fu1,2, XU Xi-Ming1,2, PANG Lin-Jiang2,4, LU Guo-Quan1,2,*()   

  1. 1College of Advanced Agricultural Sciences, Zhejiang A&F University/Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Hangzhou 311300, Zhejiang, China
    2Institute of Root & Tuber Crops, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    3Yizheng Agricultural Technology Comprehensive Service Center, Yangzhou 211400, Jiangsu, China
    4College of Food and Health, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
  • Received:2022-04-07 Accepted:2022-09-05 Online:2023-04-12 Published:2022-09-15
  • Contact: *E-mail: lugq10@zju.edu.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-10);Zhejiang Key Research and Development Program(2021C02057);Zhejiang Key Research and Development Program(2022C02041-2);Zhejiang Sannong Jiufang Science and Technology Cooperation Project(2022SNJF008);General Research Program for the Education Department of Zhejiang Province(Y202147184)

Abstract:

In order to explore the effect of nitrogen fertilizer application rate on starch contents and properties during storage root expansion of sweetpotato (Ipomoea batatas (L.) Lam.), two sweetpotato cultivars (‘Xinxiang’ and ‘Shangshu 19’) were taken as the experimental materials, and three nitrogen fertilizer application rates (0 kg hm-2 (CK), 57.5 kg hm-2 (N1), and 115 kg hm-2 (N2)) were designed and conducted on the day of planting. To investigate the changes of starch content, starch gelatinization properties, starch dynamic rheological properties, gel texture properties, and amylase activity in sweetpotato storage roots during storage root expansion, the storage root samples were collected at the 60th, 80th, 100th, 120th, and 140th days after planting. Results were as follows: (1) Nitrogen fertilizer application could significantly increase the starch content of two cultivars during storage root expansion, but significantly reduce the hot paste viscosity (HPV), cold paste viscosity (CPV), and setback viscosity (SBV) of starch gelatinization properties of ‘Xinxiang’ at the initial stage of storage root expansion (IES), and significantly decrease the HPV, CPV, and SBV of ‘Shangshu 19’, while remarkably increase the HPV, CPV, and SBV of ‘Xinxiang’ at the late-expanding stage of storage root expansion (LES). (2) The hardness and chewiness of starch gel under three nitrogen fertilizer application treatments gradually decreased during storage root expansion. Among them, N2 treatment could significantly improve the hardness of gel of sweetpotatoes at LES. (3) The starch gel of two cultivars exhibit elastic properties. N1 and N2 treatments could increase the storage modulus and loss modulus of ‘Xinxiang’ whereas reduce the storage modulus and loss modulus of ‘Shangshu 19’. (4) Nitrogen fertilizer application rates reduced the amylase activity at IES, but increased the amylase activity at LES of the two cultivars. Therefore, nitrogen fertilizer application rate obviously affected the starch contents and properties of sweetpotatoes during storage root expansion. Moreover, ‘Shangshu 19’ with 115 kg hm-2 of nitrogen fertilizer application rate harvesting on 120 days after planting, which was conducive to the processing properties of sweetpotato starch. In conclusion, reasonable nitrogen application and timely harvest were beneficial to the accumulation and quality improvement of sweetpotato starch.

Key words: sweetpotato, nitrogen fertilizer, storage root expansion stage, starch, physicochemical properties

Fig. 1

Effects of different nitrogen application rates on starch content during storage root expansion in sweetpotato A: Xinxiang; B: Shangshu 19. CK: 0 kg hm-2 of nitrogen fertilizer application rate; N1: 57.5 kg hm-2 of nitrogen fertilizer application rate; N2: 115 kg hm-2 of nitrogen fertilizer application rate. Different lowercase letters indicate that the different treatment is significant differences in the same periods at P < 0.05."

