Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 354-364.doi: 10.3724/SP.J.1006.2023.22002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Function analysis of OsPIN5c gene by CRISPR/Cas9

YANG Xiao-Yi1(), WANG Hui-Hui1, ZHANG Yan-Wen1, HOU Dian-Yun1, ZHANG Hong-Xiao1, KANG Guo-Zhang2, XU Hua-Wei1,*()   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471000, Henan, China
    2National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2022-01-13 Accepted:2022-06-07 Online:2022-07-08 Published:2022-07-08
  • Contact: XU Hua-Wei E-mail:1961827259@qq.com;xhwcyn@163.com
  • Supported by:
    Natural Science Foundation of Henan Province(182300410012);Natural Science Foundation of Henan Province(202300410151);Natural Science Foundation of Henan Province(202300410340);Open Research Fund of National Key Laboratory of Wheat and Maize Crop Science(SKL2021KF03)

Abstract:

Polar auxin transport (PAT) plays a key role in plant growth and development, and auxin efflux carriers PIN-FORMED (PIN) are the crucial proteins controlling PAT. Although the functions of some OsPIN genes have been reported, the function of OsPIN5c gene is still unclear. In this study, the target site was designed at the first exon of OsPIN5c and the recombinant CRISPR/Cas9 vector of OsPIN5c was constructed. Twenty-four independent transgenic rice lines were obtained by transformation using Nipponbare (Oryza sativa L. ssp. japonica) as the materials. PCR product sequencing indicated that 15 lines were identified as mutants and the corresponding mutation rate was 62.5%, the mutation type were biallelic heterozygous mutations. Three independent ospin5c homozygous mutants were further obtained in T1 generation lines and named as ospin5c-1, ospin5c-2, and ospin5c-3, respectively. Sequence alignment analysis showed that the three types of mutations resulted in frame-shift mutation and premature translation termination, which were shortened from 398 amino acid (aa) in wild-type (WT) plants to 109 aa, 106 aa and 250 aa, respectively. Transmembrane helices (TMH) indicated that the TMH of these three mutation proteins were disappeared totally. Protein structure demonstrated that the helix of three mutation proteins were obviously reduced than the native OsPIN5c protein. Phenotype structure indicated that, compared to the WT, the shoot height, root length and adventitious root number were significantly decreased in ospin5c mutants at seedling stage. Tissue-specific analysis showed that OsPIN5c was highly expressed in roots, and OsPIN genes (OsPIN1a and OsPIN5b), OsYUC genes (OsYUC1, OsYUC4, OsYUC6, and OsYUC7) were up-regulated significantly in ospin5c mutants. The gravitropism response of ospin5c mutants was partially inhibited. In conclusion, three ospin5c homozygous mutants were obtained via CRISPR/Cas9 technology and the function of OsPIN5c was investigated in this study, providing the potential gene resources for crop genetic improvement by using OsPIN5c gene.

Key words: OsPIN5c, CRISPR/cas9, gene function, rice

Table 1

Primers and sequences in this study"

引物名称Primer name 正向引物Forward sequence (5'-3') 反向引物Reverse sequence (5'-3')
OsPIN5c-CRISPR TGTGTGGGTTCTCGTGGTGCATCAC AAACGTGATGCACCACGAGAACCCA
HPT CTGAACTCACCGCGACGTCTGTC TAGCGCGTCTGCTGCTCCATACA
OsPIN5c-Assay CCTCGTCGCCTGCTTCGCCG CCACACCGCTCTCACCAGCGG
OsPIN1a-qPCR CCTGAAATCCATCTCCATCCTC AACGTCGCCACCTTGTT
OsPIN5b-qPCR GCAAAGGAGTATGGGCTTCA GCAATCAGAATCGGCAGAGA
OsYUC1-qPCR AGGTGTTGGTCGTGGGATGCG GCGATGCCGAACGTGGATAGA
OsYUC4-qPCR CCTCGACCTCTGCAACCACAATG CGACAACAGGAGTACCAGCCAATC
OsYUC6-qPCR GGATACCAAAGCAACGTCCCC TGAAGCCAACAGAGTAGAGCCCTG
OsYUC7-qPCR ACCGGCTACCGCAGCAATGTG CGTACAGCCCCGACTCACCCT
OsACTIN1-qPCR CTTCATAGGAATGGAAGCTGCG CACCTTGATCTTCATGCTGCTA

Fig. 1

Schematic diagram of OsPIN5c target site and screening for positive clones A: OsPIN5c target site in schematic diagram; PAM: protospacer adjacent motif; black line indicates PAM sequences. B: positive clones by PCR. M: DL2000 DNA marker; 1-12: PCR products."

Fig. 2

Screening and analysis of mutation lines in T0 generation A: PCR amplification of OsPIN5c genomic fragments; M: DL2000 DNA marker; 1-7: PCR products. B: mutation type analysis. PAM: protospacer adjacent motif; black line indicates PAM sequence."

Fig. 3

Screening for ospin5c homozygous mutants in T1 generation PAM: protospacer adjacent motif; black line indicates PAM sequence; red arrows show the mutation sites."

Fig. 4

Screening for transgene-free lines A: PCR screening results; M: DL2000 DNA marker; 1-25: HPT PCR amplification results; P: positive control; N: negative control. B: hygromycin sresistance assay of detached leaves. 1-25: hygromycin sresistance assay of ospin5c detached leaves."

Fig. 5

Schematic representations of amino acid sequence change of OsPIN5c mutant proteins A: amino acid change of the target sites; PAM: protospacer adjacent motif; underlined amino acids indicate mutant amino acids; asterisk indicates the end of translation. B: blast analysis of the mutant proteins."

Fig. 6

Transmembrane helices (TMH) and tertiary structure analysis of OsPIN5c mutant proteins A: transmembrane helices (TMH) analysis; B: tertiary structure analysis."

Fig. 7

Phenotype of ospin5c mutants at seedling stage A: phenotypic analysis of 7-day-old ospin5c mutants. B: phenotypic analysis of 14-day-old ospin5c mutants (n ≥ 15). **: P < 0.01."

Fig. 8

Relative expression patterns of genes A: tissue-specific analysis of OsPIN5c. B: the relative expression levels of OsPIN and OsYUC genes. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 9

Root gravitropism analysis of WT and ospin5c mutants A: the phenotypes of WT and ospin5c mutants after gravity stimulus; 0-24 h indicate time after gravity stimulus. B: statistical analysis of root reorientation angle in WT and ospin5c mutants after gravity stimulus (n ≥ 12). *: P < 0.05; **: P < 0.01."

[1] Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115: 591-602.
pmid: 14651850
[2] Friml J. Auxin transport—shaping the plant. Curr Opin Plant Biol, 2003, 6: 7-12.
pmid: 12495745
[3] Petrasek J, Mravec J, Bouchard R, Blakeslee J J, Abas M, Seifertova D, Wisniewska J, Tadile Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee O R, Fink G R, Geisler M, Murphy A S, Luschnig C, Zazimalova E, Friml J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006, 312: 914-918.
pmid: 16601150
[4] Karki S, Rizal G, Quick W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice (New York), 2013, 6: 1-8.
[5] Woodward A W. Auxin: regulation, action, and interaction. Ann Bot, 2005, 95: 707-735.
doi: 10.1093/aob/mci083
[6] Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol, 2010, 61: 49-64.
doi: 10.1146/annurev-arplant-042809-112308 pmid: 20192736
[7] Michiewicz M, Brewer P B, Friml J. Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book, 2007, 5: e0108.
[8] Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazimalova E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009, 10: 249.
doi: 10.1186/gb-2009-10-12-249 pmid: 20053306
[9] Okada K, Ueda J, Komaki M K, Bell C J, Shimura Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991, 3: 677-684.
doi: 10.2307/3869249
[10] Luschnig C, Gaxiola R A, Grisafi P, Fink G R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev, 1998, 12: 2175-2187.
doi: 10.1101/gad.12.14.2175
[11] Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J, 1998, 17: 6903-6911.
doi: 10.1093/emboj/17.23.6903
[12] Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 2002, 415: 806-809.
doi: 10.1038/415806a
[13] Wang J, Hu H, Wang G, Li J, Chen J, Wu P. Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol Plant, 2009, 2: 823-831.
doi: 10.1093/mp/ssp023
[14] Miyashita Y, Takasugi T, Ito Y. Identification and expression analysis of PIN genes in rice. Plant Sci, 2010, 178: 424-428.
doi: 10.1016/j.plantsci.2010.02.018
[15] Li Y, Zhu J, Wu L, Shao Y, Wu Y, Mao C. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720-2732.
doi: 10.1093/pcp/pcz159
[16] Chen Y, Fan X, Song W, Zhang Y, Xu G. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139-149.
doi: 10.1111/j.1467-7652.2011.00637.x
[17] Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi-nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216-225.
doi: 10.1111/ppl.12707 pmid: 29446441
[18] Wu D, Shen H, Yokawa K, Baluska F. Overexpressing OsPIN2 enhances aluminium internalization by elevating vesicular trafficking in rice root apex. J Exp Bot, 2015, 66: 6791-6801.
doi: 10.1093/jxb/erv385
[19] Wu D, Shen H, Yokawa K, Baluska F. Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot, 2014, 65: 5305-5315.
doi: 10.1093/jxb/eru292
[20] Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J, 2012, 72: 805-816.
doi: 10.1111/j.1365-313X.2012.05121.x
[21] Lu G, Coneva V, Casaretto J A, Ying S, Mahmood K, Liu F, Nambara E, Bi Y M, Rothstein S J. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant J, 2015, 83: 913-925.
doi: 10.1111/tpj.12939
[22] Hou M, Luo F, Wu D, Zhang X, Lou M, Shen D, Yan M, Mao C, Fan X, Xu G, Zhang Y. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytol, 2021, 229: 935-949.
doi: 10.1111/nph.16901
[23] 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37: 953-973.
Dan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing), 2015, 37: 953-973. (in Chinese with English abstract)
[24] Liu W, Xie X, Ma X, Li J, Chen J, Liu Y G. DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant, 2015, 8: 1431-1433.
doi: 10.1016/j.molp.2015.05.009 pmid: 26032088
[25] 吴世洋, 杨晓祎, 张艳雯, 侯典云, 胥华伟. 利用CRISPR/Cas9基因编辑技术构建水稻ospin9突变体. 中国农业科学, 2021, 54: 3805-3817.
Wu S Y, Yang X Y, Zhang Y W, Hou D Y, Xu H W. Generation of ospin9 mutants in rice by CRISPR/Cas9 genome editing technology. Sci Agric Sin, 2021, 54: 3805-3817. (in Chinese with English abstract)
[26] Xin Z, Chen J. A high throughput DNA extraction method with high yield and quality. Plant Methods, 2012, 8: 26.
doi: 10.1186/1746-4811-8-26 pmid: 22839646
[27] Ma X, Chen L, Zhu Q, Chen Y, Liu Y. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Mol Plant, 2015, 8: 1285-1287.
doi: 10.1016/j.molp.2015.02.012 pmid: 25747846
[28] 刘巧泉, 陈秀花, 王兴稳, 彭凌涛, 顾铭洪. 一种快速检测转基因水稻中潮霉素抗性的简易方法. 农业生物技术学报, 2001, 9: 264.
Liu Q Q, Chen X H, Wang X W, Peng L T, Gu M H. A rapid simple method of assaying hygromycin resistance in transgenic rice plants. J Agric Biotechnol, 2001, 9: 264. (in Chinese with English abstract)
[29] 张洪, 马骏, 胡国成, 斯华敏, 付亚萍, 戴良英, 孙宗修. 用叶片检测转基因水稻对潮霉素反应的可靠性研究. 浙江农业学报, 2005, 17: 341-345.
Zhang H, Ma J, Hu G C, Si H M, Fu Y P, Dai L Y, Sun Z X. Reliability study on the response of HPT gene in transgenic rice to hygromycin by leaf assay. Acta Agric Zhejiangensis, 2005, 17: 341-345. (in Chinese with English abstract)
[30] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[31] Waterhouse A M, Procter J B, Martin D M A, Clamp M, Barton G J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, 25: 1189-1191.
doi: 10.1093/bioinformatics/btp033 pmid: 19151095
[32] Krogh A, Larsson B, von Heijne G, Sonnhammer E L L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol, 2001, 305: 567-580.
doi: 10.1006/jmbi.2000.4315 pmid: 11152613
[33] Madeira F, Park Y M, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey A R N, Potter S C, Finn R D, Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res, 2019, 47: W636-W641.
doi: 10.1093/nar/gkz268
[34] Iino M, Tarui Y, Uematsu C. Gravitropism of maize and rice coleoptiles: dependence on the stimulation angle. Plant Cell Environ, 1996, 19: 1160-1168.
pmid: 11539324
[35] Bennett T, Brochington S F, Rothfels C, Graham S W, Stevenson D, Kutchan T, Rolf M, Thomas P, Wong G K, Leyser O, Glover B J, Harrison C J. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Mol Biol Evol, 2014, 31: 2042-2060.
doi: 10.1093/molbev/msu147 pmid: 24758777
[36] Rahman A, Takahashi M, Shibasakei K, Wu S, Inaba T, Tsurumi S, Baskin T I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell, 2010, 22: 1762-1776.
doi: 10.1105/tpc.110.075317
[37] Zhang J, Zhang H, Li S, Li J, Yan L, Xia L. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J Integr Plant Biol, 2021, 63: 1649-1663.
doi: 10.1111/jipb.13151
[38] Zhang J, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol, 2018, 60: 369-375.
doi: 10.1111/jipb.12620
[39] Wang Y, Liu X, Zheng X, Wang W, Yin X, Liu H, Ma C, Niu X, Zhu J K, Wang F. Creation of aromatic maize by CRISPR/Cas. J Integr Plant Biol, 2021, 63: 1664-1670.
doi: 10.1111/jipb.13105
[40] Zhang L, Wang T, Wang G, Bi A, Wassie M, Xie Y, Cao L, Xu H, Fu J, Chen L, Zhao Y, Hu T. Simultaneous gene editing of three homoeoalleles in self-incompatible allohexaploid grasses. J Integr Plant Biol, 2021, 63: 1410-1415.
doi: 10.1111/jipb.13101
[41] 侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019, 45: 839-847.
doi: 10.3724/SP.J.1006.2019.84157
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron Sin, 2019, 45: 839-847. (in Chinese with English abstract)
[42] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究. 作物学报, 2021, 47: 1481-1490.
doi: 10.3724/SP.J.1006.2021.04214
Zhang W, Xian J L, Sun C, Wang C M, Shi L, Yu W C. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9. Acta Agron Sin, 2021, 47: 1481-1490. (in Chinese with English abstract)
[43] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性. 作物学报, 2022, 48: 801-811.
doi: 10.3724/SP.J.1006.2022.14077
Shi Y Q, Sun M D, Chen F, Cheng H T, Hu X Z, Fu L, Hu Q, Mei D S, Li C. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L. Acta Agron Sin, 2022, 48: 801-811. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14077
[44] Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[45] Lu Y, Tian Y, Shen R, Yao Q, Wang M, Chen M, Dong J, Zhang T, Li F, Lei M, Zhu J. Targeted, efficient sequence insertion and replacement in rice. Nat Biotechnol, 2020, 38: 1402-1407.
doi: 10.1038/s41587-020-0581-5
[46] Wei C, Wang C, Jia M, Guo H X, Luo P Y, Wang M G, Zhu J K, Zhang H. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor. J Integr Plant Biol, 2021, 63: 1595-1599.
doi: 10.1111/jipb.13089
[47] Niu Q, Wu S, Xie H, Wu Q, Liu P, Xu Y, Lang Z. Efficient A. T to G. C base conversions in dicots using adenine base editors expressed under the tomato EF1alpha promoter. Plant Biotechnol J, 2021, doi: 10.1111/pbi.13736.
doi: 10.1111/pbi.13736
[48] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[49] Li J, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing via guide RNA/Cas9. Nat Biotechnol, 2013, 31: 688-691.
doi: 10.1038/nbt.2654
[50] Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plants, 2013, 6: 1975-1983.
[51] 马兴亮, 刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析. 遗传, 2016, 38: 118-125.
Ma X L, Liu Y G. CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants. Hereditas (Beijing), 2016, 38: 118-125 (in Chinese with English abstract).
[52] Mravec J, Skupa P, Baill Y A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof Y D, Dobrev P I, Schwarzerova K, Rolcik J, Seifertova D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml J. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009, 459: 1136-1140.
doi: 10.1038/nature08066
[53] Fukaki H, Fujisawa H, Tasaka M. How do plant shoots bend up? The initial step to elucidate the molecular mechanisms of shoot gravitropism using Arabidopsis thaliana. J Plant Res, 1996, 109: 129-137.
pmid: 11539858
[54] Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson P H. The Arabidopsis thaliana AGRAVITROPIC 1gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA, 1998, 95: 15112-15117.
doi: 10.1073/pnas.95.25.15112
[55] Grunewald W, Friml J. The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J, 2010, 29: 2700-2714.
doi: 10.1038/emboj.2010.181 pmid: 20717140
[56] Harrison B R, Masson P H. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J, 2008, 53: 380-392.
pmid: 18047472
[57] Keuskamp D H, Pollmann S, Voesenek L A, Peeters A J, Pierik R. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci USA, 2010, 107: 22740-22744.
doi: 10.1073/pnas.1013457108
[58] Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, Sturrock C J, Yu H, Lu C, Peng J, Mao C. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot, 2018, 69: 385-397.
doi: 10.1093/jxb/erx427 pmid: 29294052
[59] Farooq M, Jan R, Kim K. Gravistimulation effects on Oryza sativa amino acid profile, growth pattern and expression of OsPIN genes. Sci Rep, 2020, 10: 17303.
doi: 10.1038/s41598-020-74531-w
[1] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[2] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[3] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[4] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[5] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi–Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[6] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.)#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[7] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[8] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[9] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[10] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[11] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[12] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[13] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[14] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[15] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!