Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 249-261.doi: 10.3724/SP.J.1006.2023.23010

• TILLAGE & CULTIVATION ·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms

CHEN Bing-Jie(), ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin()   

  1. Agronomy College, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science / Collaborative Innovation Center of Henan Grain Crops in 2011 / Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450002, Henan, China
  • Received:2022-01-18 Accepted:2022-05-05 Online:2023-01-12 Published:2022-05-16
  • Contact: ZHANG Xue-Lin E-mail:Yihao20201122@163.com;xuelinzhang1998@163.com
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);Science and Technology Innovation Fund of Henan Agricultural University(30500712)

Abstract:

Clarifying the effect of arbuscular mycorrhizae fungi (AMF) on maize physiological characteristics and grain yield and their quality at grain filling stages could provide a theoretical basis for the reasonable application of biological fertilizer in farmland, which can increase maize yield and improve grain quality. In maize growing season of 2018 and 2019, the two-factors pot experiments were carried out by compartment box devices. The factors were nitrogen (N) fertilizer forms (NH4+-N: ammonium nitrogen fertilizer; NO3--N: nitrate nitrogen fertilizer), and arbuscular mycorrhizal fungi (M0: neither root nor arbuscular mycorrhizal fungi could enter the hyphal chamber from the growth chamber; M1: only arbuscular mycorrhizal fungi could enter the hyphal chamber from the growth chamber). The key enzymes activities of N metabolism in grains and ear leaves, grain yield, plant biomass, plant N accumulation, and root characteristic parameters were measured. The results showed that AMF could increase leaf chlorophyll content and leaf area, promote photosynthesis, and regulate the key enzymes activities of N metabolism at grain filling stage, thus improving maize yield and quality. This effect was different between N fertilizer forms. Compared with M0, maize yield and grain N accumulation of M1 for NH4+-N fertilizer treatment increased by 85% and 140%, respectively. For NO3--N treatment, maize yield and grain N accumulation of M1 increased by 36% and 81%, respectively. Compared with M0, crude protein content, crude starch content, and lysine content of M1 for NH4+-N fertilizer treatment increased by 9%, 6%, and 7%, while crude fat content reduced by 19%, respectively. For NO3--N treatment, crude protein content and lysine content of M1 increased by 10% and 8%, while crude fat content reduced by 32%, respectively. In conclusion, AMF could improve maize yield, increase crude protein content, and lysine content in maize grain, thus improving maize grain quality.

Key words: arbuscular mycorrhizal fungi, nitrogen fertilizer forms, maize yield, grain quality

Fig. 1

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on grain yield and N accumulation in maize M0: the control, M1: only AMF hyphae can enter the hyphal chamber from the growth chamber; NH4+-N and NO3--N represent ammonium nitrogen fertilizer and nitrate nitrogen fertilizer treatments, respectively. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Table 1

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on biomass and N accumulation at grain filling stage in maize"

项目
Item
年份
Year
M0NH4+-N M1NH4+-N M0NO3--N M1NO3--N 氮肥形态
Nitrogen (N)
丛枝菌根真菌
Mycorrhizae (M)
氮肥形态互作丛枝菌根真菌
N × M
生物量Biomass (g plant-1)
籽粒
Grain
2018 30.01±3.06 c 68.95±2.95 a 43.04±2.65 b 60.78±3.78 a 0.59 81.77*** 11.38**
2019 44.11±6.41 c 68.33±4.21 ab 59.47±6.78 bc 78.17±2.73 a 5.66* 16.42** 0.27

Leaf
2018 49.02±1.71 a 49.93±5.73 a 46.54±0.55 a 53.83±4.65 a 0.04 1.17 0.71
2019 35.16±1.51 ab 40.99±1.02 a 29.19±3.01 b 42.79±2.93 a 0.83 18.13** 2.88