Table 1

Effects of different nitrogen fertilizer application rates on starch gelatinization properties during storage root expansion in ‘Xinxiang’"

栽插后天数
Days after planting
处理
Treatment
最高黏度
PKV (RVU)
最低黏度
HPV (RVU)
崩解值
BDV (RVU)
最终黏度
CPV (RVU)
消减值
SBV (RVU)
峰值时间
T (min)
糊化温度
PT (℃)
60 d CK 466.09±4.48 a 286.09±5.42 a 180.00±0.95 c 368.17±1.29 a -97.92±3.18 a 4.74±0.09 a 82.80±1.63 a
N1 463.88±9.72 a 255.67±5.30 b 208.21±4.42 b 324.34±3.77 b -139.54±5.95 b 4.60±0.00 ab 82.73±0.53 a
N2 479.96±0.30 a 243.50±2.23 b 236.46±1.94 a 314.29±3.13 c -165.67±2.83 c 4.50±0.04 b 82.83±0.39 a
80 d CK 498.88±4.18 a 296.04±2.42 a 202.83±1.77 b 382.34±5.89 a -116.54±1.71 a 4.64±0.05 a 82.33±1.03 a
N1 478.58±9.19 a 257.59±4.01 b 221.00±5.19 a 330.67±3.06 b -147.92±6.13 b 4.57±0.05 ab 82.00±0.49 a
N2 480.09±10.02 a 245.21±3.95 c 234.88±6.07 a 313.29±5.71 c -166.79±4.30 c 4.47±0.00 b 82.78±0.53 a
100 d CK 484.29±8.08 a 259.21±0.41 a 225.09±7.66 ab 344.34±0.94 a -139.96±9.02 a 4.60±0.00 a 83.13±0.04 a
N1 488.29±3.83 a 242.96±0.53 b 245.34±3.30 a 320.09±3.06 b -168.21±6.89 b 4.33±0.00 b 82.43±0.04 a
N2 469.21±5.36 a 245.25±2.23 b 223.96±7.60 c 323.92±3.54 b -145.29±1.82 a 4.60±0.10 a 82.80±0.42 a
120 d CK 421.71±3.24 b 209.58±2.47 a 212.13±0.77 b 280.83±4.60 a -140.88±7.84 a 4.44±0.05 a 83.13±0.04 a
N1 455.46±4.07 ab 214.83±3.54 a 240.63±7.60 ab 282.63±5.37 a -172.84±1.29 b 4.34±0.09 a 81.65±1.20 a
N2 494.34±27.46 a 229.75±12.84 a 264.59±14.62 a 307.50±14.03 a -186.83±13.44 b 4.37±0.05 a 82.38±0.04 a
140 d CK 515.67±1.18 a 219.25±2.83 b 296.42±4.01 a 312.00±2.01 c -203.67±3.18 c 4.53±0.00 a 82.28±0.04 b
N1 511.50±8.13 a 269.63±5.48 a 241.88±2.65 c 375.17±1.65 a -136.34±6.48 a 4.67±0.00 a 85.45±0.00 a
N2 515.46±5.71 a 263.34±4.83 a 252.13±0.88 b 341.79±0.76 b -173.67±4.95 b 4.67±0.09 a 83.90±1.06 ab

Table 2

Effects of different nitrogen fertilizer application rates on starch gelatinization properties during storage root expansion in ‘Shangshu 19’"

