Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3215-3224.doi: 10.3724/SP.J.1006.2022.13082

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of arbuscular mycorrhizae fungi on maize grain nitrogen uptake and the composition of soil bacteria communities

ZHANG Fu-Liang, CHEN Bing-Jie, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin()   

  1. Agronomy College, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science / Collaborative Innovation Center of Henan Grain Crops for 2011 / Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450002, Henan, China
  • Received:2021-12-29 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-20
  • Contact: ZHANG Xue-Lin E-mail:zxl1998@henau.edu.cn
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);Science and Technology Innovation Fund of Henan Agricultural University(30500712)

Abstract:

Clarifying the effect of arbuscular mycorrhizae fungi (AMF) on maize grain yield and their nitrogen (N) absorption by regulating the composition of soil bacterial communities, could provide a theoretical basis for increasing maize yield and improving nutrient use efficiency. In the maize growing season of 2018 and 2019, the two-factors pot experiment was carried out by compartment box device. The box was divided into two compartments, one was growth chamber (containing host plant and AMF) and the other was test chamber. The factors were N forms and mycorrhizae treatments. Maize grain yield, plant N content, and plant root properties were measured. The structure and diversity of the soil bacterial community in the test chamber were analyzed by Hiseq 2500 PE250 high-throughput sequencing technique. Compared with the NH4+-N fertilizer treatment, maize yield and grain N accumulation of the NO3--N fertilizer treatment increased by 14% and 31%. Compared with the M0, the presence of M1 and M2 increased maize yield by 65% and 182%, by 158% and 813% for grain N accumulation for the NH4+-N fertilizer treatment, respectively. For the NO3--N treatment, maize yield increased by 48% and 123%, by 106% and 387% for grain N accumulation, respectively. Nonmetric multidimensional scaling analysis showed that both N forms and mycorrhizae had significant effects on bacterial communities’ composition. Compared with the NH4+-N fertilizer treatment, the relative abundance of Tepidisphaerales of the NO3--N fertilizer treatment on order level increased by 10%, while on genus level, the Bradyrhizobium reduced by 5%. Compared with the M0, the presence of M1 and M2 increased the relative abundance of Bradyrhizobium by 21% and 55% for the NH4+-N fertilizer treatment, by 49% and 74% for the NO3--N treatment, respectively. Soil Tepidisphaerales on order level and Bradyrhizobium on genus level were significantly and positively related with grain N accumulation. In conclusion, the presence of arbuscular mycorrhizae fungi could increase maize grain yield and their N accumulation under both N forms, and the increase mainly through regulating the soil bacterial communities, especially the relative abundance of Tepidisphaerales and Bradyrhizobium.

Key words: arbuscular mycorrhizal fungi, maize yield, grain nitrogen uptake, soil bacteria

Fig. 1

Effects of different N forms and mycorrhizae on maize grain yield and their N accumulation M0: the control; M1: only AMF hyphae can enter the hyphal chamber from the growth chamber; M2: both roots and AMF can enter the hyphal chamber from the growth chamber. Different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Table 1

Analysis of variance of different N forms and mycorrhizae on maize grain yield, N accumulation, and root properties"

产量
Yield
(g plant-1)
籽粒氮素积累量
GNA
(mg plant-1)
总根长
Length
(cm plant-1)
根表面积
Surface area
(cm2 plant-1)
根直径
Diameter
(mm)
根体积
Volume
(cm3 plant-1)
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
氮肥形态
Nitrogen form (N)
4.4 5.5* 12.9** 5.31* 4.25 0.001 3.55 0.006 2.52 0.4 1.7 0.04
菌根处理
Mycorrhizae (M)
82.9*** 56.5*** 86.9*** 283.5*** 8.17** 25.371*** 9.27** 43.118*** 2.02 1.6 8.5** 56.89***
氮肥形态×菌根处理N×M 0.3 1.7 0.3 0.6 0.02 2.973 0.27 4.332* 0.40 0.4 0.8 4.88*

Fig. 2

Effects of different N forms and mycorrhizae on maize total root length, surface area, diameter, and root volume Treatments are the same as those given in Fig. 1. Different lowercase letters above the bars indicate significant difference among the treat-ments at the 0.05 probability level; ns: no significant."