Stem
2018 66.83±1.09 a 72.11±1.91 a 69.45±3.62 a 72.59±1.39 a 0.52 3.48 0.21
2019 41.82±5.95 c 58.13±3.94 b 55.34±3.97 bc 76.48±3.93 a 12.37** 17.08** 0.28

Root
2018 28.22±3.09 b 45.11±1.77 a 35.05±1.93 b 48.25±1.74 a 5.14 46.54*** 0.72
2019 17.74±0.43 b 20.19±0.27 a 18.48±0.43 b 20.76±0.45 a 2.72 34.94*** 0.05
氮素积累量N accumulation (mg plant-1)
籽粒
Grain
2018 124.11±10.57 b 367.26±18.07 a 175.41±29.1 b 332.88±37.65 a 0.11 59.44*** 2.72
2019 179.77±10.05 b 363.29±17.47 a 242.55±49.44 b 424.01±15.01 a 4.96 43.31*** 0.01

Leaf
2018 75.07±32.46 ab 106.55±19.77 a 26.61±1.44 b 129.41±18.51 a 0.37 10.08* 2.84
2019 49.15±0.61 c 115.84±11.55 b 158.68±10.49 ab 188.82±31.62 a 26.78*** 7.54* 1.08

Stem
2018 66.12±14.83 b 206.05±46.13 a 58.56±23.62 b 252.37±12.49 a 0.49 36.41*** 0.94
2019 41.32±14.54 b 126.87±19.43 a 35.62±8.94 b 110.33±33.06 a 0.28 14.59** 0.07

Root
2018 60.34±11.96 a 63.71±2.46 a 27.81±1.46 b 71.01±3.04 a 3.96 13.55** 9.89*
2019 30.31±13.03 ab 38.66±8.56 ab 11.09±0.49 b 47.57±5.67 a 0.39 7.32* 2.87

Fig. 2

Root colonization by arbuscular mycorrhizal fungi among different treatments (M0NH4+-N; M1NH4+-N; M0NO3--N; D: M1NO3--N) at grain filling stage in maize M0NH4+-N represents the control with NH4+-N fertilizer input; M1NH4+-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NH4+-N fertilizer input; M0NO3--N represents the control with NO3--N fertilizer input; M1NO3--N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NO3--N fertilizer input."

Fig. 3

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on maize root colonization rate at grain filling stage. M0NH4+-N represents the control with NH4+-N fertilizer input; M1NH4+-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NH4+-N fertilizer input; M0NO3--N represents the control with NO3--N fertilizer input; M1NO3--N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NO3--N fertilizer input; S1, S2, and S3 represent 15 days after silking, 25 days after silking, and 35 days after silking, respectively. In the same year, different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level."

Fig. 4

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on ear leaf SPAD and leaf area at grain filling stage in maize Treatments are the same as those given in Fig. 3. SPAD represents chlorophyll content. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Table 2

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on photosynthetic parameters at grain filling stage in maize"

处理
Treatment
净光合速率
Net photosynthetic rate
(μmol m-2 s-1)
气孔导度
Stomatal conductance
(mmol m-2 s-1)
胞间二氧化碳浓度
Intercellular CO2 concentration
(μmol mol-1)
蒸腾速率
Transpiration rate
(mmol m-2 s-1)
2018 2019 2018 2019 2018 2019 2018 2019
M0NH4+-N 12.47±0.26 b 12.83±0.67 c 0.11±0.01 b 0.11±0.01 c 2.92±3.12 a 7.71±7.36 a 3.35±0.06 b 4.37±0.71 a
M1NH4+-N 17.32±0.56 a 17.56±0.23 b 0.16±0.02 ab 0.12±0.01 bc 15.63±13.98 a 9.48±11.24 a 4.65±0.29 a 5.14±0.51 a
M0NO3--N 17.57±1.05 a 14.65±0.86 c 0.16±0.02 ab 0.16±0.01 b 9.39±10.51 a 38.47±29.37 a 5.03±0.39 a 4.61±0.52 a
M1NO3--N 18.84±0.86 a 21.02±0.73 a 0.19±0.02 a 0.26±0.02 a 25.93±11.59 a 67.62±12.74 a 5.56±0.43 a 6.15±0.34 a
氮肥形态
Nitrogen form (N)
19.76** 16.21** 6.41* 54.72*** 0.63 6.56* 15.72** 1.44
丛枝菌根真菌Mycorrhizae (M) 16.89** 71.63*** 6.61* 20.77** 1.93 0.79 7.88* 4.78
氮肥形态互作丛枝菌根真菌(N × M) 5.77* 1.55 0.63 10.63* 0.03 0.62 1.37 0.53

