Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 332-342.doi: 10.3724/SP.J.1006.2023.22015

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S

CHEN Sai-Hua1(), PENG Sheng1, YOU Yi-Wen1, ZHANG Lu-Yao1, WANG Kai3, XUE Ming1,*(), YANG Yuan-Zhu3,*(), WAN Jian-Min2   

  1. 1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2State Key Laboratory for Crop Genetics and Germplasm Enhancement / Jiangsu Plant Gene Engineering Research Center / Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    3Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs / Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding / Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410128, Hunan, China
  • Received:2022-03-12 Accepted:2022-05-05 Online:2022-05-13 Published:2022-05-13
  • Contact: XUE Ming,YANG Yuan-Zhu E-mail:chensaihua@yzu.edu.cn;007747@yzu.edu.cn;yangyuanzhu@lpht.com.cn
  • Supported by:
    Jiangsu Agricultural Science and Technology Innovation Fund “Development of Rice Germplasms with Heat-tolerance Based on qTT12(CX(21)3100);Science and Technology Innovation Program of Hunan Province(2021NK1001)

Abstract:

Xiangling 628S is a high quality thermosensitive male sterile line of two-line hybrid rice, whose hybrids have high-quality rice and is suit for light-cultivation, large-scale, and mechanized planting, and 40 new hybrid rice varieties have been approved and widely used. However, its hybrids had strong photosensitivity when it crossed with a large majority of mid-late cultivars, and headed late or even not heading under long-day (LD) conditions, which limited its application in the Yangtze River area. To explore the genetic mechanism of photosensitivity divergence among different hybrids, several key photosensitive loci in Xiangling 628S and its restorer lines were analyzed by allelism tests combined with sequence analysis. The results showed that Xiangling 628S had recessive e1e1, Se-1eSe-1e and dominant Hd5kHd5k, E2E2, E3E3, and EF-1tEF-1t, showing weak photosensitivity. The photosensitivity divergence in different hybrids was closely correlated with E1 (Ghd7) locus in restorer lines, but not with Se-1 (Hd1) and Hd5 (DTH8). Finally, we developed two functional molecular markers for genetic identification of E1 and Se-1 loci in restorer lines, which would speed up the selection of weak/non-sensitive hybrids of Xiangling 628S. Our study provides important theoretical guidance and technical supports for the utilization of Xiangling 628S in breeding, as well as hybrid breeding with other sterile lines.

Key words: rice, sterile line, photosensitive, genes, molecular marker

Table 1

Genotypes of seven pairs of test lines adopted in this study"

待测位点
Locus
测验系名称
Test line name
基因型*
Genotype*
测验系名称
Test line name
基因型
Genotype
E1 EG0 e1e1e2e2e3e3Se-1nSe-1nEf-1Ef-1 EG1 E1E1e2e2e3e3Se-1nSe-1nEf-1Ef-1
E2 EG0 e1e1e2e2e3e3Se-1nSe-1nEf-1Ef-1 EG2 e1e1E2E2e3e3Se-1nSe-1nEf-1Ef-1
E3 EG0 e1e1e2e2e3e3Se-1nSe-1nEf-1Ef-1 EG3 e1e1e2e2E3E3Se-1nSe-1nEf-1Ef-1
Se-1 ER E1E1Se-1eSe-1eEf-1Ef-1 LR E1E1Se-1uSe-1uEf-1Ef-1
Hd1 Nip E1E1Se-1nSe-1nEf-1Ef-1Hd5Hd5 NIL (hd1) E1E1Se-1eSe-1eEf-1Ef-1Hd5Hd5
Hd5 Nip E1E1Se-1nSe-1nEf-1Ef-1Hd5Hd5 NIL (Hd5) E1E1Se-1nSe-1nEf-1Ef-1Hd5kHd5k
Ef-1 T65m e1e1Se-1eSe-1eef-1ef-1 T65Ebm e1e1Se-1eSe-1eEf-1Ef-1

Table 2

Primers used in this study"

类别
Primer type
引物名称
Primer name
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
用于鉴定Ghd7的缺失
For identification of Ghd7 deletion
M1 GAGACCGATTAAGGTTGAA CTGTTGGTCGCAGTCTATG
M2 CCGCCGTCGTTGCCGAAGAA ATGGGACCAGCAGCCGGAGAAG
M3 ATGCAAATCACATCCCACA CTTCATTTCTGCTGCCTAT
M4 TTGTCCAAGCTCAAGCCTAC CGAGAAGCAAATCCGGTAC
M5 AATGGAGCCAGATTGTTCT CTTCTGTTCCGTTCACCTTT
M6 ACAGCAGGGTATTAAGGTA TAGGCAAAGAGCTATTTCG
用于基因的克隆与测序For gene cloning and sequencing Ghd7-exon1 CACAAGCATTTCACAACCCTA AGGCAGCAGAAATGAAGAGT
Ghd7-exon2 TTGCTTATGCGTACATCTGG AGTGGTATATACGCACTGTAATTA
Hd1-FLcDNA AGAGAGGACAAACACAATAGC TGTCTAGAACTACTCCCACTG
DTH8-FLcDNA GCTAGTGTTGTTAGCTTCAC TAAACAGCATCAGCATCAACA
用于分子标记
For molecuar markers
E1D CACAAGCATTTCACAACCCTA AGTGGTATATACGCACTGTAATTA
SeI TGCAGGTGCACTCCGCGAA GAGTCCACCTCCTCGTCCTTG

Table 3

Some “Lingliangyou” early hybrids (approved) and strong photosensitive combinations"

杂交组合
Combinations
恢复系
Restorer lines
长江中下游早稻审定情况
Approved situation in Yangtze River
感光性
Photosensitivity
陵两优32 Lingliangyou 32 HY032 国审稻2014004 State certified 2014004
湘审稻2012006 Hunan certified 2012006
弱Weak
陵两优21 Lingliangyou 21 H421 湘审稻2010007 Hunan certified 2012007 弱Weak
陵两优211 Lingliangyou 211 H211 国审稻2010003 State certified 2010003 弱Weak
陵两优02 Lingliangyou 02 ZR02 无 No 弱Weak
陵两优1063 Lingliangyou 1063 华恢1063 Huahui 1063 赣审稻2013010 Jiangxi certified 2013010 弱Weak
陵两优564 Lingliangyou 564 华恢564 Huahui 564 湘审稻2009052 Hunan certified 2009052 弱Weak
陵两优472 Lingliangyou 472 蜀恢527 Shuhui 527 无 No 强Strong
陵两优711 Lingliangyou 711 恩恢58 Enhui 58 无 No 强Strong
陵两优838 Lingliangyou 838 辐恢838 Fuhui 838 无 No 强Strong
陵两优182 Lingliangyou 182 R182 无 No 强Strong
陵两优207 Lingliangyou 207 先恢207 Xianhui 207 无 No 强Strong
陵两优1377 Lingliangyou 1377 R1377 无 No 强Strong

Fig. 1

Photosensitivity of Xiangling 628S and the test results of allelism tests A: heading date (HD) of Xiangling 628S under natural long-day and short-day conditions. B-H: heading date of different test lines and their hybrids with Xiangling 628S. The abscissa represents different test lines (the same as test lines in Table 1) and their hybrids with Xiangling 628S, the vertical coordinate represents the days of heading date. S means Xiangling 628S, S/test line means F1 derived from Xiangling 628S crossed with each test line. ** indicates significant differences between each pair of test lines or each pair of F1 lines at P < 0.01."

Table 4

Heading date (HD) of test lines and their F1 hybrids crossed with Xiangling 628S"

测定位点
Tested locus
测验系(杂交F1)
Test lines
(hybrid F1)
抽穗期
Heading date
(mean±SD, d)
延迟抽穗
Delayed heading
(d)
P
P-value
测验系(湘陵628S)基因型*
Genotypes of test lines
(Xiangling 628S) *
E1 EG0 71.25±0.71 20.42±2.78 5.64E-12 e1e1
EG1 91.67±2.07 E1E1
S/EG0 83.63±1.69 32.50±3.05 3.35E-16 e1e1
S/EG1 116.13±1.36
E2 EG0 71.25±0.71 4.75±1.51 4.43E-10 e2e2
EG2 76.00±0.80 E2E2
S/EG0 83.63±1.69 -1.63±4.30 0.18 E2E2
S/EG2 82.00±2.61
E3 EG0 71.25±0.71 14.25±1.47 1.17E-17 e3e3
EG3 85.50±0.76 E3E3
S/EG0 83.63±1.41 -0.34±3.91 0.76 E3E3
S/EG3 83.29±2.50
Se-1 ER 80.25±1.28 22.45±2.62 9.51E-17 Se-1eSe-1e
LR 102.70±1.34 Se-1uSe-1u
S/ER 97.13±2.47 13.37±3.05 1.08E-06 Se-1eSe-1e or Se-1nSe-1n
S/LR 110.50±0.58
Hd1 NIL (hd1) 79.00±1.05 6.60±3.06 3.21E-08 Se-1eSe-1e
Nip 85.60±2.01 Se-1nSe-1n
S/NIL (hd1) 102.56±2.01 8.77±3.54 4.44E-05 Se-1eSe-1e
S/Nip 111.33±1.53
Hd5 Nip 85.60±2.01 11.00±3.08 9.73E-12 Hd5Hd5
NIL (Hd5) 96.60±1.07 Hd5kHd5k
S/Nip 111.33±1.53 0.67±3.81 0.67 Hd5kHd5k
S/NIL (Hd5) 112.00±2.28
Ef-1 T65Ebm 75.75±0.96 22.05±2.83 4.50E-11 Ef-1Ef-1
T65m 97.80±1.87 ef-1ef-1
S/T65Ebm 81.20±0.92 7.30±3.09 1.25E-08 Ef-1tEf-1t
S/T65m 88.50±2.17
结果Result Xiangling 628S 81.75±2.20 e1e1Se-1eSe-1eE2E2E3E3Hd5kHd5kEf-1Ef-1

Fig. 2

Ghd7 genotype tested in parents of different “Lingliangyou” hybrids A: the structural diagram of Ghd7 gene. The white box represents the untranslated region, the gray box represents the exon region (exon 1 is from 1 to 444 bp and exon 2 is from 2090 to 2419 bp), and the lines represent the upstream, downstream or intron regions. M1-M6 represents the positions of markers. B: the different haplotypes of Ghd7 gene. The reference sequence is Nipponbare. Each base varied among these materials was highlighted. Their locations corresponding to the reference genome and the resulting amino acid changes were indicated at the bottom. Restorer lines are the same as in Table 3. Shuhui 527, Enhui 58, Fuhui 838, R182, and Xianhui 207 belonged to Hap1, and R1377 belonged to Hap2. C: the electrophoresis detection results of M1-M6 products."

Fig. 3

Hd1 and DTH8 genotypes tested in parents of different “Lingliangyou” hybrids A: the structure and haplotype analysis of Hd1 gene; B: the structure and haplotype analysis of DTH8 gene. The white boxes represent the untranslated regions, the gray boxes represent the exon regions (Hd1 has two exons, exon 1 is 1-828 bp, exon 2 is 829-1188 bp; DTH8 has an 894 bp exon), and the broken line indicates the intron region. The numbers mean the positions corresponding to the Nipponbare cDNA. AA shows the changes in amino acids. Frame Shift means a frameshift caused by the insertions or deletions. The same or different sequences of HAP1-4 compared to Nipponbare are highlighted in blue or in orange. The parents within the strong photosensitive hybrids are highlighted in bold when the genotypes are classified into different haplotypes."

Fig. 4

Development and identification of functional molecular markers A: E1D marker can be used to identify the deletion at E1 (Ghd7) locus, M: DNA ladder; B: SeI marker can be used to identify the 36 bp insertion at the Se-1 (Hd1) locus. Zhu 1S is the sterile donor of Xiangling 628S and the restorer lines are the same as those given in Table 3."

[1] 万建民. 水稻籼粳交杂种优势利用研究. 杂交水稻, 2010, (增刊1): 3-6.
Wan J M. Utilization of strong heterosis between indica and japonica varieties in rice. Hybrid Rice, 2010, (S1): 3-6. (in Chinese)
[2] 符辰建, 秦鹏, 胡小淳, 杨远柱. 矮秆抗倒水稻温敏核不育系湘陵628S的选育. 杂交水稻, 2010, (增刊1): 177-181.
Fu C J, Qin P, Hu X C, Yang Y Z. Breeding of lodging-resistant dwarf thermo-sensitive genic male sterile line Xiangling 628S in rice. Hybrid Rice, 2010, (S1): 177-181. (in Chinese)
[3] Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol, 2001, 127: 1425-1429.
pmid: 11743085
[4] Saito H, Okumoto Y, Tsukiyama T, Xu C, Teraishi M, Tanisaka T. Allelic differentiation at the E1/Ghd7 locus has allowed expansion of rice cultivation area. Plants (Basel), 2019, 8: 550.
[5] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143
[6] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.
pmid: 11148291
[7] Gao H, Jin M N, Zheng X M, Chen J, Yuan D Y, Xin Y Y, Wang M Q, Huang D Y, Zhang Z, Zhou K N, Sheng P K, Ma J, Ma W W, Deng H F, Jiang L, Liu S J, Wang H Y, Wu C Y, Yuan L P, Wan J M. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014, 111: 16337-16342.
doi: 10.1073/pnas.1418204111
[8] Yan W H, Liu H Y, Zhou X C, Li Q P, Zhang J, Lu L, Liu T M, Liu H J, Zhang C J, Zhang Z Y, Shen G J, Yao W, Chen H X, Yu S B, Xie W B, Xing Y Z. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res, 2013, 23: 969-971.
doi: 10.1038/cr.2013.43
[9] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319-330.
doi: 10.1093/mp/ssq070
[10] Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747-1758.
doi: 10.1104/pp.110.156943
[11] Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q, Wan J M. Heading date gene, dth3controlled late flowering in O. glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep, 2011, 30: 2243-2254.
doi: 10.1007/s00299-011-1129-4 pmid: 21830130
[12] Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol, 2021, 229: 1635-1649.
doi: 10.1111/nph.16946
[13] Fujino K, Yamanouchi U, Nonoue Y, Obara M, Yano M. Switching genetic effects of the flowering time gene Hd1 in LD conditions by Ghd7 and OsPRR37 in rice. Breed Sci, 2019, 69: 127-132.
doi: 10.1270/jsbbs.18060
[14] Zhang Z Y, Hu W, Shen G J, Liu H Y, Hu Y, Zhou X C, Liu T M, Xing Y Z. Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Sci Rep, 2017, 7: 5388.
doi: 10.1038/s41598-017-05873-1
[15] Nemoto Y, Nonoue Y, Yano M, Izawa T. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J, 2016, 86: 221-233.
doi: 10.1111/tpj.13168
[16] Du A P, Tian W, Wei M H, Yan W, He H, Zhou D, Huang X, Li S G, Ou-Yang X H. The DTH8-Hd1 module mediates day-length- dependent regulation of rice flowering. Mol Plant, 2017, 10: 948-961.
doi: 10.1016/j.molp.2017.05.006
[17] Zhou X C, Nong C X, Wu B, Zhou T H, Zhang B, Liu X S, Gao G J, Mi J M, Zhang Q L, Liu H Y, Liu S S, Li Z X, He Y Q, Mou T M, Guo S B, Li S Q, Yang Y Z, Zhang Q F, Xing Y Z. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J Exp Bot, 2021, 72: 6963-6976.
doi: 10.1093/jxb/erab344
[18] Zhang B, Liu H Y, Qi F X, Zhang Z Y, Li Q P, Han Z M, Xing Y Z. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice (New York), 2019, 12(1): 48.
[19] Zhang J, Zhou X C, Yan W H, Zhang Z Y, Lu L, Han Z M, Zhao H, Liu H Y, Song P, Hu Y, Shen G J, He Q, Guo S B, Gao G Q, Wang G W, Xing Y Z. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol, 2015, 208: 1056-1066.
doi: 10.1111/nph.13538 pmid: 26147403
[20] Wei X J, Jiang L, Xu J F, Lu G W, Wan J M. Genetic analyses of heading date of japonica rice cultivars from northern China. Field Crops Res, 2008, 107: 147-154.
doi: 10.1016/j.fcr.2008.01.008
[21] Zhou X C, Nong C X, Wu B, Zhou T H, Zhang B, Liu X S, Gao G J, Mi J M, Zhang Q L, Liu H Y, Liu S S, Li Z X, He Y Q, Mou T M, Guo S B, Li S Q, Yang Y Z, Zhang Q F, Xing Y Z. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J Exp Bot, 2021, 72: 6963-6976.
doi: 10.1093/jxb/erab344
[1] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[2] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[3] DING Min, DUAN Zheng-Yong, WANG Yu-Zhuo, XUE Ya-Peng, WANG Hai-Gang, CHEN Ling, WANG Rui-Yun, QIAO Zhi-Jun. Development and validation of functional markers of GBSSI gene in proso millet [J]. Acta Agronomica Sinica, 2023, 49(3): 703-718.
[4] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[5] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[6] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overex-pression and Zhongyou 821 rapeseed (Brassica napus L.)#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[7] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi–Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[8] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.)#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[9] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[10] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[11] HAN Bei, SUN Si-Min, SUN Wei-Nan, YANG Xi-Yan, ZHANG Xian-Long. Molecular mechanisms of somatic embryogenesis in plants [J]. Acta Agronomica Sinica, 2023, 49(2): 299-309.
[12] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[13] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[14] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[15] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!