Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 2008-2016.doi: 10.3724/SP.J.1006.2020.03022

• RESEARCH NOTES • Previous Articles    

Cloning and functional analysis of ZmbHLH161 gene in maize

Meng-Ting YANG1,2(), Chun ZHANG2(), Zuo-Ping WANG2, Hua-Wen ZOU1,*(), Zhong-Yi WU2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434023, Hubei, China
    2Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2020-03-28 Accepted:2020-06-02 Online:2020-06-22 Published:2020-06-22
  • Contact: Hua-Wen ZOU,Zhong-Yi WU E-mail:yangmengting213@163.com;spring2007318@163.com;zouhuawen73@hotmail.com;zwu22@126.com
  • Supported by:
    Beijing Academy of Agricultural Youth Fund(QNJJ201724);Beijing Academy of Agricultural and Forestry Sciences(KJCX20200204);Beijing Academy of Agricultural and Forestry Sciences(KJCX20200205);Beijing Academy of Agricultural and Forestry Sciences(KJCX20200407);National Natural Science Foundation of China(31971839);National Natural Science Foundation of China(31471510)


bHLH transcription factors are the second largest family of transcription factors in plants and play an important role in regulating plant growth and development, signal transduction, and stress response. In order to study the function of maize bHLH family genes in response to stress, ZmbHLH161 (AC: NC_AQK75074) gene from maize root tissue was cloned in this study. Bioinformatic analysis showed that this gene contains 3 exons, the full-length of its cDNA is 1460 bp, coding sequence is 1059 bp in length, encoding 352 amino acids. It exists as a single copy in the maize genome and its function is unknown. The molecular weight of ZmbHLH161 protein is 37.1 kD, and its theoretical isoelectric point is 6.10, with a conserved domain unique to the bHLH transcription factor family, but does not have a transmembrane structure or signal peptide. It is a hydrophilic protein, and the secondary structure of the protein has a maximum proportion of 42.05%. Transient expression experiments in maize protoplasts showed that ZmbHLH161 was localized in the nucleus. Real-time quantitative PCR (qPCR) analysis showed that under normal growth conditions, ZmbHLH161 was mainly expressed in roots and immature embryos, while under dehydration and drought treatment, ZmbHLH161 was up-regulated in maize seedling leaves. After treated with different concentrations of NaCl, the root length of ZmbHLH161 transgenic heterologous Arabidopsis strains was not significantly different from that of wild type, and their root was longer than that of wild type after being treated with different concentrations of mannitol. It is speculated that ZmbHLH161 gene may be involved in the response of maize to osmotic stress.

Key words: maize, ZmbHLH161, transcription factor, protoplast, qPCR, osmotic stress

Table 1

Primers used in this study"

Number of primer pairs
Primer name
Primer sequence (5′-3′)

Fig. 1

Bioinformatics analysis of ZmbHLH161 A: amino acid sequence alignment; B: protein secondary structure prediction; C: transmembrane structure prediction."

Fig. 2

Phylogenetic tree of the deduced amino acid sequences of the bHLH transcription factors in Arabidopsis, rice, and maize"

Fig. 3

Promoter analysis of ZmbHLH161"

Fig. 4

Subcellular localization of ZmbHLH161 protein in maize leaf protoplasts GFP: GFP-labeled ZmbHLH161 subcellular localization in maize protoplasts; DAPI: DAPI-labeled protoplast nuclei; Bright: protoplasts under the same field of view light microscope; Merged: superposition of light microscope and fluorescence photos; CK: transfer empty vector protoplasts; ZmbHLH161: transfer into protoplast of target vector; Bar = 3 μm."

Fig. 5

Relative expression level of ZmbHLH161 in different maize tissues"

Fig. 6

Real-time quantitative PCR analysis for expression level of ZmbHLH161 gene under different treatments in leaf and root A: drought treatment; B: dehydration treatment; C: cold (4℃) treatment; D: high salt (200 mmol L-1 NaCl) treatment. The error bar represents ± SD of three biological replications."

Fig. 7

PCR detection of T1 generation Arabidopsis M: DL2000 marker; P: positive control; W: wild-type Arabidopsis; N: negative control; 1-3: T1 Arabidopsis generation."

Fig. 8

Root length of transgenic Arabidopsis thaliana on gradient NaCl concentrations A-D indicates the seedling growth under the NaCl concentrations of 0, 0.10, 0.15, and 0.18 mol L-1; E: the average main root length; WT: wild type; OE: ZmbHLH161 transgenic Arabidopsis thaliana. Bar = 1.5 cm"

Fig. 9

Root length of transgenic Arabidopsis thaliana on gradient mannitol concentrations A-D indicates the seedling growth under the mannitol concentrations of 0, 0.15, 0.2, and 0.3 mol L-1; E: the average main root length of Arabidopsis at different mannitol concentrations; WT: wild type; OE: ZmbHLH161 of transgenic Arabidopsis thaliana; Bar = 1.5 cm. * and ** indicate that the root length of transgenic Arabidopsis thaliana is significantly different from that of wild type (P < 0.05) and the difference is extremely significant (P<0.01)."

[1] 刘天金, 王玉玺, 宁明宇, 靖飞, 董晓霞, 王志敏, 刘春青 . 我国玉米种业转型升级的路径与策略探讨. 中国种业, 2018, ( 2):1-7.
Liu T J, Wang Y X, Ning M Y, Jing F, Dong X J, Wang Z M, Liu C Q . Discussion on the path and strategy of transformation and upgrading of China’s maize seed industry. China Seed Ind, 2018, ( 2):1-7 (in Chinese).
[2] 余爱丽, 赵晋锋, 王高鸿, 杜艳伟, 李颜方, 张正 . 玉米ZmSAMS1基因在盐、干旱等逆境胁迫下的表达分析. 玉米科学, 2016,24(3):31-35.
Yu A L, Zhao J F, Wang G H, Du Y W, Li Y F, Zhang Z . Expression analysis of ZmSAMS1 gene under salt, drought and other stress. J Maize Sci, 2016,24(3):31-35 (in Chinese with English abstract).
[3] 张艳馥, 沙伟 . 转录因子概述. 生物学教学, 2009, 34, ( 10):7-8.
Zhang Y F, Sha W . Overview of transcription factors. Biol Teach, 2009, 34, ( 10):7-8 (in Chinese).
[4] Murre C, McCaw P S, Baltimore D . A new DNA binding and dimerizing motif in immunoglobulin enhancer binding, daugtherless, MyoD, and MYC proteins. Cell, 1989,56:777-783.
doi: 10.1016/0092-8674(89)90682-x pmid: 2493990
[5] Nuno P, Liam D . Origin and diversification of basic- helix-loop-helix proteins in plants. Mol Biol Evol, 2010,27:862-874.
doi: 10.1093/molbev/msp288 pmid: 19942615
[6] Atchley W R, Fitch W M . A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA, 1997,94:5172-5176.
doi: 10.1073/pnas.94.10.5172 pmid: 9144210
[7] 罗赛男, 杨国顺, 石雪晖, 卢向阳, 徐萍 . 转录因子在植物抗逆性上的应用研究. 湖南农业大学学报(自然科学版), 2005,31:219-223.
Luo S N, Yang G S, Shi X H, Lu X Y, Xu P . On the application of transcription factors to plant stress resistance. J Hunan Agric Univ (Nat Sci Edn), 2005,31:219-223 (in Chinese with English abstract).
[8] Anna-Marie S, Sandra K, Ulrike S, Unte P H, Koen D, Heinz S . The Arabidopsis ABORTED MICROSPORES(AMS) gene encodes a MYC class transcription factor. Plant J, 2003,33:413-423.
doi: 10.1046/j.1365-313x.2003.01644.x pmid: 12535353
[9] Dany H, Hidenori S . Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One, 2012,7:e31325.
doi: 10.1371/journal.pone.0031325 pmid: 22363621
[10] Ikeda M, Mitsuda N, Ohme-Takagi M . ATBS1 INTERACTING FACTORs negatively regulate Arabidopsis cell elongation in the triantagonistic bHLH system. Plant Signal Behav, 2013,8:e23448.
doi: 10.4161/psb.23448 pmid: 23333962
[11] Endo T, Fujii H, Sugiyama A, Nakano M, Nakajima N, Ikoma Y, Omura M . Overexpression of a citrus basic helix-loop-helix transcription factor ( CubHLH1), which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes, modulates carotenoid metabolism in transgenic tomato. Plant Sci, 2016,243:35-48.
doi: 10.1016/j.plantsci.2015.11.005 pmid: 26795149
[12] Danielle M F, Jennifer N, Takamichi M, Julin N M, José A, Joseph R E, Masaki F, Joanne C . Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 2002,162:1445-1456.
pmid: 12454087
[13] Ni M, Tepperman J M, Quail P H . Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature, 1999,400:781-784.
doi: 10.1038/23500 pmid: 10466729
[14] Huq E . PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 2002,21:2441-2450.
doi: 10.1093/emboj/21.10.2441 pmid: 12006496
[15] Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, Seto H, Okada K, Nojiri H, Yamane H . Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem, 2005,69:1042-1044.
doi: 10.1271/bbb.69.1042 pmid: 15914931
[16] Li H M, Sun J Q, Xu Y X, Jiang H L, Wu X Y, Li C Y . The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol, 2007,65:655-665.
doi: 10.1007/s11103-007-9230-3
[17] Jiang Y Q, Yang B, Deyholos M K . Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009,282:503-516.
doi: 10.1007/s00438-009-0481-3 pmid: 19760256
[18] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K . ICE: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003,17:1043-1054.
doi: 10.1101/gad.1077503 pmid: 12672693
[19] Ogo Y, Itai R N, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa N K . The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J, 2007,51:366-377.
doi: 10.1111/j.1365-313X.2007.03149.x pmid: 17559517
[20] Li Z X, Liu C, Zhang Y, Wang B M, Ran Q J, Zhang J R . The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot, 2019,70:5471-5486.
doi: 10.1093/jxb/erz307 pmid: 31267122
[21] Bailey P C, Martin C, Toledo-Otriz G, Quail P H, Huq E, Heim M A, Jakoby M, Werber M, Weisshaar B . Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 2003,15:2497-2501.
doi: 10.1105/tpc.151140 pmid: 14600211
[22] Li X, Duan X, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W Q, Chen L, Yin J Y, Ma H, Wang J, Zhang D B . Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006,141:1167-1184.
doi: 10.1104/pp.106.080580 pmid: 16896230
[23] Zhang T T, Wei L, Zhang H S, Ma L, Li P H, Ge L, Li G . Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol, 2018,18:235.
doi: 10.1186/s12870-018-1441-z pmid: 30326829
[24] Yoo S D, Cho Y H, Sheen J . Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007,2:1565-1572.
doi: 10.1038/nprot.2007.199 pmid: 17585298
[25] Livak K J, Schmittgen T D . Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[27] Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P . Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008,30:2191-2198.
doi: 10.1007/s10529-008-9811-5 pmid: 18779926
[28] Rozenn L H, Mathieu C, Dipankar C, Thomas M, Catherine B . At bHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis. Physiol Plant, 2017,160:312-327.
doi: 10.1111/ppl.12549 pmid: 28369972
[29] Yao P F, Li C L, Zhao X R, Li M F, Zhao H X, Guo J Y, Cai Y, Chen H, Wu Q . Overexpression of a tartary buckwheat gene, FtbHLH3, Enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Front Plant Sci, 2017,8:625.
doi: 10.3389/fpls.2017.00625 pmid: 28487715
[30] Li F, Guo S Y, Zhao Y, Chen D Z, Chong K, Xu Y Y . Overexpression of a homopeptide repeat-containing bHLH protein gene ( OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 2010,29:977-986.
doi: 10.1007/s00299-010-0883-z
[31] Zhou J, Li F, Wang J L, Ma Y, Chong K, Xu Y Y . Basic helix-loop-helix transcription factor from wild rice ( OrbHLH2) improves tolerance to salt and osmotic stress in Arabidopsis. J Plant Physiol, 2009,166:1296-1306.
doi: 10.1016/j.jplph.2009.02.007 pmid: 19324458
[32] Liu W W, Tai H H, Li S S, Gao W, Zhao M, Xie C X, Li W X . bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol, 2014,201:1192-1204.
doi: 10.1111/nph.12607
[33] Xu W R, Zhang N B, Jiao Y T, Li R M, Xiao D M, Wang Z . The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Mol Biol Rep, 2014,41:5329-5342.
doi: 10.1007/s11033-014-3404-2
[34] Zhao Q, Xiang X, Liu D, Yang A, Wang Y . Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front Plant Sci, 2018,9:381.
doi: 10.3389/fpls.2018.00381 pmid: 29643858
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[7] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[8] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[9] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[10] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[11] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Full text



No Suggested Reading articles found!