Fig. 5

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on the N related metabolism enzymes activities for ear leaves (A, C, E, G) and grains (B, D, F, H) Treatments are the same as those given in Fig. 3. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Fig. 6

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on maize total root length (A, B), surface area (C, D), diameter (E, F), and root volume (G, H) Treatments are the same as those given in Fig. 1. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Table 3

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on maize ear properties"

处理
Treatment
穗行数
Rows number per ear
行粒数
Kernels number per row
穗粗
Ear diameter (cm)
百粒重
100-grain weight (g)
穗位叶干重
Ear leaf biomass (g plant-1)
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
M0NH4+-N 12.67±0.67 b 14.01±0.11 a 26.12±2.31 c 26.67±2.4 c 14.01±0.51 c 15.78±0.62 b 11.76±0.37 bc 10.98±0.19 c 8.95±0.11 b 8.98±0.23 b
M1NH4+-N 13.33±0.67 b 14.67±0.67 a 35.22±2.08 ab 37.33±1.2 a 18.57±0.87 ab 21.68±3.16 a 12.52±0.23 ab 11.27±0.18 c 10.76±0.48 a 11.73±0.55 a
M0NO3--N 13.33±0.67 b 14.01±0.11 a 32.41±1.73 bc 31.13±1 bc 15.31±0.37 bc 14.45±0.76 b 11.44±0.11 c 12.12±0.08 b 7.01±0.29 c 6.74±0.14 c
M1NO3--N 16.21±0.13 a 14.67±0.67 a 40.33±3.18 a 33.33±2.33 ab 19.54±2.01 a 18.27±0.19 ab 12.98±0.45 a 13.45±0.39 a 10.7±0.73 a 11.19±0.48 a
氮肥形态Nitrogen form (N) 8.33* 0.01 5.64* 0.01 1.04 2.03 0.05 47.58*** 4.64 12.91**
丛枝菌根真菌
Mycorrhizae (M)
8.33* 2.12 13.19** 12.37** 14.92** 8.58* 13.12** 11.47** 35.07*** 86.34***
氮肥形态互作丛枝菌根真菌(N × M) 3.31 0.01 0.02 5.08 0.02 0.39 1.52 4.75 4.14 4.84

Table 4

Effects of N fertilizer forms and arbuscular mycorrhizae fungi on maize grain qualities"

