Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 808-820.doi: 10.3724/SP.J.1006.2023.22032

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice

FU Jing1(), WANG Ya1, YANG Wen-Bo1, WANG Yue-Tao1, LI Ben-Yin2, WANG Fu-Hua1, WANG Sheng-Xuan1, BAI Tao1, YIN Hai-Qing1,*()   

  1. 1Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-05-13 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-12
  • Contact: YIN Hai-Qing E-mail:fujing8210@sina.cn;yinhq98@163.com
  • Supported by:
    Henan Provincial Science and Technology Research Program(222102110019);Henan Academy of Agricultural Sciences Independent Innovation Fund Project(2022ZC09);Special Fund for Henan Agriculture Research System(HARS-22-03-S);Henan Academy of Agricultural Sciences Rice Science and Technology Innovation Team Project(2022TD29);Fundamental Research Project of Henan Academy of Agricultural Sciences(2022JC05)

Abstract:

Soil moisture and nitrogen nutrient are the two principal factors affecting rice production. Alternating dry and wet irrigation (AWD) coupled with nitrogen application plays important roles in root growth and yield formation in rice. However, its effect on grain filling physiology and their relationship with root physiology is not clearly understood. To explore the effects of alternating dry and wet irrigation and nitrogen application coupling on grain filling, changes of key enzyme activities involved in sucrose-to starch conversion and hormone contents, and root physiology of rice, the super rice variety Nanjing 9108 was cultivated as the material in the field. The field experiments were conducted with two irrigation regimes [conventional irrigation (CI) and AWD] and five nitrogen application rates [no nitrogen fertilizer (0N), 90 kg hm-2 (90N), 180 kg hm-2 (180N), 270 kg hm-2 (270N), and 360 kg hm-2 (360N) nitrogen fertilizer]. The results showed that there was a significant interaction effect between irrigation method and nitrogen application rate. Alternating dry and wet irrigation increased the maximum grain filling rate and average grain filling rate of Nanjing 9108, and increased the activities of the sucrose synthase enzymes, adenosine diphosphate glucose pyrophosphorylation enzymes, starch synthase enzymes, and starch branching enzymes, and the contents of zeatin + zeatin riboside, 3-indoleacetic acid and abscisic acid, increased root oxidation activity, and the content of zeatin + zeatin riboside in roots after heading, promoted the transfer of NSC stored in the stem sheath to the grain in the early growth stage of rice, and the highest yield was obtained after coupling with 270N, which was the best water-nitrogen coupling mode in this experiment. In conclusion, the water-nitrogen coupling effect can be exerted by appropriate regulation of water and fertilizer, which can improve the physiological performance of rice roots and grain-filling physiological activity, and achieve high rice yield.

Key words: rice, the alternate wetting and drying irrigation, nitrogen rate, grain filling physiology, root physiology

Table 1

Analysis of variance (F-values) of rice yield and grain filling characteristics under the condition of water and nitrogen coupling"

变异来源
Source of variations
自由度
DF
产量
Grain yield
(t hm-2)
籽粒平均
灌浆速率
Average grain
filling rate
(mg grain-1 d-1)
籽粒细胞分裂素
含量
Z+ZR content
(pmol g-1 DW)
根系氧化力
Root oxidation
activity
(μg g-1 h-1)
根系细胞
分裂素含量
Z+ZR content
(pmol g-1 DW)
年度Year (Y) 1 NS NS NS NS NS
水分Water (W) 1 1248.6** 844.3** 437.6** 573.4** 681.7**
施氮量Nitrogen (N) 4 751.8** 658.6** 781.2** 429.6** 438.2**
年度×水分Y×W 1 NS NS NS NS NS
年度×施氮量Y×N 4 NS NS NS NS NS
水分×施氮量W×N 4 25.7** 34.8** 26.6** 29.7** 14.5**
年度×水分×施氮量Y×W×N 4 NS NS NS NS NS

Table 2

Effect of water and nitrogen coupling on yield and its components during the whole growing period"

年份
Year
处理
Treatment
单位面积穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets
(×106 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
2017 CI+0N 226.7 h 114.9 h 260.5 i 88.7 a 25.7 a 5.94 h
CI+90N 260.7 f 129.6 f 337.9 g 83.9 b 25.5 ab 7.23 f
CI+180N 290.3 d 138.4 e 401.8 e 80.7 bc 25.1 b 8.14 e
CI+270N 321.7 b 150.5 c 484.2 c 77.4 c 24.9 bc 9.33 b
CI+360N 324.3 b 158.6 b 514.3 b 68.4 d 23.9 c 8.41 d
AWD+0N 234.3 g 124.2 fg 291.0 h 90.2 a 25.9 a 6.80 g
AWD+90N 269.7 e 137.3 e 370.3 f 84.8 b 25.7 a 8.07 e
AWD+180N 296.7 c 145.7 d 432.3 d 81.1 bc 25.3 b 8.87 c
AWD+270N 328.7 a 156.6 b 514.7 b 78.3 c 25.1 b 10.11 a
AWD+360N 331.6 a 165.1 a 547.5 a 69.8 d 24.2 c 9.25 b
2018 CI+0N 228.1 h 113.7 h 259.3 i 89.5 a 25.8 a 5.99 h
CI+90N 263.3 f 127.9 fg 336.8 g 84.1 b 25.6 a 7.25 f
CI+180N 286.5 d 139.1 e 398.5 e 81.8 bc 25.1 b 8.18 e
CI+270N 324.7 b 148.5 cd 482.2 c 78.1 c 24.9 bc 9.38 b
CI+360N 323.8 b 156.8 b 507.7 b 68.9 d 24.1 c 8.43 d
AWD+0N 237.3 g 121.2 g 287.6 h 90.8 a 25.8 a 6.74 g
AWD+90N 272.7 e 136.3 e 371.7 f 85.2 b 25.7 a 8.14 e
AWD+180N 295.7 c 144.7 d 427.9 d 81.6 bc 25.5 ab 8.90 c
AWD+270N 331.7 a 155.6 b 516.1 b 78.7 c 25.2 b 10.24 a
AWD+360N 330.3 a 163.1 a 538.7 a 71.2 d 24.3 c 9.32 b

Table 3

Nitrogen fertilizer rate for the highest yield in rice under different irrigation models"

年份Year 灌溉方式Irrigation model 施氮量(x, kg N hm-2)与产量(y, kg hm-2)关系方程
Equation between nitrogen fertilizer rate
(x, kg N hm-2) and grain yield (y, kg hm-2)
R2 xopt
(kg N hm-2)
ymax
(kg hm-2)
2017 CI y = -0.0365x2 + 20.981x + 5808.1 0.9343 287.4 8822.95
AWD y = -0.0338x2 + 19.889x + 6683.7 0.9299 294.2 9609.21
2018 CI y = -0.0366x2 + 20.975x + 5850.3 0.9309 286.5 8854.51
AWD y = -0.0358x2 + 20.974x + 6633.9 0.9294 292.9 9705.54

Fig. 1

Grain weight and grain filling rate of rice under the condition of water and nitrogen coupling CI: the conventional irrigation; AWD: alternate wetting and drying; 0N: no nitrogen applied; 90N: nitrogen 90 kg hm-2; 180N: nitrogen 180 kg hm-2; 270N: nitrogen 270 kg hm-2; 360N: nitrogen 360 kg hm-2."

Table 4

Parameters of grain-filling characteristics of rice under the condition of water and nitrogen coupling"

处理
Treatment
最大灌浆速率
Gmax
(mg grain-1 d-1)
到达最大灌浆速率的时间
Tmax
(d)
平均灌浆速率
Gmean
(mg grain-1 d-1)
活跃灌浆期
D
(d)
糙米重
BRW
(mg grain-1)
CI+0N 2.51 b 10.80 f 42.80 b 14.71 e 24.45 b
CI+90N 2.43 c 10.99 e 41.35 c 15.01 d 24.17 bc
CI+180N 2.09 e 11.78 c 38.17 e 17.36 b 23.80 d
CI+270N 2.07 e 11.92 c 36.50 f 17.29 b 23.67 d
CI+360N 1.73 f 12.48 a 29.48 h 19.37 a 22.08 f
AWD+0N 2.62 a 10.71 f 46.27 a 14.40 e 24.72 a
AWD+90N 2.51 b 10.89 ef 42.83 b 14.77 e 24.28 b
AWD+180N 2.41 c 10.99 e 41.38 c 15.12 d 24.08 c
AWD+270N 2.25 d 11.42 d 39.90 d 16.07 c 23.91 cd
AWD+360N 1.79 f 12.30 b 29.85 g 19.20 a 22.43 e

Fig. 2

Changes in activities of key enzymes in sucrose-to-starch conversion in grain of rice under the condition of water and nitrogen coupling CI: the conventional irrigation; AWD: the alternate wetting and drying; 0N: no nitrogen applied; 90N: nitrogen 90 kg hm-2; 180N: nitrogen 180 kg hm-2; 270N: nitrogen 270 kg hm-2; 360N: nitrogen 360 kg hm-2."

Table 5

Correlations of grain-filling rate with activities of key enzymes in sucrose-to-starch conversion in grain of rice under the condition of water and nitrogen coupling"

籽粒灌浆速率
Grain-filling rate
蔗糖合成酶
SuSase
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase
淀粉合成酶
StSase
淀粉分支酶
SBE
CI+0N 0.916** 0.895** 0.802** 0.506
CI+90N 0.887** 0.883** 0.812** 0.494
CI+180N 0.892** 0.896** 0.835** 0.569
CI+270N 0.858** 0.869** 0.798** 0.527
CI+360N 0.825** 0.784* 0.689* 0.431
AWD+0N 0.903** 0.885** 0.800** 0.461
AWD+90N 0.875** 0.869** 0.803** 0.446
AWD+180N 0.832** 0.830** 0.798** 0.423
AWD+270N 0.806** 0.829** 0.763* 0.419
AWD+360N 0.815** 0.780* 0.677* 0.427

Fig. 3

Changes in content of hormones in grain of rice under the condition of water and nitrogen coupling CI: the conventional irrigation; AWD: the alternate wetting and drying; 0N: no nitrogen applied; 90N: nitrogen 90 kg hm-2; 180N: nitrogen 180 kg hm-2; 270N: nitrogen 270 kg hm-2; 360N: nitrogen 360 kg hm-2."

Table 6

Correlations of grain-filling rate with content of hormones in grain of rice under the condition of water and nitrogen coupling"

籽粒灌浆速率
Grain-filling rate
玉米素+玉米素核苷
Z+ZR
3-吲哚乙酸
IAA
脱落酸
ABA
CI+0N 0.875** 0.960** 0.379
CI+90N 0.867** 0.951** 0.333
CI+180N 0.862** 0.952** 0.390
CI+270N 0.821** 0.912** 0.246
CI+360N 0.735* 0.868** 0.025
AWD+0N 0.863** 0.947** 0.335
AWD+90N 0.857** 0.933** 0.295
AWD+180N 0.813** 0.894** 0.197
AWD+270N 0.781* 0.859** 0.133
AWD+360N 0.728* 0.832** 0.036

Fig. 4

Changes in root oxidation activity of rice under the condition of water and nitrogen coupling CI: the conventional irrigation; AWD: the alternate wetting and drying; 0N: no nitrogen applied; 90N: nitrogen 90 kg hm-2; 180N: nitrogen 180 kg hm-2; 270N: nitrogen 270 kg hm-2; 360N: nitrogen 360 kg hm-2."

Fig. 5

Changes in Z+ZR content of rice under the condition of water and nitrogen coupling CI: the conventional irrigation; AWD: the alternate wetting and drying; 0N: no nitrogen applied; 90N: nitrogen 90 kg hm-2; 180N: nitrogen 180 kg hm-2; 270N: nitrogen 270 kg hm-2; 360N: nitrogen 360 kg hm-2."

Table 7

Effects of water and nitrogen coupling on non-structural carbohydrate (NSC) transport in stem sheaths"

处理
Treatment
抽穗期NSC
NSC at heading
(kg hm-2)
成熟期NSC
NSC at maturity
(kg hm-2)
NSC运转率
Remobilized NSC
(%)
NSC对产量贡献率
NSC contributed to grain yield
(%)
CI+0N 1662.2 i 723.4 h 56.5 d 15.7 b
CI+90N 1947.3 g 913.2 f 53.1 e 14.3 c
CI+180N 2378.9 e 1214.1 d 49.0 f 14.2 c
CI+270N 2663.3 c 1425.8 c 46.5 g 13.2 d
CI+360N 2845.3 b 1927.2 a 32.3 h 10.9 e
AWD+0N 1813.4 h 685.2 h 62.2 a 16.7 a
AWD+90N 2085.1 f 812.1 g 61.1 b 15.6 b
AWD+180N 2521.4 d 1041.3 e 58.7 c 16.6 a
AWD+270N 2824.3 b 1168.1 d 58.6 c 16.2 a
AWD+360N 2982.3 a 1537.8 b 47.2 g 15.1 b
[1] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutr Fert Sci, 2013, 19: 259-273 (in Chinese with English abstract).
[2] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Product Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[3] Tilman D K, Cassman K G, Matson P A. Agricultural sustain-ability and intensive production practices. Nature, 2002, 418: 671-678.
doi: 10.1038/nature01014
[4] Peng S B. Water resources strategy and agricultural development in China. J Exp Bot, 2011, 6: 1709-1713.
[5] Zhang J H. China’s success in increasing per capita food production. J Exp Bot, 2011, 62: 3707-3711.
doi: 10.1093/jxb/err132
[6] Kukal S S, Hira G S, Sidhu A S. Soil matric potential-based irrigation scheduling to rice (Oryza sativa). Irrig Sci, 2005, 23: 153-159.
doi: 10.1007/s00271-005-0103-8
[7] Carrijo D, Lundy M, Linquist B. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
doi: 10.1016/j.fcr.2016.12.002
[8] 孙永健. 水氮互作对水稻产量形成和氮素利用特征的影响及其生理基础. 四川农业大学博士学位论文, 四川温江, 2010.
Sun Y J. Effects of Water-nitrogen Interaction on Yield Formation and Characteristics of Nitrogen Utilization in Rice and its Physiological Basis. PhD Dissertation of Sichuan Agricultural University, Wenjiang, Sichuan, China, 2010. (in Chinese with English abstract)
[9] 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29(4): 58-66.
Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29(4): 58-66. (in Chinese with English abstract)
[10] Cabangon R, Tuong T, Castillo E. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004, 2: 195-206.
doi: 10.1007/s10333-004-0062-3
[11] Santiago-Arenas R, Hadi S N, Fanshuri B A, Ullah H, Datta A. Effect of nitrogen fertilizer and cultivation method on root systems of rice subjected to alternate wetting and drying irrigation. Ann Appl Biol, 2019, 175: 388-399.
doi: 10.1111/aab.12540
[12] 徐国伟, 陆大克, 王贺正, 陈明灿, 李友军. 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017, 23: 1225-1237.
Xu G W, Lu D K, Wang H Z, Chen M C, Li Y J. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. Plant Nutr Fert Sci, 2017, 23: 1225-1237. (in Chinese with English abstract)
[13] 褚光, 陈婷婷, 陈松, 徐春梅, 王丹英, 章秀福. 灌溉模式与施氮量交互作用对水稻产量以及水、氮利用效率的影响. 中国水稻科学, 2017, 31: 513-523.
doi: 10.16819/j.1001-7216.2017.7048 513
Chu G, Chen T T, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of interaction between irrigation regimes and nitrogen rates on rice yield and water and nitrogen use efficiencies. Chin J Rice Sci, 2017, 31: 513-523. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.7048 513
[14] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193. (in Chinese with English abstract)
[15] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300.
doi: 10.1093/jxb/10.2.290
[16] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81.
doi: 10.1016/S0378-4290(02)00214-9
[17] Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. J Plant Physiol, 1988, 132: 262-265.
[18] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004
[19] 杨建昌, 杜永, 刘辉. 长江下游稻麦周年超高产栽培途径与技术. 中国农业科学, 2008, 41: 1611-1621.
Yang J C, Du Y, Liu H. Cultivation approaches and techniques for annual super-high-yielding of rice and wheat in the lower reaches of Yangtze River. Sci Agric Sin, 2008, 41: 1611-1621. (in Chinese with English abstract)
[20] Sandhu S S, Mahal S S, Vashist K K, Buttar G S, Brar A S, Singh Maninder. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India. Agric Water Manage, 2012, 104: 32-39.
doi: 10.1016/j.agwat.2011.11.012
[21] 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制. 扬州大学博士学位论文, 江苏扬州, 2004.
Chen X H. Effects of Soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2004. (in Chinese with English abstract)
[22] 程建平, 曹凑贵, 蔡明历, 原保忠, 翟晶. 不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响. 植物营养与肥料学报, 2008, 14: 199-206.
Cheng J P, Cao C G, Cai M L, Yuan B Z, Zhai J. Effect of different nitrogen nutrition and soil water potential on physiological parameters and yield of hybrid rice. Plant Nutr Fert Sci, 2008, 14: 199-206. (in Chinese with English abstract)
[23] Begg J E, Turner N C. Crop and water deficits. Adv Agron, 1976, 28: 161-218.
[24] Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: e1369.
[25] Okamura M, Arai-Sanoh Y, Yoshida H, Mukouyama T, Adachi S, Yabe S, Nakagawa H, Tsutsumi K, Taniguchi Y, Kobayashi N, Kondo M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Res, 2018, 219: 139-147.
doi: 10.1016/j.fcr.2018.01.035
[26] Asseng S, van Herwaarden A F. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil, 2003, 256: 217-229.
doi: 10.1023/A:1026231904221
[27] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J, 2001, 93: 196-206.
doi: 10.2134/agronj2001.931196x
[28] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Remobilization of carbon reserves in response to water-deficit during grain filling of rice. Field Crops Res, 2001, 71: 47-55.
doi: 10.1016/S0378-4290(01)00147-2
[29] 杨建昌. 亚种间杂交稻籽粒充实特征及其生理基础研究. 中国农业大学博士学位论文, 北京, 1996.
Yang J C. Characteristics and Physiological Bases of Grain Filling in Intersubspecific Hybrid Rice. PhD Dissertation of Chinese Agricultural University, Beijing, China, 1996. (in Chinese with English abstract)
[30] Yang J C, Zhang J H, Ye Y X, Wang Z Q, Zhu Q S, Liu L J. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ, 2004, 27: 1055-1064.
doi: 10.1111/j.1365-3040.2004.01210.x
[31] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63: 2932-2943.
Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018, 63: 2932-2943. (in Chinese with English abstract)
doi: 10.1360/N972018-00577
[32] Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 95-117.
doi: 10.1146/annurev.pp.40.060189.000523
[33] Tian B, Talukder S K, Fu J M, Fritz A K, Trick H N. Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions. Vitro Cell Develop Biol Plant, 2018, 54: 216-227.
doi: 10.1007/s11627-018-9893-2
[34] Zi Y, Ding J F, Song J M, Humphreys G, Peng Y X, Li C Y, Zhu X K, Guo W S. Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Sci Rep, 2018, 8: e4548.
[35] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81-91.
doi: 10.1023/A:1013827600528
[36] Boyer J S, Westgate M E. Grain yields with limited water. J Exp Bot, 2004, 55: 2385-2394.
pmid: 15286147
[37] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[38] 占爱. 提高养分、水分吸收的根系形态和生理调控. 西北农林科技大学博士学位论文, 陕西杨凌, 2015.
Zhan A. Root Morphology and Physiological Regulation to Improve Nutrient and Water Absorption. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2015. (in Chinese with English abstract)
[39] Wang H, Siopongco J, Wade L J, Yamauchi A. Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot, 2009, 65: 338-344.
doi: 10.1016/j.envexpbot.2008.10.002
[40] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans CSAE, 2015, 31(10): 132-141. (in Chinese with English abstract)
[41] 张凤翔, 周明耀, 周春林, 钱晓晴. 水肥耦合对水稻根系形态与活力的影响. 农业工程学报, 2006, 22(5): 197-200.
Zhang F X, Zhou M Y, Zhou C L, Qian X Q. Effects of water and fertilizer coupling on root morphological characteristics and activities of rice. Trans CSAE, 2006, 22(5): 197-200. (in Chinese with English abstract)
[1] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[2] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of   bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[3] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[4] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[5] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[6] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[7] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[8] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[9] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[10] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[11] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[12] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[13] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[14] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[15] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .