Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (12): 1841-1850.doi: 10.3724/SP.J.1006.2019.94049


Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa

Pi-Biao SHI1,Bing HE2,Yue-Yue FEI1,Jun WANG1,Wei-Yi WANG1,Fu-You WEI1,Yuan-Da LYU2,Min-Feng GU1,*()   

  1. 1 Xinyang Agricultural Experiment Station of Yancheng City, Yancheng 224049, Jiangsu, China
    2 Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2019-03-22 Accepted:2019-06-22 Online:2019-12-12 Published:2019-07-13
  • Contact: Min-Feng GU E-mail:ycgmf@126.com
  • Supported by:
    This study was supported by the Promotion Demonstration Base Program (Yancheng) of Jiangsu Modern Agriculture (Vegetable) Industry Technology System(JATS(2018)137);Exploratory and Disruptive Innovation Program of Jiangsu Academy of Agricultural Sciences(ZX(17)2015)


Growth-regulating factors (GRFs) are plant-specific proteins which play an important role in regulating plant growth and development. Quinoa is one of the plant sources that can meet human daily nutritional needs and is also considered as one of the most promising crops in the future. However, no systematical study about GRF gene family has been performed in quinoa to date. In this study, the GRFs in the whole genome of quinoa were identified by bioinformatics method, and their physicochemical properties, gene structure, conserved domain, phylogenetic relationship and tissue expression were analyzed. There were 18 GRF transcription factors in quinoa, with the protein length from 77 to 621 aa, the molecular weight from 8.81 to 67.38 kD and the isoelectric point from 5.23 to 9.37. Each member contained 1-4 introns and 2-5 exons. And all 18 GRF proteins possessed highly conserved QLQ domain composed of 31-35 aa or WRC domain composed of 25-43 aa. Phylogenetic analysis showed that the GRF transcription factors were more closely related between quinoa and Arabidopsis than between quinoa and rice. The expression level of GRFs was higher in seed, moderate in inflorescence and root, and relatively lower in other tissues, showing obvious tissue expression specificity.

Key words: Chenopodium quinoa, GRF transcription factor, phylogenetic analysis, expression analysis

Table 1

Primer sequences for RT-qPCR"

基因 Gene 正向引物 Forward primer (5°-3°) 反向引物 Reverse primer (5°-3°)

Table 2

Basic information of GRF gene family members in quinoa"

Gene name
Scaffold location and gene direction (bp)
Length (aa)
MW (kDa)
AUR62001481 C_Quinoa_2716: 5162638-5164244 (+) 248 28.17 9.15
AUR62002094 C_Quinoa_4480: 2028959-2032889 (-) 331 36.64 8.84
AUR62004030 C_Quinoa_2370: 7633423-7637087 (-) 570 61.48 8.25
AUR62004236 C_Quinoa_4250: 1136571-1139467 (+) 362 40.73 9.32
AUR62006018 C_Quinoa_1001: 1290301-1292042 (-) 273 29.95 5.23
AUR62007068 C_Quinoa_1971: 832455-834729 (+) 369 39.86 8.41
AUR62007538 C_Quinoa_2646: 201458-205187 (-) 621 67.38 8.00
AUR62009885 C_Quinoa_2493: 4358019-4358318 (-) 77 8.81 9.18
AUR62013612 C_Quinoa_1412: 163344-166379 (-) 374 41.77 9.37
Gene name
Scaffold location and gene direction (bp)
Length (aa)
MW (kD)
AUR62019933 C_Quinoa_1480: 2623570-2625376 (+) 287 30.90 6.25
AUR62024537 C_Quinoa_2876: 5196136-5201404 (+) 541 58.33 9.11
AUR62025191 C_Quinoa_4329: 621270-623166 (-) 302 33.61 6.59
AUR62028212 C_Quinoa_2933: 1647993-1651942 (-) 325 36.02 8.69
AUR62028983 C_Quinoa_2412: 1335673-1337123 (+) 309 34.31 6.45
AUR62033547 C_Quinoa_1776: 1206319-1208711 (-) 268 28.79 7.79
AUR62033894 C_Quinoa_2654: 4420101-4424297 (+) 532 57.33 8.97
AUR62035608 C_Quinoa_2193: 618326-619612 (+) 283 30.81 5.43
AUR62043106 C_Quinoa_1071: 168739-171090 (-) 270 29.22 6.75