处理
Treatment
粗蛋白含量
Crude protein content (%)
粗脂肪含量
Crude fat content (%)
粗淀粉含量
Crude starch content (%)
赖氨酸含量
Lysine content (%)
2018 2019 2018 2019 2018 2019 2018 2019
M0NH4+-N 9.41±0.22 c 9.31±0.13 c 6.07±0.08 a 4.85±0.03 b 60.79±0.29 b 65.07±0.31 b 0.62±0.01 b 0.61±0.01 c
M1NH4+-N 10.74±0.14 a 9.73±0.06 b 4.81±0.13 b 4.07±0.03 d 66.27±0.52 a 67.22±0.59 a 0.71±0.01 a 0.61±0.01 c
M0NO3--N 8.95±0.04 d 9.82±0.03 b 6.34±0.14 a 6.46±0.05 a 66.81±0.32 a 62.34±0.46 c 0.55±0.01 c 0.63±0.01 b
M1NO3--N 10.06±0.04 b 10.61±0.13 a 4.11±0.09 c 4.53±0.04 c 65.61±0.31 a 65.27±0.57 b 0.62±0.01 b 0.66±0.01 a
氮肥形态Nitrogen (N) 21.11** 66.48*** 4.65 796.79*** 53.29*** 22.63** 83.17*** 50.16***
丛枝菌根真菌Mycorrhizae (M) 96.87*** 49.69*** 289.34*** 1377.66*** 34.09*** 26.46*** 71.72*** 7.97*
氮肥形态互作丛枝菌根真菌(N × M) 0.88 4.78 22.15** 230.46*** 82.92*** 0.62 0.23 2.73
[1] 张学林, 徐钧, 安婷婷, 侯小畔, 李潮海. 不同氮肥水平下玉米根际土壤特性与产量的关系. 中国农业科学, 2016, 49: 2687-2699.
Zhang X L, Xu J, An T T, Hou X P, Li C H. Relationship between rhizosphere soil properties and yield of maize at different nitrogen levels. Sci Agric Sin, 2016, 49: 2687-2699. (in Chinese with English abstract)
[2] 代新俊, 杨珍平, 陆梅, 李慧, 樊攀, 宋佳敏, 高志强. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响. 植物营养与肥料学报, 2019, 25: 710-720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat. J Plant Nutr Fert, 2019, 25: 710-720. (in Chinese with English abstract)
[3] Bloom A J, Frensch J, Taylor A R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann Bot, 2006, 97: 867-873.
doi: 10.1093/aob/mcj605
[4] 姜佰文, 高强, 王春宏, 张迪, 高飞, 邓宏志, 徐赫男. 氮素形态调控对春玉米生长发育、产量和品质的影响. 东北农业大学学报, 2018, 49(11): 35-41.
Jiang B W, Gao Q, Wang C H, Zhang D, Gao F, Deng H Z, Xu H N. Effect of nitrogen form regulations on growth and development, yield and quality of spring maize. J Northeast Agric Univ, 2018, 49(11): 35-41. (in Chinese with English abstract)
[5] 李学俊, 文建雷, 韩书成, 曹翠玲, 李生秀. 氮素形态对玉米幼苗生物机制及生物量的影响. 西北农林科技大学学报(自然科学版), 2008, 36(3): 192-196.
Li X J, Wen J L, Han S C, Cao C L, Li S X. Effect of N form on physiological mechanism and biomass in corn seedlings. J Northwest A&F Univ (Nat Sci Edn), 2008, 36(3): 192-196. (in Chinese with English abstract)
[6] 尹彩霞, 左竹, 李桂花. 不同形态氮肥对玉米产量和土壤浸提性有机质的影响. 中国土壤与肥料, 2011, (3): 27-30.
Yin C X, Zuo Z, Li G H. Effect of nitrogen forms on maize yield and soil extractable organic matter. China Soil Fert, 2011, (3): 27-30. (in Chinese with English abstract)
[7] Veresoglou S D, Chen B D, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem, 2012, 46: 53-62.
doi: 10.1016/j.soilbio.2011.11.018
[8] 张学林, 吴梅, 李晓立, 何堂庆, 张晨曦, 田明慧, 陈冰洁, 张富粮, 郝晓峰, 杨青华. 丛枝菌根真菌对灌浆前期玉米子粒氮代谢及产量和品质的影响. 河南农业大学学报, 2021, 55: 647-653.
Zhang X L, Wu M, Li X L, He T Q, Zhang C X, Tian M H, Chen B J, Zhang F L, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on nitrogen metabolism, yield and quality of grain in early grain filling stage in maize. J Henan Agric Univ, 2021, 55: 647-653. (in Chinese with English abstract)
[9] Hodge A, Storer K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil, 2015, 386: 1-19.
doi: 10.1007/s11104-014-2162-1
[10] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47: 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050
Zhang X L, Li X L, He T Q, Zhang C X, Tian M H, Wu M, Zhou Y N, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agron Sin, 2021, 47: 1603-1615. (in Chinese with English abstract)