栽插后天数
Days after
planting
处理
Treatment
最高黏度
PKV (RVU)
最低黏度
HPV (RVU)
崩解值
BDV (RVU)
最终黏度
CPV (RVU)
消减值
SBV (RVU)
峰值时间
T (min)
糊化温度
PT (℃)
60 d CK 452.00±3.65 a 232.88±1.24 a 219.13±2.41 a 300.96±3.59 a -151.04±0.06 a 4.53±0.00 a 83.60±0.49 a
N1 456.84±2.71 a 247.29±2.53 a 209.55±0.18 a 315.00±4.95 a -141.84±2.24 a 4.50±0.04 a 83.60±0.64 a
N2 435.50±24.28 a 230.96±11.26 a 204.54±13.02 a 299.92±10.02 a -135.59±14.26 a 4.57±0.05 a 84.05±0.07 a
80 d CK 470.83±40.66 a 240.67±11.79 a 230.17±28.87 a 320.04±21.62 a -150.79±19.04 a 4.50±0.04 a 83.18±0.04 b
N1 458.96±4.89 a 247.63±0.18 a 211.34±5.07 a 312.50±6.83 a -146.46±11.72 a 4.50±0.04 a 83.60±0.64 b
N2 458.67±8.96 a 244.63±0.88 a 214.04±8.08 a 318.04±1.47 a -140.63±7.49 a 4.64±0.05 a 85.20±0.57 a
100 d CK 475.38±7.95 b 238.59±0.23 a 236.79±8.19 b 307.09±6.84 a -168.29±1.12 a 4.64±0.05 a 85.25±0.57 a
N1 491.63±0.42 a 233.50±1.41 a 258.13±1.00 a 297.79±1.71 a -193.83±2.12 b 4.53±0.00 a 85.23±0.39 a
N2 469.75±2.12 b 226.13±3.36 b 243.63±1.24 ab 297.09±3.30 a -172.67±1.18 a 4.57±0.05 a 85.58±0.04 a
120 d CK 492.29±4.54 a 210.59±6.95 a 281.71±2.42 a 270.04±2.88 a -222.25±1.65 b 4.30±0.04 a 84.40±0.57 a
N1 486.17±28.99 a 215.21±5.13 a 270.96±23.86 a 287.54±16.21a -198.63±12.79 ab 4.40±0.10 a 83.58±0.53 a
N2 456.50±10.61 a 206.63±6.07 a 249.88±4.53 a 273.50±7.67 a -183.00±2.94 a 4.47±0.00 a 85.15±0.57 a
140 d CK 495.42±0.35 b 239.17±0.83 a 256.25±0.47 b 309.34±3.42 a -186.09±3.06 a 4.90±0.04 a 88.13±0.60 a
N1 474.17±2.47 c 209.59±3.66 c 264.59±1.18 b 272.88±2.18 c -201.29±0.30 b 4.64±0.05 b 83.15±0.07 b
N2 511.92±1.53 a 222.63±3.12 b 289.29±4.65 a 289.79±6.07 b -222.13±4.53 c 4.57±0.05 b 83.10±1.13 b

Table 3

Effects of different nitrogen fertilizer application rates on starch gel texture properties during storage root expansion in ‘Xinxiang’"

栽插后天数
Days after planting
处理
Treatment
硬度
Hardness (N)
咀嚼性
Chewiness (J)
黏聚性
Cohesiveness
回复性
Resilience (G)
60 d CK 22.39±3.97 a 12.21±3.36 a 0.85±0.07 a 0.65±0.12 a
N1 14.45±2.12 b 7.90±2.20 a 0.92±0.03 a 0.75±0.04 a
N2 15.97±2.25 b 8.71±4.20 a 0.91±0.03 a 0.76±0.01 a
80 d CK 17.65±2.31 a 16.23±2.33 a 0.92±0.02 b 0.76±0.03 a
N1 10.62±0.53 b 10.50±0.75 b 0.99±0.04 a 0.73±0.02 a
N2 11.18±0.86 b 10.99±1.02 b 0.98±0.05 a 0.73±0.03 a
100 d CK 11.14±0.86 a 12.20±1.30 a 1.09±0.05 a 0.70±0.02 a
N1 12.08±0.94 a 13.04±0.96 a 1.08±0.06 a 0.72±0.02 a
N2 11.85±1.63 a 13.03±1.37 a 1.11±0.06 a 0.71±0.04 a
120 d CK 8.52±0.75 a 9.39±1.23 a 1.10±0.07 a 0.70±0.03 a
N1 7.27±1.07 a 8.40±0.83 a 1.17±0.08 a 0.68±0.06 a
N2 7.24±0.81 a 8.69±0.64 a 1.21±0.07 a 0.65±0.04 a
140 d CK 4.11±0.54 c 4.14±0.59 a 1.01±0.02 a 0.64±0.05 b
N1 6.32±0.14 a 5.39±1.54 a 0.96±0.03 a 0.74±0.01 a
N2 5.24±0.55 b 5.12±0.75 a 0.97±0.07 a 0.67±0.04 b

Table 4

Effects of different nitrogen fertilizer application rates on starch gel texture properties during storage root expansion in ‘Shangshu 19’"

栽插后天数
Days after planting
处理
Treatment
硬度
Hardness (N)
咀嚼性
Chewiness (J)
黏聚性
Cohesiveness
回复性
Resilience (G)
60 d CK 23.83±1.18 a 12.14±4.06 a 0.84±0.03 a 0.67±0.02 a
N1 22.46±4.18 a 15.45±5.03 a 0.83±0.07 a 0.69±0.06 a
N2 20.31±3.07 a 13.81±7.21 a 0.89±0.03 a 0.73±0.03 a
80 d CK 16.33±1.83 b 15.47±1.99 b 0.95±0.06 a 0.72±0.03 a
N1 18.34±1.29 b 17.29±1.16 ab 0.94±0.02 a 0.70±0.01 a
N2 24.99±2.01 a 19.05±1.32 a 0.77±0.06 b 0.58±0.05 b
栽插后天数
Days after planting
处理
Treatment
硬度
Hardness (N)
咀嚼性
Chewiness (J)
黏聚性
Cohesiveness
回复性
Resilience (G)
100 d CK 19.80±1.18 b 19.63±1.57 b 0.99±0.07 a 0.72±0.01 a
N1 23.87±1.53 a 22.25±1.41 a 0.93±0.05 a 0.70±0.01 b
N2 20.61±1.90 b 19.87±1.43 b 0.97±0.03 a 0.69±0.01 b
120 d CK 6.05±0.71 b 6.22±0.58 b 1.03±0.03 a 0.68±0.03 ab
N1 6.20±1.53 b 6.07±1.19 b 0.99±0.06 a 0.64±0.07 b
N2 8.78±0.71 a 8.69±0.61 a 0.99±0.02 a 0.73±0.02 a
140 d CK 4.94±0.35 b 4.31±1.37 b 0.99±0.06 a 0.66±0.01 b
N1 5.81±1.18 ab 5.69±1.23 ab 0.98±0.03 a 0.70±0.05 ab
N2 6.50±0.82 a 6.33±0.59 a 0.98±0.04 a 0.73±0.03 a

Fig. 2

Effects of different nitrogen fertilizer application rates on dynamic rheological properties during storage root expansion in ‘Xinxiang’ CK: 0 kg hm-2 of nitrogen fertilizer application rate; N1: 57.5 kg hm-2 of nitrogen fertilizer application rate; N2: 115 kg hm-2 of nitrogen fertilizer application rate. 60, 80, 100, 120, and 140 d represent 60, 80, 100, 120, and 140 days after planting, respectively."

Fig. 3

Effects of different nitrogen fertilizer application rates on dynamic rheological properties during storage root expansion in ‘Shangshu 19’ Treatments are the same as those given in Fig. 2."

Fig. 4

Effects of different nitrogen fertilizer application rates on the α-amylase activity during storage root expansion in sweetpotato A: Xinxiang; B: Shangshu 19. Different lowercase letters indicate that the different treatment is significant differences in the same periods at P < 0.05. Treatments are the same as those given in Fig. 1."

Fig. 5

Effects of different nitrogen fertilizer application rates on the β-amylase activity during storage root expansion in sweetpotato A: Xinxiang; B: Shangshu 19. Different lowercase letters indicate that the different treatment is significant differences in the same periods at P < 0.05. Treatments are the same as those given in Fig. 1."

Table 5

Correlation among starch physicochemical traits of sweetpotato storage root"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16
X2 0.461*
X3 0.027 0.719**
X4 -0.169 -0.634** -0.699**
X5 -0.077 -0.453* -0.646** 0.891**
X6 0.388* 0.711** 0.403* -0.650** -0.366*
X7 0.173 -0.187 -0.287 0.121 0.148 -0.133
X8 0.172 0.450* 0.434* -0.542** -0.413* 0.243 -0.011
X9 0.035 -0.228 -0.382* 0.311 0.245 -0.410* 0.255 0.184
X10 0.121 0.574** 0.644** -0.666** -0.537** 0.511** -0.278 0.624** -0.566**
X11 0.173 -0.073 -0.283 0.209 0.159 -0.285 0.233 0.243 0.946** -0.497**
X12 0.018 -0.368* -0.511** 0.544** 0.431* -0.446* 0.332 -0.435* 0.679** -0.922** 0.666**
X13 -0.142 -0.013 0.089 0.074 -0.009 -0.380* 0.047 0.183 0.537** -0.241 0.499** 0.362*
X14 -0.409* -0.124 0.083 0.176 0.167 -0.307 -0.145 -0.064 -0.128 0.136 -0.257 -0.093 0.287
X15 -0.257 -0.111 -0.089 0.184 0.313 0.117 -0.222 0.000 -0.042 0.068 -0.139 -0.126 -0.145 0.155
X16 -0.529** -0.364* -0.236 0.219 0.231 -0.178 -0.110 0.074 0.176 -0.061 0.018 -0.006 0.118 0.245 0.813**
X17 -0.113 -0.115 0.015 -0.257 -0.407* -0.233 0.141 0.243 0.092 0.089 0.086 -0.044 0.223 0.039 -0.685** -0.215
[1] 刘庆昌. 甘薯在我国粮食和能源安全中的重要作用. 科技导报, 2004, (9): 21-22.
Liu Q C. Importance of sweet potato in the security of food and energy in China. Sci Technol Rev, 2004, (9): 21-22. (in Chinese with English abstract)
[2] 马剑凤, 程金花, 汪洁, 戴红君, 戴起伟. 国内外甘薯产业发展概况. 江苏农业科学, 2012, 40(12): 1-5.
Ma J F, Cheng J H, Wang J, Dai H J, Dai Q W. Overview of sweet potato industry development at home and abroad. Jiangsu Agric Sci, 2012, 40(12): 1-5. (in Chinese with English abstract)
[3] Aina A J, Falade K O, Akingbala J O, Titus P. Physicochemical properties of twenty-one Caribbean sweet potato cultivars. Int J Food Sci Technol, 2009, 44: 1696-1704.
doi: 10.1111/j.1365-2621.2009.01941.x
[4] Antonio G C, Takeiti C Y, Oliveira R A D, Park K J. Sweet potato: production, morphological and physicochemical characteristics, and technological process. Fruit Veget Cereal Sci Biotechnol, 2011, 5: 914035.
[5] 张令文, 琚星, 李欣欣, 胡新月, 计红芳, 毕继才, 马汉军. 8个品种甘薯淀粉的理化性质及其相关性分析. 食品工业科技, 2021, 42(4): 26-32.
Zhang L W, Ju X, Li X X, Hu X Y, Ji H F, Bi J C, Ma H J. Physicochemical properties and their correlation of starches from eight sweet potato cultivars. Sci Technol Food Ind, 2021, 42(4): 26-32. (in Chinese with English abstract)
[6] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweet potato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492. (in Chinese with English abstract).
[7] 陈晓光, 丁艳锋, 唐忠厚, 魏猛, 史新敏, 张爱君, 李洪民. 氮肥施用量对甘薯产量和品质性状的影响. 植物营养与肥料学报, 2015, 21: 979-986.
Chen X G, Ding Y F, Tang Z H, Wei M, Shi X M, Zhang A J, Li H M. Suitable nitrogen rate for storage root yield and quality of sweet potato. Plant Nutr Fert Sci, 2015, 21: 979-986. (in Chinese with English abstract)
[8] Duan W, Zhang H, Xie B, Wang B, Zhang L. Impacts of nitrogen fertilization rate on the root yield, starch yield and starch physicochemical properties of the sweet potato cultivar Jishu 25. PLoS One, 2019, 14: e0221351.
doi: 10.1371/journal.pone.0221351
[9] 刘兆辉, 薄录吉, 李彦, 孙明, 仲子文, 张英鹏, 井永苹. 氮肥减量施用技术及其对作物产量和生态环境的影响综述. 中国土壤与肥料, 2016, (4): 1-8.
Liu Z H, Bo L J, Li Y, Sun M, Zhong Z W, Zhang Y P, Jing Y P. Effect of nitrogen fertilizer reduction on crop yield and ecological environment: a review. Soil Fert Sci China, 2016, (4): 1-8. (in Chinese with English abstract)
[10] 王良平, 张菡, 乐正碧, 黎华, 王季春. 密度和施肥对甘薯品种‘万薯5号’淀粉含量的影响. 作物杂志, 2012, (1): 108-110.
Wang L P, Zhang H, Le Z B, Li H, Wang J C. The effect of planting density and Fertilization on the starch content of high-starch sweet potato Wanshu 5. Crops, 2012, (1): 108-110. (in Chinese with English abstract)
[11] 黄华宏, 陆国权, 郑遗凡. 不同生育期甘薯块根淀粉糊化特性的差异. 中国农业科学, 2005, 38: 462-467.
Huang H H, Lu G Q, Zheng Y F. Variation in root starch gelatinization characteristics during the growth and development of sweet potato. Sci Agric Sin, 2005, 38: 462-467. (in Chinese with English abstract)
[12] 李臣, 薛冠炜, 黄静艳, 王宁东, 陆国权. 生育期对鲜食甘薯品种‘心香’营养成分及产品加工特性的影响. 浙江农业学报, 2017, 29: 1957-1962.
doi: 10.3969/j.issn.1004-1524.2017.12.01
Li C, Xue G W, Huang J Y, Wang N D, Lu G Q. Effects of different growth stages on nutritional components and processing characteristics of sweet potato cultivar Xinxiang. Acta Agric Zhejiangensis, 2017, 29: 1957-1962. (in Chinese with English abstract).
[13] 严美玲, 殷岩, 姜鸿明, 丁晓仪, 于经川, 王江春. 氮肥用量对小麦籽粒粒重及淀粉含量的影响. 麦类作物学报, 2008, 28: 1011-1015.
Yan M L, Yin Y, Jiang H M, Ding X Y, Yu J C, Wang J C. Effects of nitrogen amount on grains weight and amylose, amylopectin content of wheat. J Triticeae Crops, 2008, 28: 1011-1015. (in Chinese with English abstract)
[14] 孙涛, 同拉嘎, 赵书宇, 王海微, 韩云飞, 张忠臣, 金正勋. 氮肥对水稻胚乳淀粉品质、相关酶活性及基因表达量的影响. 中国水稻科学, 2018, 32: 475-484.
doi: 10.16819/j.1001-7216.2018.8013
Sun T, Tong L G, Zhao S Y, Wang H W, Han Y F, Zhang Z C, Jin Z X. Effects of nitrogen fertilizer application on starch quality, activities and gene expression levels of related enzymes in rice endosperm. Chin J Rice Sci, 2018, 32: 475-484. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2018.8013
[15] 李勇, 吕文河, 吕典秋, 宿飞飞, 李辉, 胡林双, 杨焕春, 刘振宇, 王绍鹏, 刘尚武. 施氮水平对不同淀粉型马铃薯块茎产量和淀粉品质的影响. 中国农业大学学报, 2019, 24(3): 27-38.
Li Y, Lyu W H, Lyu D Q, Su F F, Li H, Hu L S, Yang H C, Liu Z Y, Wang S P, Liu S W. Effects of nitrogen fertilizer application rote on the tuber yield and starch quality of potato varieties with different starch contents. J China Agric Univ, 2019, 24(3): 27-38. (in Chinese with English abstract)
[16] 唐忠厚, 张爱君, 陈晓光, 靳容, 刘明, 李洪民, 丁艳锋. 低钾胁迫对甘薯块根淀粉理化特性的影响及其基因型差异. 中国农业科学, 2017, 50: 513-525.
Tang Z H, Zhang A J, Chen X G, Jin R, Liu M, Li H M, Ding Y F. Starch physicochemical properties and their difference in three sweet potato genotypes under low potassium stress. Sci Agric Sin, 2017, 50: 513-525. (in Chinese with English abstract)
[17] 陆国权, 李秀玲, 丁守仁. 盐酸水解DNS比色法快速测定甘薯淀粉含量的标准方法研究. 中国粮油学报, 2002, (1): 25-28.
Lu G Q, Li X L, Ding S R. Quick analysis of starch content of sweet potato by HCL hydrolysis-DNS method. J Chin Cereal Oil Ass, 2002, (1): 25-28. (in Chinese with English abstract)
[18] 包劲松. 应用RVA测定米粉淀粉成糊温度. 中国水稻科学, 2007, 21: 543-546.
Bao J S. Accurate measurement of pasting temperature of rice flour by a Rapid Visco Analyzer. Chin J Rice Sci, 2007, 21: 543-546. (in Chinese with English abstract)
[19] Qiao D L, Tu W Y, Liao A P, Li N N, Zhang B J, Jiang F T, Zhong L, Zhao S M, Zhang L, Lin Q L. Multiscale structure and pasting digestion features of yam bean tuber starches. Carbohydr Polym, 2019, 213: 199-207.
doi: 10.1016/j.carbpol.2019.02.082
[20] Bao J S, Shen S Q, Sun M, Corke H. Analysis of genotypic diversity in the starch physicochemical properties of nonwaxy rice: apparent amylose content, pasting viscosity and gel texture. Die Stärke, 2006, 58: 259-267.
doi: 10.1002/star.200500469
[21] Sandhu K S, Siroha A K. Relationships between physicochemical, thermal, rheological and in vitro digestibility properties of starches from pearl millet cultivars. Food Sci Technol, 2017, 83: 213-244.
[22] 曹健康. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2017. pp 81-84.
Cao J K. Guidance for Postharvest Physiological and Biochemical Experiments of Fruits and Vegetables. Beijing: China Light Industry Press, 2017. pp 81-84. (in Chinese)
[23] 周志林, 唐君, 曹清河, 赵冬兰, 张安. 淀粉专用型甘薯品质形成规律及其与主要农艺性状的相关性. 江苏农业学报, 2020, 36: 277-283.
Zhou Z L, Tang J, Cao Q H, Zhao D L, Zhang A. Formation laws of quality characters in starch sweet potato cultivars and its correlation with main agronomic characters. Jiangsu J Agric Sci, 2020, 36: 277-283. (in Chinese with English abstract)
[24] 侯夫云, 陈桂玲, 董顺旭, 解备涛, 秦桢, 李爱贤, 张立明, 王庆美. 不同品种甘薯淀粉组分、物化及粉条品质的比较研究. 核农学报, 2022, 36: 392-401.
doi: 10.11869/j.issn.100-8551.2022.02.0392
Hou F Y, Chen G L, Dong S X, Xie B T, Qin Z, Li A X, Zhang L M, Wang Q M. Comparative study on starch components, physicochemical properties and noodle quality of different sweet potato varieties. J Nucl Agric Sci, 2022, 36: 392-401. (in Chinese with English abstract)
[25] 柳强娟, 康建宏, 吴佳瑞, 孙建波, 马雪莹, 王星强, 坚天才. 施氮量对宁夏旱区马铃薯块茎淀粉形成和产量的影响. 核农学报, 2021, 35: 1196-1208.
doi: 10.11869/j.issn.100-8551.2021.05.1196
Liu Q J, Kang J H, Wu J R, Sun J B, Ma X Y, Wang X Q, Jian T C. Effects of nitrogen application amount on formation and yield of potato tuber starch in Ningxia arid region. J Nucl Agric Sci, 2021, 35: 1196-1208. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.05.1196
[26] 张友良, 汪兆辉, 冯绍元, 王凤新. 覆膜滴灌条件下滴灌湿润比和施氮量对甘薯生长的影响. 农业机械学报, 2021, 52(7): 261-270.
Zhang Y L, Wang Z H, Feng S Y, Wang F X. Effects of soil wetted percentages and nitrogen fertilizations on sweet potato growth under drip irrigation with film mulching. Trans CSAM, 2021, 52(7): 261-270. (in Chinese with English abstract)
[27] 项超, 沈升法, 吴列洪, 李兵, 罗志高. 甘薯块根淀粉酶特性及糖化效应研究. 中国粮油学报, 2021, 36(5): 56-61.
Xiang C, Shen S F, Wu L H, Li B, Luo Z G. The characteristics of amylase and sweetening effect of sweet potato root. J Chin Cereal Oil Assoc, 2021, 36(5): 56-61. (in Chinese with English abstract).
[28] 朱红, 钮福祥, 徐飞, 孙健, 岳瑞雪, 张毅. 钾肥对甘薯产量、品质及淀粉RVA特性的影响. 江苏农业科学, 2016, 44(5): 138-139, 195.
Zhu H, Niu F X, Xu F, Sun J, Yue R X, Zhang Y. Effects of potassium fertilizer on yield, quality and RVA characteristics of sweet potato. Jiangsu Agric Sci, 2016, 44(5): 138-139, 195. (in Chinese with English abstract)
[29] 周治宝, 王晓玲, 余传元, 雷建国, 胡培松, 王智权, 李马忠, 朱昌兰. 籼稻米饭食味与品质性状的相关性分析. 中国粮油学报, 2012, 27(1): 1-5.
Zhou Z B, Wang X L, Yu C Y, Lei J G, Hu P S, Wang Z Q, Li M Z, Zhu C L. Correlation analysis of eating quality with quality characters of indica rice. J Chin Cereal Oil Ass, 2012, 27(1): 1-5. (in Chinese with English abstract)
[30] 胡雅杰, 薛建涛, 吴培, 李娈, 丛舒敏, 余恩唯, 倪嘉颢, 张洪程. 施氮量和直播密度对稻米食味品质和淀粉结构的影响. 中国粮油学报, 2022, 37(2): 7-13.
Hu Y J, Xue J T, Wu P, Li L, Cong S M, Yu E W, Ni J H, Zhang H C. Effects of nitrogen application and sowing density on eating quality and starch structure of direct-seeding rice. J Chin Cereal Oil Ass, 2022, 37(2): 7-13. (in Chinese with English abstract)
[31] 谭洪卓, 谭斌, 刘明, 田晓红, 谷文英. 甘薯淀粉性质与其粉丝品质的关系. 农业工程学报, 2009, 25(4): 286-292.
Tan H Z, Tan B, Liu M, Tian X H, Gu W Y. Relationship between properties of sweet potato starch and qualities of sweet potato starch noodles. Trans CSAE, 2009, 25(4): 286-292. (in Chinese with English abstract)
[32] 余树玺, 邢丽君, 木泰华, 张苗, 孙红男, 陈井旺. 4种不同甘薯淀粉成分、物化特性及其粉条品质的相关性研究. 核农学报, 2015, 29: 734-742.
doi: 10.11869/j.issn.100-8551.2015.04.0734
Yu S X, Xing L J, Mu T H, Zhang M, Sun H N, Chen J W. The study of correlation between the physicochemical properties of starch from different sweet potato varieties and the quality of its starch noodle. J Nucl Agric Sci, 2015, 29: 734-742. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2015.04.0734
[33] 江帆, 杜春微, 任妍婧, 梁鸡保, 杜双奎. 不同藜麦品种淀粉的理化性质与消化特性. 中国粮油学报, 2021, 36(7): 77-83.
Jiang F, Du C W, Ren Y J, Liang J B, Du S K. Physicochemical properties and digestibility of starches of different quinoa varieties. J Chin Cereal Oil Assoc, 2021, 36(7): 77-83. (in Chinese with English abstract)
[34] Zheng M J, Ye A, Singh H, Zhang Y. The in vitro digestion of differently structured starch gels with different amylose contents. Food Hydrocoll, 2021, 116: 106647.
doi: 10.1016/j.foodhyd.2021.106647
[35] 唐敏敏, 洪雁, 顾正彪, 刘月. 黄原胶对绿豆淀粉糊化和流变特性的影响. 食品科学, 2013, 34(21): 42-46.
Tang M M, Hong Y, Gu Z B, Liu Y. Effects of xanthan on pasting and rheological properties of mung bean starch. Food Sci, 2013, 34(21): 42-46. (in Chinese with English abstract)
doi: 10.1111/j.1365-2621.1969.tb14358.x
[36] Khatkar B S, Bell A E, Schofield J D. The dynamic rheological properties of glutens and gluten subfractions from wheats of good and poor bread making quality. J Cereal Sci, 1995, 22: 29-44.
doi: 10.1016/S0733-5210(05)80005-0
[37] Ye F, Li J, Zhao G. Physicochemical properties of different-sized fractions of sweet potato starch and their contributions to the quality of sweet potato starch. Food Hydrocoll, 2020, 108: 106023.
doi: 10.1016/j.foodhyd.2020.106023
[38] 谭洪卓, 谷文英, 刘敦华, 陆建安. 甘薯淀粉糊的流变特性. 食品科学, 2007, 28(1): 58-63.
Tan H Z, Gu W Y, Liu D H, Lu J A. Rheological properties of sweet potato starch paste. Food Sci, 2007, 28(1): 58-63. (in Chinese with English abstract)
[1] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[2] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[3] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[4] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[5] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[6] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[7] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[8] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[9] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[10] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[11] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[12] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[13] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[14] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[15] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!