Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 299-309.doi: 10.3724/SP.J.1006.2023.24103
• REVIEW • Next Articles
HAN Bei(), SUN Si-Min, SUN Wei-Nan, YANG Xi-Yan(), ZHANG Xian-Long
[1] |
Yang X Y, Zhang X L, Yuan D J, Jin F Y, Zhang Y C, Xu J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol, 2012, 12: 110.
doi: 10.1186/1471-2229-12-110 pmid: 22817809 |
[2] |
Lee H W, Kim N Y, Lee D J, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol, 2009, 151: 1377-1389.
doi: 10.1104/pp.109.143685 |
[3] |
Fan M Z, Xu C Y, Xu K, Hu Y X. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res, 2012, 22: 1169-1180.
doi: 10.1038/cr.2012.63 |
[4] |
Lee K, Park O-S, Seo P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J, 2018, 95: 961-975.
doi: 10.1111/tpj.14002 |
[5] |
Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937 |
[6] |
Mendez-Hernandez H A, Ledezma-Rodriguez M, Avilez- Montalvo R N, Juarez-Gomez Y L, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas V M. Signaling overview of plant somatic embryogenesis. Front Plant Sci, 2019, 10: 77.
doi: 10.3389/fpls.2019.00077 |
[7] |
Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol, 1957, 11: 118-130.
pmid: 13486467 |
[8] |
Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 2001, 294: 1519-1521.
pmid: 11691951 |
[9] | Su Y H, Liu Y B, Bai B, Zhang X S. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci, 2015, 5: 792. |
[10] | Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of organogenesis and somatic embryogenesis by ethylene: an overview. Plants (Basel), 2021, 10: 1208. |
[11] |
Chatfield S P, Raizada M N. Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Rep, 2008, 27: 655-666.
doi: 10.1007/s00299-007-0496-3 pmid: 18084766 |
[12] |
Zheng Q L, Zheng Y M, Perry S E. AGAMOUS-like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol, 2013, 161: 2113-2127.
doi: 10.1104/pp.113.216275 |
[13] |
Wang L C, Liu N, Wang T Y, Li J Y, Wen T W, Yang X Y, Lindsey K, Zhang X L. The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. J Exp Bot, 2018, 69: 1081-1093.
doi: 10.1093/jxb/erx475 |
[14] |
Langhansova L, Konradova H, Vanek T. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep, 2004, 22: 725-730.
doi: 10.1007/s00299-003-0750-2 |
[15] |
Stasolla C, Yeung E C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Organ Cult, 2003, 74: 15-35.
doi: 10.1023/A:1023345803336 |
[16] |
Marhava P, Hoermayer L, Yoshida S, Marhavy P, Benkova E, Friml J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell, 2019, 177: 957-969.
doi: S0092-8674(19)30401-5 pmid: 31051107 |
[17] |
Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M, Grotewold E, Sugimoto K. WIND1 promotes shoot regeneration through transcriptional activation of enhancer of SHOOT REGENERATION1 in Arabidopsis. Plant Cell, 2017, 29: 54-69.
doi: 10.1105/tpc.16.00623 |
[18] |
Ikeuchi M, Favero D S, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. Molecular mechanisms of plant regeneration. Annu Rev Plant Biol, 2019, 70: 377-406.
doi: 10.1146/annurev-arplant-050718-100434 pmid: 30786238 |
[19] |
Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, de Veylder L, Sakakibara H, Sugimoto K. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol, 2017, 175: 1158-1174.
doi: 10.1104/pp.17.01035 pmid: 28904073 |
[20] |
Bucher P, Trifonov E N. CCAAT box revisited: bidirectionality, location and context. J Biomol Struct Dyn, 1988, 5: 1231-1236.
pmid: 3271510 |
[21] | Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Munoz M D, Fischer R L, Goldberg R B, Harada J J. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA, 2017, 114: E6710-E6719. |
[22] |
Kwong R W, Bui A Q, Lee H, Kwong L W, Fischer R L, Goldberg R B, Harada J J. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell, 2003, 15: 5-18.
pmid: 12509518 |
[23] |
Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93: 1195-1205.
pmid: 9657152 |
[24] |
Orlowska A, Igielski R, Lagowska K, Kepczynska E. Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell Tissue Organ Cult, 2017, 129: 119-132.
doi: 10.1007/s11240-016-1161-8 |
[25] |
Zhu S P, Wang J, Ye J L, Zhu A D, Guo W W, Deng X X. Isolation and characterization of LEAFY COTYLEDON 1-LIKE gene related to embryogenic competence in Citrus sinensis. Plant Cell Tissue Organ Cult, 2014, 119: 1-13.
doi: 10.1007/s11240-014-0509-1 |
[26] |
Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews G N, Fischer R L, Okamuro J K, Harada J J, Goldberg R B. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA, 2010, 107: 8063-8070.
doi: 10.1073/pnas.1003530107 |
[27] |
Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell, 2004, 7: 373-385.
pmid: 15363412 |
[28] |
Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P. Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava. Front Plant Sci, 2019, 10: 673.
doi: 10.3389/fpls.2019.00673 |
[29] |
Stone S L, Braybrook S A, Paula S L, Kwong L W, Meuser J, Pelletier J, Hsieh T F, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA, 2008, 105: 3151-3156.
doi: 10.1073/pnas.0712364105 |
[30] |
Zhang Z Y, Zhao H, Li W, Wu J M, Zhou Z H, Zhou F, Chen H, Lin Y J. Genome-wide association study of callus induction variation to explore the callus formation mechanism of rice. J Integr Plant Biol, 2019, 61: 1134-1150.
doi: 10.1111/jipb.12759 |
[31] |
Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937 |
[32] |
Mathew M M, Prasad K. Model systems for regeneration: Arabidopsis. Development, 2021, 148: dev195347.
doi: 10.1242/dev.195347 |
[33] |
Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol, 2010, 73: 481-492.
doi: 10.1007/s11103-010-9634-3 pmid: 20405311 |
[34] |
Schoof H, Lenhard M, Haecker A, Mayer K F X, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635-644.
doi: 10.1016/s0092-8674(00)80700-x pmid: 10761929 |
[35] |
Zuo J R, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x |
[36] |
Zhang T Q, Lian H, Zhou C M, Xu L, Jiao Y, Wang J W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell, 2017, 29: 1073-1087.
doi: 10.1105/tpc.16.00863 |
[37] |
Gordon S P, Chickarmane V S, Ohno C, Meyerowitz E M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2009, 106: 16529-16534.
doi: 10.1073/pnas.0908122106 |
[38] |
Zhang Z, Tucker E, Hermann M, Laux T. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell, 2017, 40: 264-277.
doi: S1534-5807(17)30002-3 pmid: 28171749 |
[39] |
Hassani S B, Trontin J F, Raschke J, Zoglauer K, Rupps A. Constitutive overexpression of a conifer WOX2 homolog affects somatic embryo development in pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Front Plant Sci, 2022, 13: 838421.
doi: 10.3389/fpls.2022.838421 |
[40] |
Su Y H, Zhou C, Li Y J, Yu Y, Tang L P, Zhang W J, Yao W J, Huang R, Laux T, Zhang X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2020, 117: 22561-22571.
doi: 10.1073/pnas.2015248117 |
[41] |
Elhiti M, Tahir M, Gulden R H, Khamiss K, Stasolla C. Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot, 2010, 61: 4069-4085.
doi: 10.1093/jxb/erq222 |
[42] |
Schmidt E D L, Guzzo F, Toonen M A J, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124: 2049-2062.
doi: 10.1242/dev.124.10.2049 pmid: 9169851 |
[43] |
Li H Q, Cai Z P, Wang X J, Li M Z, Cui Y W, Cui N, Yang F, Zhu M S, Zhao J X, Du W B, He K, Yi J, Tax F E, Hou S W, Li J, Gou X P. SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Mol Plant, 2019, 12: 984-1002.
doi: S1674-2052(19)30161-3 pmid: 31059824 |
[44] |
Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803-816.
pmid: 11706164 |
[45] |
Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep, 2017, 7: 12368.
doi: 10.1038/s41598-017-10038-1 |
[46] |
Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteuffel R. Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta, 1998, 206: 504-514.
pmid: 9821685 |
[47] |
Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci, 2010, 29: 36-57.
doi: 10.1080/07352680903436291 |
[48] |
Anil V S, Rao K S. Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol, 2000, 123: 1301-1311.
pmid: 10938349 |
[49] |
Pandey G K, Grant J J, Cheong Y H, Kim B G, Li L G, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 2008, 1: 238-248.
doi: 10.1093/mp/ssn003 pmid: 19825536 |
[50] |
Letarte J, Simion E, Miner M, Kasha K J. Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep, 2006, 25: 877-877.
doi: 10.1007/s00299-006-0180-z |
[51] |
Perez-Perez Y, Carneros E, Berenguer E, Solis M T, Barany I, Pintos B, Gomez-Garay A, Risueno M C, Testillano P S. Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Front Plant Sci, 2019, 9: 1915.
doi: 10.3389/fpls.2018.01915 |
[52] |
Kreuger M, Vanholst G J. Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta, 1995, 197: 135-141.
doi: 10.1007/BF00239949 |
[53] |
Makowska K, Kaluzniak M, Oleszczuk S, Zimny J, Czaplicki A, Konieczny R. Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tissue Organ Cult, 2017, 131: 247-257.
doi: 10.1007/s11240-017-1280-x |
[54] |
Serpe M D, Nothnagel E A. Effects of yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta, 1994, 193: 542-550.
doi: 10.1007/BF02411560 |
[55] |
van Hengel A J, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries S C. N-acetylglucosamine and glucosamine- containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol, 2001, 125: 1880-1890.
pmid: 11299367 |
[56] |
Cheng C S, Chen M N, Lai Y T, Chen T, Lin K F, Liu Y J, Lyu P C. Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins, 2008, 70: 695-706.
doi: 10.1002/prot.21520 |
[57] |
Sterk P, Booij H, Schellekens G A, Vankammen A, Devries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3: 907-921.
pmid: 1822991 |
[58] | Dodeman V L, Ducreux G, Kreis M. Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot, 1997, 48: 1493-1509. |
[59] |
Zeng F C, Zhang X K, Zhu L F, Tu L L, Guo X P, Nie Y H. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol, 2006, 60: 167-183.
doi: 10.1007/s11103-005-3381-x pmid: 16429258 |
[60] |
Francois J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thevenot P, Gomes E. Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. Funct Plant Biol, 2008, 35: 394-402.
doi: 10.1071/FP07303 |
[61] |
Wojcikowska B, Wojcik A M, Gaj M D. Epigenetic regulation of auxin-induced somatic embryogenesis in plants. Int J Mol Sci, 2020, 21: 7.
doi: 10.3390/ijms21010007 |
[62] |
Bravo S, Bertin A, Turner A, Sepulveda F, Jopia P, Jose Parra M, Castillo R, Hasbun R. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don. Plant Cell Tiss Organ Cult, 2017, 130: 521-529.
doi: 10.1007/s11240-017-1242-3 |
[63] |
Nic-Can G I, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas V M, Rojas-Herrera R, De-la-Pena C. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS One, 2013, 8: e72160.
doi: 10.1371/journal.pone.0072160 |
[64] |
Grzybkowska D, Moronczyk J, Wojcikowska B, Gaj M D. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regul, 2018, 85: 243-256.
doi: 10.1007/s10725-018-0389-1 |
[65] |
Shibukawa T, Yazawa K, Kikuchi A, Kamada H. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region. Gene, 2009, 437: 22-31.
doi: 10.1016/j.gene.2009.02.011 pmid: 19264116 |
[66] |
Nakamura M, Batista RA, Kohler C, Hennig L. Polycomb Repressive complex 2-mediated histone modification H3K27me3 is associated with embryogenic potential in Norway spruce. J Exp Bot, 2020, 71: 6366-6378.
doi: 10.1093/jxb/eraa365 pmid: 32894759 |
[67] |
Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263-5276.
doi: 10.1242/dev.01400 pmid: 15456723 |
[68] |
Mozgova I, Munoz-Viana R, Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet, 2017, 13: e1006562.
doi: 10.1371/journal.pgen.1006562 |
[69] | Liu J, Deng S, Wang H, Ye J, Wu H W, Sun H X, Chua N H. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol, 2016, 171: 424-436. |
[70] |
Ishihara H, Sugimoto K, Tarr P T, Temman H, Kadokura S, Inui Y, Sakamoto T, Sasaki T, Aida M, Suzuki T. Primed histone demethylation regulates shoot regenerative competency. Nat Commun, 2019, 10: 1786.
doi: 10.1038/s41467-019-09386-5 pmid: 30992430 |
[71] |
Kumar V, Thakur J K, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci, 2021, 78: 4467-4486.
doi: 10.1007/s00018-021-03794-x |
[72] | Bie X M, Dong L, Li X H, Wang H, Gao X Q, Li X G. Trichostatin a and sodium butyrate promotes plant regeneration in common wheat. Plant Signal Behav, 2020, 15: 12. |
[73] | Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149-161. |
[74] |
Wojcikowska B, Botor M, Moronczyk J, Wojcik A M, Nodzynski T, Karcz J, Gaj M D. Trichostatin a triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci, 2018, 9: 1353.
doi: 10.3389/fpls.2018.01353 |
[75] |
Moronczyk J, Braszewska A, Wojcikowska B, Chwialkowska K, Nowak K, Wojcik A M, Kwasniewski M, Gaj M D. Insights into the histone acetylation-mediated regulation of the transcription factor genes that control the embryogenic transition in the somatic cells of Arabidopsis. Cells, 2022, 11: 863.
doi: 10.3390/cells11050863 |
[76] |
Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu C W, Yang S G, Dong S, Ruan J X, Yuan L B, Zhang Z, Zhao L M, Li C L, Chen H H, Cui Y H, Wu K Q, Huang S Z. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell, 2013, 25: 134-148.
doi: 10.1105/tpc.112.096313 |
[77] |
Furuta K, Kubo M, Sano K, Demura T, Fukuda H, Liu Y G, Shibata D, Kakimoto T. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiol, 2011, 52: 618-628.
doi: 10.1093/pcp/pcr022 pmid: 21357580 |
[78] |
Yang X, Wang L, Yuan D, Lindsey K, Zhang X. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013, 64: 1521-1536.
doi: 10.1093/jxb/ert013 pmid: 23382553 |
[79] |
Luo Y C, Zhou H, Li Y, Chen J Y, Yang J H, Chen Y Q, Qu L H. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 2006, 580: 5111-5116.
doi: 10.1016/j.febslet.2006.08.046 |
[80] |
Long J, Liu C, Feng M, Liu Y, Wu X, Guo W. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J Exp Bot, 2018, 69: 2979-2993.
doi: 10.1093/jxb/ery132 |
[81] |
Liu Z, Ge X, Qiu W, Long J, Jia H, Yang W, Dutt M, Wu X, Guo W. Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus. Plant Sci, 2018, 277: 121-131.
doi: 10.1016/j.plantsci.2018.10.015 |
[82] | Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones T. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants (Basel), 2019, 8: 38. |
[83] |
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998-2015.
doi: 10.1105/tpc.16.00124 |
[84] |
Heidmann I, de Lange B, Lambalk J, Angenent G C, Boutilier K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep, 2011, 30: 1107-1115.
doi: 10.1007/s00299-011-1018-x pmid: 21305301 |
[85] |
Maher M F, Nasti R A, Vollbrecht M, Starker C G, Clark M D, Voytas D F. Plant gene editing through de novo induction of meristems. Nat Biotechnol, 2020, 38: 84-89.
doi: 10.1038/s41587-019-0337-2 pmid: 31844292 |
[86] | Loyola-Vargas V M. The history of somatic embryogenesis. In: Loyola-VargasV M, Ochoa-AlejoN,eds. Somatic Embryogenesis:Fundamental Aspects and Applications. Cham: Springer International Publishing, 2016. pp 11-22. |
[1] | WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61. |
[2] | LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600. |
[3] | HAN Shang-Ling, HUO Yi-Qiong, LI Hui, HAN Hua-Rui, HOU Si-Yu, SUN Zhao-Xia, HAN Yuan-Huai, LI Hong-Ying. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet [J]. Acta Agronomica Sinica, 2022, 48(7): 1645-1657. |
[4] | KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708. |
[5] | GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634. |
[6] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[7] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[8] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[9] | GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813. |
[10] | Meng-Ting YANG, Chun ZHANG, Zuo-Ping WANG, Hua-Wen ZOU, Zhong-Yi WU. Cloning and functional analysis of ZmbHLH161 gene in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 2008-2016. |
[11] | ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658. |
[12] | YIN Long-Fei,WANG Zhao-Yang,WU Zhong-Yi,ZHANG Zhong-Bao,YU Rong. Cloning and functional analysis of ZmGRAS31 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(7): 1029-1037. |
[13] | Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850. |
[14] | ZHANG Hong-Juan,LI Yu-Ying,MIAO Li-Li,WANG Jing-Yi,LI Chao-Nan,YANG De-Long,MAO Xin-Guo,JING Rui-Lian. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2019, 45(11): 1615-1627. |
[15] | Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379. |
|