[11] 金海如, 蒋湘艳, 夏婷婷. 不同有机物料及其菌根化对甜玉米产量与品质的协同影响. 中国土壤与肥料, 2019, (6): 196-203.
Jin H R, Jiang X Y, Xia T T. Synergistic effect of different organic matters and mycorrhizal fungi on biomass and quality of sweet maize. China Soil Fert, 2019, (6): 196-203. (in Chinese with English abstract)
[12] Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ, 2005, 28: 1247-1254.
doi: 10.1111/j.1365-3040.2005.01360.x
[13] Pan S, Wang Y, Qiu Y P, Chen D M, Zhang L, Ye C L, Guo H, Zhu W X, Chen A Q, Xu G H, Zhang Y, Bai Y F, Hu S J. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Global Change Biol, 2020, 26: 6568-6580.
doi: 10.1111/gcb.15311
[14] Hodge A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol, 2001, 151: 725-734.
doi: 10.1046/j.0028-646x.2001.00200.x pmid: 33853263
[15] Xie K, Ren Y H, Chen A Q, Yang C F, Zheng Q S, Chen J, Wang D S, Li Y T, Hu S J, Xu G H. Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi. J Plant Physiol, 2022, 269: 153591.
doi: 10.1016/j.jplph.2021.153591
[16] Seck-Mbengue M F, Mueller A, Ngwene B, Neumann E, George E. Transport of nitrogen and zinc to Rhodes grass by arbuscular mycorrhiza and roots as affected by different nitrogen sources (NH4+-N and NO3--N). Symbiosis, 2017, 73: 191-200.
doi: 10.1007/s13199-017-0480-9
[17] Wang S S, Chen A Q, Xie K, Yang X F, Luo Z Z, Chen J D, Zeng D C, Ren Y H, Yang C F, Wang L X, Feng H M, Lopez-Arredondo D L, Herrera-Estrella L R, Xu G H. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci USA, 2020, 117: 16649-16659.
doi: 10.1073/pnas.2000926117
[18] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[19] 陈传永, 王荣焕, 赵久然, 徐田军, 王元东, 刘秀, 刘春阁, 裴志超, 成广雷, 陈国平. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014, 40: 1650-1657.
Chen C Y, Wang R H, Zhao J R, Xu T J, Wang Y D, Liu X Z, Liu C G, Pei Z C, Cheng G L, Chen G P. Effects of shading on grain-filling properties and yield of maize at different growth stages. Acta Agron Sin, 2014, 40: 1650-1657. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01650
[20] 刘笑鸣, 顾万荣, 李从锋, 张立国, 王明泉, 龚士琛, 陈喜昌, 李彩凤, 魏湜, 李文华. 化学调控和氮肥对高密度下春玉米光热水利用效率和产量的影响. 中国农业科学, 2020, 53: 3083-3094.
Liu X M, Gu W R, Li C F, Zhang L G, Wang M Q, Gong S C, Chen X C, Li C F, Wei S, Li W H. Effects of chemical regulation and nitrogen fertilizer on radiation, heat and water utilization efficiency and yield of spring maize under dense planting condition. Sci Agric Sin, 2020, 53: 3083-3094. (in Chinese with English abstract)
[21] 邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响. 植物营养与肥料学报, 2009, 15: 1380-1385.
Deng Y, Shen H, Luo W Q, Guo T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios. Plant Nutr Fert Sci, 2009, 15: 1380-1385. (in Chinese with English abstract)
[22] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Brit Mycol Soc Trans, 1970, 55: 158-161.
doi: 10.1016/S0007-1536(70)80110-3
[23] Zheng B C, Zhang X N, Chen P, Du Q, Zhou Y, Yang H, Wang X C, Yang F, Yong T W, Yang W Y. Improving maize’s N uptake and N use efficiency by strengthening roots’ absorption capacity when intercropped with legumes. PeerJ, 2021, 9: e11658.
doi: 10.7717/peerj.11658
[24] Ushio M, Fujiki Y, Hidaka A, Kitayama K. Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Funct Ecol, 2015, 29: 1235-1245.