Table 2

Comparison of Bacteria OTU number, estimated indices (Chao1, Ace, Shannon, and Simpson), and coverage among different treatments in 2018"

处理
Treatment
OTU number Coverage Chao1 Ace Shannon Simpson
M0NH4+-N 1446 0.991 a 1794 b 1783 c 5.41 0.032
M1NH4+-N 1452 0.988 b 1848 ab 1819 abc 5.29 0.043
M2NH4+-N 1477 0.991 ab 1839 ab 1808 bc 5.43 0.033
M0NO3--N 1594 0.989 ab 1998 a 1960 abc 5.64 0.022
M1NO3--N 1644 0.989 ab 1997 a 1997 a 5.71 0.022
M2NO3--N 1626 0.989 ab 1993 a 1970 ab 5.78 0.016

Fig. 3

Relative abundance of soil bacterial community compositions under phylum (A), class (B), order (C), family (D), and genus (E) treated by different forms of nitrogen fertilizer and mycorrhizae fungi Treatments are the same as those given in Fig. 1."

Fig. 4

Nonmetric multidimensional scaling analysis (NMDS) of soil bacterial community Treatments are the same as those given in Fig. 1. M0NH4+-N: red dot; M1NH4+-N: red triangle; M2NH4+-N: red rectangle; M0NO3--N: green dot; M1NO3--N: Green Triangle; M2NO3--N: green rectangle."

Fig. 5

Effects of different N forms and mycorrhizal fungi on the relative abundance of bacteria at the order (A) and genus (B) levels Treatments are the same as those given in Fig. 1. Different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Fig. 6

Relationships between maize grain N accumulation and the relative abundance of soil bacteria at the order (A, C) and genus (B, D) levels *, ** mean significant correlation at P < 0.05 and P < 0.01, respectively."