Fig. 1

Phylogenetic tree of GRF gene family in quinoa, Arabidopsis, and rice"

Fig. 2

Phylogenetic tree and gene structure of quinoa GRF gene family"

Fig. 3

Analysis of conserved domains of GRF proteins in quinoa"

Fig. 4

Amino acid sequence alignment of QLQ (A) and WRC (B) domain of quinoa GRF proteins"

Fig. 5

Expression profile analysis of GRF genes in different tissues of quinoa"

Fig. 6

Expression level of six GRF genes in different tissues of quinoa"

[1] Schwechheimer C, Bevan M W . The regulation of transcription factor activity in plants. Trends Plant Sci, 1998,3:378-383.
doi: 10.1016/S1360-1385(98)01302-8
[2] Chen Y, Cao J . Comparative analysis of Dof transcription factor family in maize. Plant Mol Biol Rep, 2015,33:1245-1258.
doi: 10.1007/s11105-014-0835-9
[3] Kim J H, Tsukaya H . Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF- INTERACTING FACTOR duo. J Exp Bot, 2015,66:6093-6107.
doi: 10.1093/jxb/erv349
[4] Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G . PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017,45:1040-1045.
[5] Wang F D, Qiu N W, Ding Q, Li J J, Zhang Y H, Li H Y, Gao J W . Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics, 2014,15:807. doi: 10.1186/1471- 2164-15-807.
doi: 10.1186/1471-2164-15-807
[6] Debernardi J M, Mecchia M A, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez R E, Palatnik J F . Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J, 2014,79:413-426.
doi: 10.1111/tpj.12567
[7] Omidbakhshfard M A, Proost S, Fujikura U, Mueller-Roeber B . Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant, 2015,8:998-1010.
doi: 10.1016/j.molp.2015.01.013
[8] Kim J H, Choi D, Kende H . The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 2003,36:94-104.
doi: 10.1046/j.1365-313X.2003.01862.x
[9] Rodriguez R E, Ercoli M F, Debernardi J M, Breakfield N W, Mecchia M A, Sabatini M, Cools T, De Veylder L, Benfey P N, Palatnik J F . MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell, 2015,27:3354-3366.
doi: 10.1105/tpc.15.00452
[10] Kim J H, Kende H . A transcriptional coactivator, AtGIF1, is involved in regulated leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA, 2004,101:13374-13379.
doi: 10.1073/pnas.0405450101
[11] van der Knaap E, Kim J H, Kende H . A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000,122:695-704.
doi: 10.1104/pp.122.3.695
[12] Cao Y P, Han Y H, Jin Q, Lin Y, Cai Y P . Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd), poplar (Populous), grape (Vitis vinifera), Arabidopsis and rice (Oryza sativa) Front Plant Sci 2016,7:1750. doi: 10.3389/fpls.2016.01750.
[13] Choi D, Kim J H, Kende H . Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice(Oryza sativa L.). Plant Cell Physiol, 2004,45:897-904.
doi: 10.1093/pcp/pch098
[14] Rodriguez R E, Mecchia M A, Debernardi J M, Schommer C, Weigel D, Palatnik J F . Control of cell proliferation in Aarabidopsis thaliana by microRNA miR396. Development, 2010,137:103-112.
doi: 10.1242/dev.043067
[15] Horiguchi G, Kim G T, Tsukaya H . The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J, 2005,43:68-78.
doi: 10.1111/tpj.2005.43.issue-1
[16] Kim J H, Lee B H . GROWTH-REGULATING FACTOR4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem. J Plant Biol, 2006,49:463-468.
doi: 10.1007/BF03031127
[17] Liu D M, Song Y, Chen Z X, Yu D Q . Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant, 2009,136:223-236.
doi: 10.1111/ppl.2009.136.issue-2
[18] Ercoli M F, Rojas A M, Debernardi J M, Palatnik J F, Rodriguez R E . Control of cell proliferation and elongation by miR396. Plant Signal Behav, 2016,11:e1184809
doi: 10.1080/15592324.2016.1184809
[19] Lee B H, Jeon J O, Lee M M, Kim J H . Genetic interaction between GROWTH-REGULATING FACTOR and CUP-SHAPED COTYLEDON in organ separation. Plant Signal Behav, 2015,10:e988071
doi: 10.4161/15592324.2014.988071
[20] Yang F, Liang G, Liu D, Yu D Q . Arabidopsis miR396 mediates the development of leaves and flowers in transgenic tobacco. J Plant Biol, 2009,52:475-481.
doi: 10.1007/s12374-009-9061-7
[21] Liang G, He H, Li Y, Wang F, Yu D Q . Molecular mechanism of miR396 mediating pistil development in Arabidopsis. Plant Physiol, 2014,164:249-258.
doi: 10.1104/pp.113.225144
[22] Baucher M, Moussawi J, Vandeputte O M, Monteyne D, Mol A, Pérez-Morga D, Jaziri M E I . A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. Plant Biol, 2013,15:892-898.
doi: 10.1111/plb.2013.15.issue-5
[23] Wynn A N, Rueschhoff E E, Franks R G . Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana. PLoS One, 2011,6:e26231
doi: 10.1371/journal.pone.0026231
[24] Liu J, Hua W, Yang H L, Zhan G M, Li R J, Deng L B, Wang X F, Liu G H, Wang H Z . The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740.
doi: 10.1093/jxb/ers066
[25] Lee B H, Ko J H, Lee S, Lee Y, Pak J H, Kim J H . The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol, 2009,151:655-668.
doi: 10.1104/pp.109.141838
[26] Lee B H, Kim J H . Spatio-temporal distribution patterns of GRF-INTERACTING FACTOR expression and leaf size control. Plant Signal Behav, 2014,9:1-4.
[27] Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx K S, Eeckhout D, Han S K, Jégu T, Archacki R, Leene J V, Andriankaja M, De Bodt S, Abeel T, Coppens F, Dhondt S, De Milde L, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, De Jaeger G, Inzé D . ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell, 2014,26:210-229.
doi: 10.1105/tpc.113.115907
[28] Wu L, Zhang D F, Xue M, Qian J J, He Y, Wang S C . Overexpression of the maize GRF10, an endogenous truncated GROWTH- REGULATING FACTOR protein, leads to reduction in leaf size and plant height. J Integr Plant Biol, 2014,56:1053-1063.
doi: 10.1111/jipb.12220
[29] Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, van Bel M, Vervoort M, Candaele J, De Block J, Aesaert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inzé D, De Jaeger G, . Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell, 2015,27:1605-1619.
doi: 10.1105/tpc.15.00269
[30] Wu L, Zhang D F, Xue M, Qian J J, He Y, Wang S C . Overexpression of the maize GRF10, an endogenous truncated GROWTH-REGULATING FACTOR protein, leads to reduction in leaf size and plant height. J Integr Plant Biol, 2014,56:1053-1063.
doi: 10.1111/jipb.12220
[31] Omidbakhshfard M A, Fujikura U, Olas J J, Xue G P, Balazadeh S, Mueller-Roeber B . GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genet, 2018,14:e1007484.
doi: 10.1371/journal.pgen.1007484
[32] Ng S C, Anderson A, Coker J, Ondrus M . Characterization of lipid oxidation products in quinoa (Chenopodium quinoa). Food Chem, 2006,101:185-192.
doi: 10.1016/j.foodchem.2006.01.016
[33] Ogungbenle H N . Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int J Food Sci Nutr, 2009,54:153-158.
doi: 10.1080/0963748031000084106
[34] Razzaghi F, Ahmadi S H, Adolf V I, Jensen C R, Jacobsen S E, Andersen M N . Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci, 2011,197:348-360.
doi: 10.1111/j.1439-037X.2011.00473.x
[35] Jacobsen S E, Monteros C, Christiansen J L, Bravo L A, Corcuera L J, Mujica A . Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron, 2005,22:131-139.
doi: 10.1016/j.eja.2004.01.003
[36] Hariadi Y, Marandon K, Tian Y, Jacobsen S E, Shabala S . Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot, 2011,62:185-193.
doi: 10.1093/jxb/erq257
[37] Jarvis D E, Ho Y S, Lightfoot D J, Schmockel S M, Li B, Borm T J A, Ohyanagi H, Mineta K, Michell C T, Saber N, Kharbatia N M, Rupper R R, Sharp A R, Dally N, Boughton B A, Woo Y H, Gao G, Schijlen E G W M, Guo X J, Momin A A, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold S T, Gojobori T, van der Linden C G, van Loo E N, Jellen E N, Maughan P J, Tester M . The genome of Chenopodium quinoa. Nature, 2017,542:307-312.
doi: 10.1038/nature21370
[38] Liu J X, Wang R M, Liu W Y, Zhang H L, Guo Y D, Wen R Y . Genome-wide characterization of heat-shock protein 70S from Chenopodium quinoa and expression analyses of Cqhsp70s in response to drought stress. Genes, 2018,9:35. doi: 10.3390/ genes9020035.
doi: 10.3390/genes9020035
[39] Zhang D F, Li B, Jia G Q, Zhang T F, Dai J R, Li J S, Wang S C . Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci, 2008,175:809-817.
doi: 10.1016/j.plantsci.2008.08.002
[40] Khatun K, Robin A H K, Park J I, Nath U K, Kim C K, Lim K B, Nou I S, Chung M Y . Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones. Int J Mol Sci, 2017,18:1056. doi: 10.3390/ijms18051056.
doi: 10.3390/ijms18051056
[41] Noon J B, Hewezi T, Baum T J . Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot, 2019,70:1653-1668.
doi: 10.1093/jxb/erz022
[42] Vercruyssen L, Tognetti V B, Gonzalez N, Van Dingenen J, De Milde L, Bielach A, De Rycke R, Van Breusegem F, Inzé D . GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity. Plant Physiol, 2015,167:817-832.
doi: 10.1104/pp.114.256180
[43] Kim J S, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K . Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell, 2012,24:3393-3405.
doi: 10.1105/tpc.112.100933
[44] Chandran V, Wang H, Gao F, Cao X L, Chen Y P, Li G B, Zhu Y, Yang X M, Zhang L L, Zhao Z X, Zhao J H, Wang Y G, Li S, Fan J, Li Y, Zhao J Q, Li S Q, Wang W M . miR396-OsGRFs module balances growth and rice blast disease-resistance. Front Plant Sci, 2019,14:1999. doi: 10.3389/fpls.2018.01999.
[45] Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F . OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58:836-847.
doi: 10.1111/jipb.12473
[46] Li S C, Gao F Y, Xie K L, Zeng X H, Cao Y, Zeng J, He Z S, Ren Y, Li W B, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P . The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016,14:2134-2146.
doi: 10.1111/pbi.2016.14.issue-11
[47] Panchy N, Lehti-Shiu M, Shiu S H . Evolution of gene duplication in plants. Plant Physiol, 2016,171:2294-2316.
[48] Yang C Y, Huang Y H, Lin C P, Lin Y Y, Hsu H C, Wang C N, Liu L Y, Shen B N, Lin S S . MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector. Plant Physiol, 2015,168:1702-1716.
doi: 10.1104/pp.15.00307
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[4] DENG Yan, WANG Juan-Ling, WANG Chuang-Yun, ZHAO Li, ZHANG Li-Guang, GUO Hong-Xia, GUO Hong-Xia, QIN Li-Xia, WANG Mei-Xia. Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa [J]. Acta Agronomica Sinica, 2021, 47(7): 1383-1390.
[5] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[6] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[7] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[8] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[9] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[10] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[11] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[12] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[13] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[14] WANG Yan-Hua,XIE Ling,YANG Bo,CAO Yan-Ru,LI Jia-Na. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis [J]. Acta Agronomica Sinica, 2019, 45(8): 1137-1145.
[15] Hong-Ju JIAN,Bo YANG,Yang-Yang LI,Hong YANG,Lie-Zhao LIU,Xin-Fu XU,Jia-Na LI. Identification and expression analysis of PEBP gene family in oilseed rape [J]. Acta Agronomica Sinica, 2019, 45(3): 354-364.
Full text



No Suggested Reading articles found!