doi: 10.1111/1365-2435.12424
[25] Kohl L, van der Heijden M G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem, 2016, 94: 191-199.
doi: 10.1016/j.soilbio.2015.11.019
[26] Jabborova D, Annapurna K, Paul S, Kumar S, Saad H A, Desouky S, Ibrahim M F M, Elkelish A. Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. J Fungi, 2021, 7: 571.
doi: 10.3390/jof7070571
[27] Chen M L, Yang G, Sheng Y, Li P Y, Qiu H Y, Zhou X T, Huang L Q, Chao Z. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquor ice under nutrient stress. Front Plant Sci, 2017, 8: 931.
doi: 10.3389/fpls.2017.00931
[28] Yang H S, Koide R T, Zhang Q. Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition. Plant Soil, 2016, 404: 373-384.
doi: 10.1007/s11104-016-2850-0
[29] Uribelarrea M, Below F E. Stress control achieving high yields: the quest for 300 bushel per acre corn. In: Fazio G, eds. Proceedings of the 36th Annual Meeting of the Plant Growth Regulation Society of America. USA: Plant Growth Regulation Society of America, 2010. pp 45-52.
[30] Boussadia O, Steppe K, Zgallai H, El Hadj S B, Braham M, Lemeur R, Van Labeke M C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci Hortic, 2010, 123: 336-342.
doi: 10.1016/j.scienta.2009.09.023
[31] Mathur S, Sharma M P, Jajoo A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B: Bilology, 2018, 180: 149-154.
[32] Zhou Q, Ravnskov S, Jiang D, Wollenweber B. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit. Plant Growth Regul, 2015, 75: 751-760.
doi: 10.1007/s10725-014-9977-x
[33] 任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017, 50: 2093-2103.
Ren B C, Zhang J W, Dong S T, Zhao B, Liu P. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize. Sci Agric Sin, 2017, 50: 2093-2103. (in Chinese with English abstract)
[34] Ghosh P K, Bandyopadhyay A K K, Manna M C, Mandal K G, Misra A K, Hati K M. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics: II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Bioresour Technol, 2004, 95: 85-93.
doi: 10.1016/j.biortech.2004.02.012
[35] Toljander J F, Santos-Gonzalez J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. Fems Microbiol Ecol, 2008, 65: 323-338.
doi: 10.1111/j.1574-6941.2008.00512.x pmid: 18547325
[36] 李锦辉. 高蛋白玉米的品质形成机理及关键技术研究. 河南农业大学博士学位论文, 河南郑州, 2007.
Li J H. Mechanism of Quality Formation and Key Cultural Technique of High-Protein Maize Cultivars. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2007. (in Chinese with English abstract)
[37] 李浩川. 不同生态条件下玉米籽粒蛋白和赖氨酸含量及主要农艺性状的遗传研究. 河南农业大学硕士学位论文, 河南郑州, 2007.
Li H C. Study on the Heredity of Kernel Protein and Lysine Content and Main Agronomic Characters in Maize in Different Ecological Conditions. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2007 (in Chinese with English abstract).
[38] 周卫霞, 董朋飞, 王秀萍, 李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响. 作物学报, 2013, 39: 1826-1834.
doi: 10.3724/SP.J.1006.2013.01826
Zhou W X, Dong P F, Wang X P, Li C H. Effects of low-light stress on kernel setting and metabolism of carbon and nitrogen in different maize (Zea mays L.) genotypes. Acta Agron Sin, 2013, 39: 1826-1834. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01826
[39] 吴雅薇, 李强, 豆攀, 马晓君, 余东海, 罗延宏, 孔凡磊, 袁继超. 氮肥对不同耐低氮性玉米品种生育后期叶绿素含量和氮代谢酶活性的影响. 草业学报, 2017, 26(10): 188-197.