[1] Dobermann A, Cassman K G. Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant Soil, 2002, 247: 153-175.
doi: 10.1023/A:1021197525875
[2] 宁堂原, 焦念元, 李增嘉, 张民, 赵春, 韩宾, 邵国庆. 施氮水平对不同种植制度下玉米氮利用及产量和品质的影响. 应用生态学报, 2006, 17: 2332-2336.
Ning T Y, Jiao N Y, Li Z J, Zhang M, Zhao C, Han B, Shao G Q. Effects of N application rate on N utilization, yield and quality of maize under different cropping systems. Chin J Appl Ecol, 2006, 17: 2332-2336. (in Chinese with English abstract)
[3] Wang C, Zheng M M, Hu A Y, Zhu C Q, Shen R F. Diazotroph abundance and community composition in an acidic soil in response to aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) cultivars under two nitrogen fertilizer forms. Plant Soil, 2018, 424: 463-478.
doi: 10.1007/s11104-017-3550-0
[4] 代新俊, 杨珍平, 陆梅, 李慧, 樊攀, 宋佳敏, 高志强. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响. 植物营养与肥料学报, 2019, 25: 710-720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat. J Plant Nutr Fert, 2019, 25: 710-720. (in Chinese with English abstract)
[5] Bloom A J, Randall L, Taylor A R, Silk W K. Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J Exp Bot, 2012, 63: 1997-2006.
doi: 10.1093/jxb/err410 pmid: 22213811
[6] 姜佰文, 高强, 王春宏, 张迪, 高飞, 邓宏志, 徐赫男. 氮素形态调控对春玉米生长发育、产量和品质的影响. 东北农业大学学报, 2018, 49(11): 35-41.
Jiang B W, Gao Q, Wang C H, Zhang D, Gao F, Deng H Z, Xu H N. Effect of nitrogen form regulations on growth and development, yield and quality of spring mazie. J Northeast Agric Univ, 2018, 49(11): 35-41. (in Chinese with English abstract)
[7] Buoso S, Tomasi N, Arkoun M, Maillard A, Jing L, Marroni F, Pluchon S, Pinton R, Zanin L. Transcriptomic and metabolomic profiles of Zea mays fed with urea and ammonium. Physiol Plant, 2021, 173: 935-953.
doi: 10.1111/ppl.13493 pmid: 34245168
[8] 陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014, 34: 4807-4815.
Chen Y L, Chen B D, Liu L, Hu Y J, Xu T L, Zhang S. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecol Sin, 2014, 34: 4807-4815 (in Chinese with English abstract).
[9] 张学林, 吴梅, 李晓立, 何堂庆, 张晨曦, 田明慧, 陈冰洁, 张富粮, 郝晓峰, 杨青华. 丛枝菌根真菌对灌浆前期玉米子粒氮代谢及产量和品质的影响. 河南农业大学学报, 2021, 55: 647-653.
Zhang X L, Wu M, Li X L, He T Q, Zhang C X, Tian M H, Chen B J, Zhang F L, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on nitrogen metabolism, yield and quality of grain in early grain filling stage in maize. J Henan Agric Univ, 2021, 55: 647-653. (in Chinese with English abstract)
[10] Tian Q Y, Chen F J, Liu J X, Zhang F S, Mi G H. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol, 2008, 165: 942-951.
doi: 10.1016/j.jplph.2007.02.011
[11] Shen Y, Zhu B. Arbuscular mycorrhizal fungi reduce soil nitrous oxide emission. Geoderma, 2021, 402: 115179.
[12] 姜德锋, 蒋家慧, 李敏, 刘润进, 李晓林. AM菌对玉米某些生理特性和籽粒产量的影响. 中国农业科学, 1998, 31(1): 15-20.
Jiang D F, Jiang J H, Li M, Liu R J, Li X L. Effects of arbuscular mycorrhizal fungi on physiological characteristics and grain yield of maize. Sci Agric Sin, 1998, 31(1): 15-20. (in Chinese with English abstract)
[13] Moreira H, Pereira S I A, Vega A, Castro P M L, Marques A P G C. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J Environ Manage, 2020, 257: 109982.
[14] Zhang L, Fan J Q, Ding X D, He X H, Zhang F S, Feng G. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem, 2014, 74: 177-183.
doi: 10.1016/j.soilbio.2014.03.004
[15] 唐浩琪, 张娜, 孙波, 梁玉婷. 典型农田土壤中丛枝菌根真菌-根际细菌互作及与氮磷利用的关系. 微生物学报, 2020, 60: 1117-1129.
Tang H Q, Zhang N, Sun B, Liang Y T. Effect of interaction between arbuscular mycorrhizal fungi and rhizosphere bacteria in farmland soils on nutrients utilization. Acta Microb Sin, 2020, 60: 1117-1129. (in Chinese with English abstract)
[16] Delgado-Baquerizo M, Grinyer J, Reich P B, Singh B K. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct Ecol, 2016, 30: 1862-1873.
doi: 10.1111/1365-2435.12674
[17] 张晓丽, 张宏媛, 卢闯, 逄焕成, 靳存旺, 高喜, 程挨平, 李玉义. 河套灌区不同秋浇年限对土壤细菌群落的影响. 中国农业科学, 2019, 52: 3380-3392.
Zhang X L, Zhang H Y, Lu C, Pang H C, Jin C W, Gao X, Cheng A P, Li Y Y. Effects of the different autumn irrigation years on soil bacterial community in Hetao irrigation district. Sci Agric Sin, 2019, 52: 3380-3392. (in Chinese with English abstract)
[18] 沈菊培, 贺纪正. 微生物介导的碳氮循环过程对全球气候变化的响应. 生态学报, 2011, 31: 2957-2967.
Shen J P, He J Z. Responses of microbes-mediated carbon nitrogen cycles to global climate change. Acta Ecol Sin, 2011, 31: 2957-2967. (in Chinese with English abstract)
[19] 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响. 植物生态学报, 2021, 45: 891-902.
doi: 10.17521/cjpe.2021.0085
Mao J, Duo Y, Deng J, Cheng J, Cheng J M, Peng C H, Guo L. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau. Chin J Plant Ecol, 2021, 45: 891-902. (in Chinese with English abstract)
doi: 10.17521/cjpe.2021.0085
[20] Ramirez-Villanueva D A, Bello-López J M, Navarro-Noya Y E, Luna-Guido M, Verhulst N, Govaerts B, Dendooven L. Bacterial community structure in maize residue amended soil with contrasting management practices. Appl Soil Ecol, 2015, 90: 49-59.
doi: 10.1016/j.apsoil.2015.01.010
[21] Oldroyd G E D, Dixon R. Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol, 2014, 26: 19-24.
doi: 10.1016/j.copbio.2013.08.006
[22] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47: 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050
Zhang X L, Li X L, He T Q, Zhang C X, Tian M H, Wu M, Zhou Y N, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agron Sin, 2021, 47: 1603-1615. (in Chinese with English abstract)
[23] 王强, 王茜, 董梅, 王晓娟, 张亮, 金樑. 分室培养装置在丛枝菌根真菌研究中的应用及其发展. 植物生态学报, 2014, 38: 1250-1260.
doi: 10.3724/SP.J.1258.2014.00120
Wang Q, Wang Q, Dong M, Wang X J, Zhang L, Jin L. Application and progress of split-compartment facility in studies of arbuscular mycorrhizal fungi. Chin J Plant Ecol, 2014, 38: 1250-1260. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00120
[24] Zhang D S, Zhang C C, Tang X Y, Li H G, Zhang F S, Rengel Z, Whalley W R, Davies W J, Shen J B. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighboring maize. New Phytol, 2016, 209: 823-831.
doi: 10.1111/nph.13613
[25] 何萍, 金继运, 林葆, 王秀芳, 张宽. 不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究. 植物营养与肥料学报, 1998, 4: 123-130.
He P, Jin J Y, Lin B, Wang X F, Zhang K. Dynamics of biomass and its components and models of Nutrients absorption by spring maize under different nitrogen, phosphorous and potassium application rates. Plant Nutr Fert Sci, 1998, 4: 123-130. (in Chinese with English abstract)
[26] 金继运, 何萍. 氮钾营养对春玉米后期碳氮代谢与粒重形成的影响. 中国农业科学, 1999, 32: 55-62.
Jin J Y, He P. Effect of N and K nutrition on post metabolism of carbon and nitrogen and grain weight formation in maize. Sci Agric Sin, 1999, 32: 55-62. (in Chinese with English abstract)
[27] Kohl L, Marcel G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem, 2016, 94: 191-199.
doi: 10.1016/j.soilbio.2015.11.019
[28] Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Not Bot Hort Agrobot Cluj-Napoca, 2011, 39: 232-236.
[29] 黄京华, 刘青, 李晓辉, 曾任森, 骆世明. 丛枝菌根真菌诱导玉米根系形态变化及其机理. 玉米科学, 2013, 21(3): 131-135.
Huang J H, Liu Q, Li X H, Zeng R S, Luo S M. Mechanism of maize root morphology change induced by arbuscular mycorrhizal fungi. Maize Sci, 2013, 21(3): 131-135. (in Chinese with English abstract)
[30] Wu Q S, Zou Y N, Huang Y M. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol, 2013, 6: 37-43.
doi: 10.1016/j.funeco.2012.09.002
[31] 刘荣林, 葛菁萍. 丛枝菌根真菌和硫氧化细菌对土壤理化性质和植物生长影响的研究进展. 生态学杂志, 2021, 40: 3355-3363.
Liu R L, Ge J P. Effects of arbuscular mycorrhizal fungi and sulfur oxidizing bacteria on soil physicochemical properties and plant growth: a review. Chin J Ecol, 2021, 40: 3355-3363. (in Chinese with English abstract)
[32] Frey B, Schüepp H. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol, 1993, 124: 221-230.
doi: 10.1111/j.1469-8137.1993.tb03811.x
[33] Pellegrino E, Opik M, Bonari E, Ercoli L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem, 2015, 84: 210-217.
doi: 10.1016/j.soilbio.2015.02.020
[34] Andrea E, Erica E, Raffaella E, Valeria E. AM fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol, 2016, 6: 1559.
[35] de Boer W, Folman L B, Summerbell R C, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. Fems Microbiol Rev, 2005, 29: 795-811.
pmid: 16102603
[36] Abd-Alla M H, El-Enany A E, Nafady N A, Khalaf D M, Morsy F M. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res, 2014, 169: 49-58.
doi: 10.1016/j.micres.2013.07.007 pmid: 23920230
[37] Chen Q L, An X L, Li H, Su J Q, Ma Y B, Zhu Y G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int, 2016, 92/93: 1-10.
doi: 10.1016/j.envint.2016.03.026
[38] Kovaleva O L, Merkel A Y, Novikov A A, Baslerov R V, Toshchakov S V, Bonch-Osmolovskaya E A. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microb, 2015, 65: 549-555.
doi: 10.1099/ijs.0.070151-0
[39] Marks B B, Megias M, Nogueira M A, Hungria M. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. Amb Express, 2013, 3: 21.
doi: 10.1186/2191-0855-3-21
[40] 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响. 草业学报, 2020, 29(5): 109-120.
He G X, Song J C, Wen Y J, Liu C T, Qi J. Effects of different rhizobium fertilizers on alfalfa productivity and soil fertility. Acta Pratac Sin, 2020, 29(5): 109-120. (in Chinese with English abstract)
[41] 崔纪菡, 刘猛, 赵宇, 宋世佳, 刘旭, 夏雪岩, 李顺国, 刘建军. 不同形态氮对谷子生长和氮利用的影响. 山东农业科学, 2021, 53(7): 58-64.
Cui J H, Liu M, Zhao Y, Song S J, Liu X, Xia X Y, Li S G, Liu J J. Effects of different nitrogen forms on growth and nitrogen utilization of foxtail millet. Shandong Agric Sci, 2021, 53(7): 58-64. (in Chinese with English abstract)
[42] 邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响. 植物营养与肥料学报, 2009, 15: 1380-1385.
Deng Y, Shen H, Luo W Q, Guo T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios. Plant Nutr Fert Sci, 2009, 15: 1380-1385. (in Chinese with English abstract)
[43] Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ, 2005, 28: 1247-1254.
doi: 10.1111/j.1365-3040.2005.01360.x
[44] Guo S W, Chen G, Zhou Y, Shen Q R. Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.). Plant Soil, 2007, 296: 115-124.
doi: 10.1007/s11104-007-9302-9
[45] Liu Z, Giehl R F H, Hartmann A, Hajirezaei M R, Carpentier S, von Wiren N. Seminal and nodal roots of barley differ in anatomy, proteome and nitrate uptake capacity. Plant Cell Physiol, 2020, 61: 1297-1308.
doi: 10.1093/pcp/pcaa059 pmid: 32379871
[46] 肖凯, 张树华, 邹定辉, 张荣铣. 不同形态氮素营养对小麦光合特性的影响. 作物学报, 2000, 26: 53-58.
Xiao K, Zhang S H, Zou D H, Zhang R X. The effects of different nitrogen nutrition forms on photosynthetic characteristics in wheat leaves. Acta Agron Sin, 2000, 26: 53-58. (in Chinese with English abstract)
[47] Whiteside M D, Treseder K K, Atsatt P R. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology, 2009, 90: 100-108.
pmid: 19294917
[48] Toljander J F, Santos-Gonzalez J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. Fems Microb Ecol, 2008, 65: 323-338.
[49] Bakhshandeh S, Corneo P E, Mariotte P, Kertesz M A, Dijkstra F A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric Ecosys Environ, 2017, 247: 130-136.
doi: 10.1016/j.agee.2017.06.027
[1] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[2] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[3] TIAN Ming-Hui, YANG Shuo, DU Jia-Qi, ZHANG Chen-Xi, HE Tang-Qing, ZHANG Xue-Lin. Effects of arbuscular mycorrhizal fungi on phosphorus and potassium absorption at grain filling stage under different nitrogen fertilizer input in maize [J]. Acta Agronomica Sinica, 2022, 48(12): 3166-3178.
[4] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
[5] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[6] WANG Yan-Li,WU Peng-Nian,LI Pei-Fu,WANG Xi-Na,ZHU Xu. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation [J]. Acta Agronomica Sinica, 2019, 45(8): 1230-1237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[7] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[8] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[9] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[10] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .