Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 561-569.doi: 10.3724/SP.J.1006.2023.22008

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of GsERF6 overexpression on salt-alkaline tolerance in rice

CAI Xiao-Xi(), HU Bing-Shuang(), SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li()   

  1. Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
  • Received:2022-01-28 Accepted:2022-06-07 Online:2022-06-21 Published:2022-06-21
  • Contact: SUN Xiao-Li E-mail:18746616279@163.com;alisa961102@gmail.com;sunxiaoli2016@byau.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32101672);National Natural Science Foundation of China(31971826);National Natural Science Foundation of China(U20A2025);Special Funds from the Central Finance to Support the Development of Local Universities(202201005)

Abstract:

Ethylene response factors (ERFs) are a family of plant specific transcription factors that play important roles in abiotic stress. Bioinformatic analysis revealed that GsERF6, a Glycine soja ERF transcription factor that positively regulated salt-alkaline tolerance, shared high sequence identity with homologous ERF proteins with one highly conserved AP2 domain in rice. To explore the effect of GsERF6 overexpression on the salt-alkaline tolerance in rice, we transformed GsERF6 into rice and obtained two homozygous transgenic lines via PCR and RT-PCR. Phenotypical and physiological assays indicated that, compared with the wild type rice under 200 mmol L-1 NaHCO3 treatment, the survival rate, relative water content, the activities of SOD, POD, and CAT, the soluble sugar and proline contents, were significantly increased, while ROS accumulation was significantly decreased in GsERF6 overexpression lines. The qRT-PCR showed that transcript levels of OsP5CS2 and OsLEA14 were significantly up-regulated in GsERF6 transgenic line after 40 mmol L-1 NaHCO3 treatment for 6 hours. In summary, GsERF6 overexpression in rice contributed to ROS scavenging, osmotic regulation, and activation of stress responsive genes, thus improving the salt-alkaline tolerance of transgenic rice.

Key words: rice, salt-alkaline tolerance, ethylene response factors, Glycine soja, GsERF6

Table 1

Primers used in this study"

引物名称
Primer name
正向序列
Forward sequence (5′-3′)
反向序列
Reverse sequence (5′-3′)
GsERF6-F/R GGCTTAAUATGGCTAACGCTGCTG GGTTTAAUTCACACAGCCACGAGCGGT
GsERF6-PCR-F/R ATAAGGAAGTTCATTTCATTTGGA TCTTCGGAACAGCGATTAGCAG
GsERF6-RT-F/R CTGGCCACTCCCCAAAACAAA GAAGGTTCCGAGCCAAACCC
OsElf1-α-F/R GCACGCTCTTCTTGCTTTCAC TCTTGTCAGGGTTGTAGCCGAC
OsP5CS2-F/R GTGGCTTGTGAAGGAGCTGT TTTGACATGCTTTCGTGCTC
OsLEA14-F/R TCGGGATGTCAGGCGATAA GCTTGTAGGTGCTGGTGTCCTT

Fig. 1

Phylogenetic analysis of GsERF6 and its homologous ERF proteins in rice “?” stands for ERF gene of rice; “Δ” stands for ERF gene of wild soybean."

Fig. 2

Multiple alignment of GsERF6 and its homologous ERF proteins in rice"

Fig. 3

Construction of the GsERF6 overexpression vector A: the GsERF6 overexpression vector; B: gene clone of GsERF6; M: DNA marker; 1-3: PCR product of GsERF6; C: PCR identification of recombinant E. coli clones harboring the pC35SU-GsERF6 con-struct; M: DNA marker; ?: negative H2O control; +: positive plas-mid control; 1: PCR products of the pC35SU-GsERF6 clones."

Fig. 4

Molecular detection of the GsERF6 transgenic lines A: PCR detection of resistant plants transformed with GsERF6; B: RT-PCR detection of GsERF6 transgenic rice; M: DNA marker; ?: negative H2O control; +: positive plasmid control; WT: wild type control; #1-#8: NeoR resistant seedlings."

Fig. 5

Salt-alkaline tolerance of GsERF6 transgenic rice A: phenotype of WT and transgenic rice seedlings treated with NaHCO3; B: the survival rates of WT and transgenic rice seedlings; C: the relative water content of WT and transgenic rice seedlings. The significant difference was evaluated by the Student’s t-test. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 6

ROS accumulation and antioxidant enzyme activity in the GsERF6 transgenic rice under salt-alkaline treatment A: DAB staining; B: NBT staining; C: SOD activity; D: POD activity; E: CAT activity. The significant difference was evaluated by the Student’s t-test. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 7

Content of osmolytes in the GsERF6 transgenic rice under salt-alkaline treatment A: soluble sugar content; B: proline content. The significant difference was evaluated by the Student’s t-test. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 8

Relative expression patterns of salt-alkaline responsive genes in WT and GsERF6 transgenic lines A: the relative expression level of OsLEA14 genes; B: the relative expression level of OsP5CS2 genes. The significant difference was evaluated by the Student’s t-test. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

[1] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究. 作物学报, 2020, 46: 1351-1358.
doi: 10.3724/SP.J.1006.2020.03008
Li J, Wang Y R, Zhang L X, Sun M H, Qin Y, Zheng J. Functional analysis of ZmCIPK24-2 gene from maize in response to salt stress. Acta Agron Sin, 2020, 46: 1351-1358. (in Chinese with English abstract)
[2] 刘奕媺, 于洋, 方军. 盐碱胁迫及植物耐盐碱分子机制研究. 土壤与作物, 2018, (7): 201-211.
Liu Y M, Yu Y, Fang J. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants. Soils Crops, 2018, (7): 201-211. (in Chinese with English abstract)
[3] 邵玺文, 冉成, 金峰, 郭丽颖, 耿艳秋. 松嫩平原苏打盐碱地水稻栽培技术研究进展与展望. 吉林农业大学学报, 2018, 40: 379-382.
Shao X W, Ran C, Jin F, Guo L Y, Geng Y Q. Advances and prospects in research of rice cultivation technology in saline- sodic soil of Songnen plain. J Jilin Agric Univ, 2018, 40: 379-382. (in Chinese with English abstract)
[4] Deokar A A, Kondawar V, Kohli D, Aslam M, Jain P K, Karuppayil S M, Varshney R K, Srinivasan R. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Funct Integr Genomics, 2015, 15: 27-46.
doi: 10.1007/s10142-014-0399-7
[5] Bui L T, Giuntoli B, Kosmacz M, Parlanti S, Licausi F. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci, 2015, 236: 37-43.
doi: 10.1016/j.plantsci.2015.03.008 pmid: 26025519
[6] Wang P, Du Y, Zhao X, Miao Y, Song C P. The MPK6-ERF6-ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiol, 2013, 161: 1392-1408.
doi: 10.1104/pp.112.210724
[7] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展. 作物学报, 2022, 48: 781-790.
doi: 10.3724/SP.J.1006.2022.12026
Chen Y, Sun M Z, Jia B W, Leng Y, Sun X L. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response. Acta Agron Sin, 2022, 48: 781-790. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12026
[8] Yao W, Wang L, Zhou B, Wang S, Li R, Jiang T. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. J Plant Physiol, 2016, 198: 23-31.
doi: 10.1016/j.jplph.2016.03.015
[9] Zhang G, Chen M, Chen X, Xu Z, Li L, Guo J, Ma Y. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep, 2010, 37: 809-818.
doi: 10.1007/s11033-009-9616-1
[10] Zhang Y, Ming R, Khan M, Wang Y, Dahro B, Xiao W, Li C, Liu J H. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. Plant Biotechnol J, 2022, 20: 183-200.
doi: 10.1111/pbi.13705
[11] Khan M, Hu J, Dahro B, Ming R, Zhang Y, Wang Y, Alhag A, Li C, Liu J H. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. Plant J, 2021, 108: 705-724.
doi: 10.1111/tpj.15465
[12] Wang M, Dai W, Du J, Ming R, Dahro B, Liu J H. ERF109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process. Plant Biotechnol J, 2019, 17: 1316-1332.
doi: 10.1111/pbi.13056 pmid: 30575255
[13] Zhang Z, Wang J, Zhang R, Huang R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J, 2012, 71: 273-287.
doi: 10.1111/j.1365-313X.2012.04996.x
[14] Serra T S, Figueiredo D D, Cordeiro A M, Almeida D M, Tiago L, Isabel A A, Alvaro S, Lisete F, Bruno C M, Oliveira M M, Nelson J M. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol, 2013, 82: 439-455.
doi: 10.1007/s11103-013-0073-9 pmid: 23703395
[15] Liu D, Chen X, Liu J, Ye J, Guo Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
doi: 10.1093/jxb/ers079
[16] 葛瑛, 朱延明, 吕德康, 董婷婷, 王维世, 谭上进, 刘彩虹, 邹平. 野生大豆碱胁迫反应的研究. 草业科学, 2009, 26(2): 47-52.
Ge Y, Zhu Y M, Lyu D K, Dong T T, Wang W J, Tan S J, Liu C H, Zou P. Research on responses of wild soybean to alkaline stress. Pratac Sci, 2009, 26(2): 47-52 (in Chinese with English abstract).
[17] Yu Y, Liu A L, Duan X B, Wang S T, Sun X L, Duanmu H Z, Zhu D, Chen C, Cao L, Xiao J L, Li Q, Nisa Z U, Zhu Y M, Ding X D. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. Planta, 2016, 244: 681-698.
doi: 10.1007/s00425-016-2532-4
[18] Yu Y, Duan X B, Ding X D, Chen C, Zhu D, Yin K D, Cao L, Song X W, Zhu P H, Li Q, Nisa Z U, Yu J Y, Du J Y, Song Y, Li H Q, Liu B D, Zhu Y M. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol Biol, 2017, 94: 509-530.
doi: 10.1007/s11103-017-0623-7
[19] Jensen J K, Hansen B G, Halkier B A, Norholm M H H, Nour E H H. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res, 2006, 34: e122.
doi: 10.1093/nar/gkl635 pmid: 17000637
[20] 李晶岚, 陈鑫欣, 石翠翠, 刘方惠, 孙静, 葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响. 作物学报, 2020, 46: 1217-1224.
doi: 10.3724/SP.J.1006.2020.92060
Li J L, Chen G X, Shi C C, Liu F H, Sun J, Ge R C. Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice. Acta Agron Sin, 2020, 46: 1217-1224. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92060
[21] 潘欣. 转OsMAPK4OsCDPK7基因耐盐碱水稻的筛选与抗性分析. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2010.
Pan X. Analysis of Tolerance and Screening of Rice with OsMAPK4 and OsCDPK7 Gene on Salt Stress and Alkali Stress. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract)
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 167-169, 184-185.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experimental. Beijing: Higher Education Press, 2000. pp 167-169, 184-185. (in Chinese)
[23] Kaur N, Sharma I, Kirat K, Pati P K. Detection of reactive oxygen species in Oryza sativa L. (rice). Bio-Protocol, 2016, 24: e2061.
[24] 张宪政. 作物生理研究法. 北京: 中国农业出版社, 1992. pp 201-202.
Zhang X Z. Crop Physiology Research Method. Beijing: China Agriculture Press, 1992. pp 201-202. (in Chinese)
[25] Jung S E, Bang S W, Kim S H, Seo J S, Yoon H B, Kim Y S, Kim J K. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
doi: 10.3390/ijms22147656
[26] 张霞, 唐维, 刘嘉, 刘永胜. 过量表达水稻OsP5CS1OsP5CS2基因提高烟草脯氨酸的生物合成及其非生物胁迫抗性. 应用与环境生物学报, 2014, 20: 717-722.
Zhang X, Tang W, Liu J, Liu Y S. Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol, 2014, 20: 717-722. (in Chinese with English abstract)
[27] Kumar M, Choi J, An G, Kim S R. Ectopic expression of OsSta2 enhances salt stress tolerance in rice. Front Plant Sci, 2017, 8: 316.
doi: 10.3389/fpls.2017.00316 pmid: 28344585
[28] Cao Y F, Wu Y F, Zheng Z, Song F M. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol, 2005, 67: 202-211.
doi: 10.1016/j.pmpp.2006.01.004
[29] Zhuang J, Jiang H H, Wang F, Peng R H, Yao Q H, Xiong A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol Biol Rep, 2013, 31: 1336-1345.
doi: 10.1007/s11105-013-0610-3
[30] Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. Plant J, 2018, 96: 1106-1120.
doi: 10.1111/tpj.14091
[31] Sun X L, Sun M Z, Jia B W, Qin Z W, Yang K J, Chen C, Yu Q Y, Zhu Y M. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca2+/CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. Plant J, 2016, 86: 514-529.
doi: 10.1111/tpj.13187
[32] Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0
[33] 张春霄. AP2/EREBP家族MfERF049基因对提高豆科植物生物胁迫和非生物胁迫抗性的功能分析. 内蒙古大学硕士学位论文,内蒙古呼和浩特, 2019.
Zhang C X. The Functional Analysis of MfERF049 Gene in AP2/EREBP Family with Improve Biological and Abiotic Stress Resistance about Leguminous Plant. MS Thesis of Inner Mongolia University, Hohhot, Inner Mongolia, China, 2019. (in Chinese with English abstract)
[34] Jin Y, Pan W, Zheng X, Cheng X, Liu M, Ma H, Ge X. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol, 2018, 98: 51-65.
doi: 10.1007/s11103-018-0762-5 pmid: 30143992
[35] Lu L, Qanmber G, Li J, Pu M, Chen G, Li S, Liu L, Qin W, Ma S, Wang Y, Chen Q, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
doi: 10.3389/fpls.2021.705883
[1] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[2] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[3] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[4] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[5] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi–Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[6] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.)#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[7] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[8] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[9] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[10] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[11] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[12] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[13] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[14] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[15] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!