Wu Y W, Li Q, Dou P, Ma X J, Yu D H, Luo Y H, Kong F L, Yuan J C. Effects of nitrogen fertilizer on leaf chlorophyll content and enzyme activity at late growth stages in maize cultivars with contrasting tolerance to low nitrogen. Acta Pratac Sin, 2017, 26(10): 188-197. (in Chinese with English abstract)
[40] 吕鹏, 张吉旺, 刘伟, 杨今胜, 董树亭, 刘鹏, 李登海. 施氮时期对高产夏玉米氮代谢关键酶活性及抗氧化特性的影响. 应用生态学报, 2012, 23: 1591-1598.
Lyu P, Zhang J W, Liu W, Yang J S, Dong S T, Liu P, Li D H. Effects of nitrogen application period on the nitrogen metabolism key enzymes activities and antioxidant characteristics of high-yielding summer maize. Chin J Appl Ecol, 2012, 23: 1591-1598 (in Chinese with English abstract)
[41] 邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 2015, 17: 109-117.
Xing Y, Ma X H. Research progress on effect of nitrogen form on plant growth. J Agric Sci Technol, 2015, 17: 109-117. (in Chinese with English abstract)
[1] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[2] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[3] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[4] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[5] ZHANG Fu-Liang, CHEN Bing-Jie, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize grain nitrogen uptake and the composition of soil bacteria communities [J]. Acta Agronomica Sinica, 2022, 48(12): 3215-3224.
[6] TIAN Ming-Hui, YANG Shuo, DU Jia-Qi, ZHANG Chen-Xi, HE Tang-Qing, ZHANG Xue-Lin. Effects of arbuscular mycorrhizal fungi on phosphorus and potassium absorption at grain filling stage under different nitrogen fertilizer input in maize [J]. Acta Agronomica Sinica, 2022, 48(12): 3166-3178.
[7] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[8] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
[9] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[10] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[11] WANG Yan-Li,WU Peng-Nian,LI Pei-Fu,WANG Xi-Na,ZHU Xu. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation [J]. Acta Agronomica Sinica, 2019, 45(8): 1230-1237.
[12] Lai-Chao LUO,Zhao-Hui WANG,Xiao-Li HUI,Xiang ZHANG,Qing-Xia MA,Ming BAO,Yue ZHAO,Ming HUANG,Sen WANG. Effects of Plastic Film Mulching on Grain Yield and Sulfur Concentration of Winter Wheat in Dryland of Loess Plateau [J]. Acta Agronomica Sinica, 2018, 44(6): 886-896.
[13] XING Zhi-Peng,ZHU Ming, WU Pei,QIAN Hai-Jun,CAO Wei-Wei,HU Ya-Jie,GUO Bao-Wei,WEI Hai-Yan,XU Ke,HUO Zhong-Yang,DAI Qi-Gen,ZHANG Hong-Cheng*. Effect of Mechanical Transplanting with Pothole Seedlings on Grain Quality of Different Types of Rice in Rice-Wheat Rotation System [J]. Acta Agron Sin, 2017, 43(04): 581-595.
[14] PENG Shao-Bing. Dilemma and Way-out of Hybrid Rice during the Transition Period in China [J]. Acta Agron Sin, 2016, 42(03): 313-319.
[15] WANG Jin-Song,JIAO Xiao-Yan,DING Yu-Chuan,DONG Er-Wei,BAI Wei-Bin,WANG Li-Ge,WU Ai-Lian. Response of Nutrient Uptake, Yield and Quality to Nutrition of Nitrogen, Phosphorus and Potassium in Grain Sorghum [J]. Acta Agron Sin, 2015, 41(08): 1269-1278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[7] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[8] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[9] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[10] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .