Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 2008-2016.doi: 10.3724/SP.J.1006.2020.03022
• RESEARCH NOTES • Previous Articles
Meng-Ting YANG1,2(), Chun ZHANG2(), Zuo-Ping WANG2, Hua-Wen ZOU1,*(), Zhong-Yi WU2,*()
[1] | 刘天金, 王玉玺, 宁明宇, 靖飞, 董晓霞, 王志敏, 刘春青 . 我国玉米种业转型升级的路径与策略探讨. 中国种业, 2018, ( 2):1-7. |
Liu T J, Wang Y X, Ning M Y, Jing F, Dong X J, Wang Z M, Liu C Q . Discussion on the path and strategy of transformation and upgrading of China’s maize seed industry. China Seed Ind, 2018, ( 2):1-7 (in Chinese). | |
[2] | 余爱丽, 赵晋锋, 王高鸿, 杜艳伟, 李颜方, 张正 . 玉米ZmSAMS1基因在盐、干旱等逆境胁迫下的表达分析. 玉米科学, 2016,24(3):31-35. |
Yu A L, Zhao J F, Wang G H, Du Y W, Li Y F, Zhang Z . Expression analysis of ZmSAMS1 gene under salt, drought and other stress. J Maize Sci, 2016,24(3):31-35 (in Chinese with English abstract). | |
[3] | 张艳馥, 沙伟 . 转录因子概述. 生物学教学, 2009, 34, ( 10):7-8. |
Zhang Y F, Sha W . Overview of transcription factors. Biol Teach, 2009, 34, ( 10):7-8 (in Chinese). | |
[4] |
Murre C, McCaw P S, Baltimore D . A new DNA binding and dimerizing motif in immunoglobulin enhancer binding, daugtherless, MyoD, and MYC proteins. Cell, 1989,56:777-783.
doi: 10.1016/0092-8674(89)90682-x pmid: 2493990 |
[5] |
Nuno P, Liam D . Origin and diversification of basic- helix-loop-helix proteins in plants. Mol Biol Evol, 2010,27:862-874.
doi: 10.1093/molbev/msp288 pmid: 19942615 |
[6] |
Atchley W R, Fitch W M . A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA, 1997,94:5172-5176.
doi: 10.1073/pnas.94.10.5172 pmid: 9144210 |
[7] | 罗赛男, 杨国顺, 石雪晖, 卢向阳, 徐萍 . 转录因子在植物抗逆性上的应用研究. 湖南农业大学学报(自然科学版), 2005,31:219-223. |
Luo S N, Yang G S, Shi X H, Lu X Y, Xu P . On the application of transcription factors to plant stress resistance. J Hunan Agric Univ (Nat Sci Edn), 2005,31:219-223 (in Chinese with English abstract). | |
[8] |
Anna-Marie S, Sandra K, Ulrike S, Unte P H, Koen D, Heinz S . The Arabidopsis ABORTED MICROSPORES(AMS) gene encodes a MYC class transcription factor. Plant J, 2003,33:413-423.
doi: 10.1046/j.1365-313x.2003.01644.x pmid: 12535353 |
[9] |
Dany H, Hidenori S . Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One, 2012,7:e31325.
doi: 10.1371/journal.pone.0031325 pmid: 22363621 |
[10] |
Ikeda M, Mitsuda N, Ohme-Takagi M . ATBS1 INTERACTING FACTORs negatively regulate Arabidopsis cell elongation in the triantagonistic bHLH system. Plant Signal Behav, 2013,8:e23448.
doi: 10.4161/psb.23448 pmid: 23333962 |
[11] |
Endo T, Fujii H, Sugiyama A, Nakano M, Nakajima N, Ikoma Y, Omura M . Overexpression of a citrus basic helix-loop-helix transcription factor ( CubHLH1), which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes, modulates carotenoid metabolism in transgenic tomato. Plant Sci, 2016,243:35-48.
doi: 10.1016/j.plantsci.2015.11.005 pmid: 26795149 |
[12] |
Danielle M F, Jennifer N, Takamichi M, Julin N M, José A, Joseph R E, Masaki F, Joanne C . Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 2002,162:1445-1456.
pmid: 12454087 |
[13] |
Ni M, Tepperman J M, Quail P H . Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature, 1999,400:781-784.
doi: 10.1038/23500 pmid: 10466729 |
[14] |
Huq E . PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 2002,21:2441-2450.
doi: 10.1093/emboj/21.10.2441 pmid: 12006496 |
[15] |
Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, Seto H, Okada K, Nojiri H, Yamane H . Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem, 2005,69:1042-1044.
doi: 10.1271/bbb.69.1042 pmid: 15914931 |
[16] |
Li H M, Sun J Q, Xu Y X, Jiang H L, Wu X Y, Li C Y . The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol, 2007,65:655-665.
doi: 10.1007/s11103-007-9230-3 |
[17] |
Jiang Y Q, Yang B, Deyholos M K . Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009,282:503-516.
doi: 10.1007/s00438-009-0481-3 pmid: 19760256 |
[18] |
Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K . ICE: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003,17:1043-1054.
doi: 10.1101/gad.1077503 pmid: 12672693 |
[19] |
Ogo Y, Itai R N, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa N K . The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J, 2007,51:366-377.
doi: 10.1111/j.1365-313X.2007.03149.x pmid: 17559517 |
[20] |
Li Z X, Liu C, Zhang Y, Wang B M, Ran Q J, Zhang J R . The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot, 2019,70:5471-5486.
doi: 10.1093/jxb/erz307 pmid: 31267122 |
[21] |
Bailey P C, Martin C, Toledo-Otriz G, Quail P H, Huq E, Heim M A, Jakoby M, Werber M, Weisshaar B . Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 2003,15:2497-2501.
doi: 10.1105/tpc.151140 pmid: 14600211 |
[22] |
Li X, Duan X, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W Q, Chen L, Yin J Y, Ma H, Wang J, Zhang D B . Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006,141:1167-1184.
doi: 10.1104/pp.106.080580 pmid: 16896230 |
[23] |
Zhang T T, Wei L, Zhang H S, Ma L, Li P H, Ge L, Li G . Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol, 2018,18:235.
doi: 10.1186/s12870-018-1441-z pmid: 30326829 |
[24] |
Yoo S D, Cho Y H, Sheen J . Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007,2:1565-1572.
doi: 10.1038/nprot.2007.199 pmid: 17585298 |
[25] |
Livak K J, Schmittgen T D . Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[26] |
Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[27] |
Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P . Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008,30:2191-2198.
doi: 10.1007/s10529-008-9811-5 pmid: 18779926 |
[28] |
Rozenn L H, Mathieu C, Dipankar C, Thomas M, Catherine B . At bHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis. Physiol Plant, 2017,160:312-327.
doi: 10.1111/ppl.12549 pmid: 28369972 |
[29] |
Yao P F, Li C L, Zhao X R, Li M F, Zhao H X, Guo J Y, Cai Y, Chen H, Wu Q . Overexpression of a tartary buckwheat gene, FtbHLH3, Enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Front Plant Sci, 2017,8:625.
doi: 10.3389/fpls.2017.00625 pmid: 28487715 |
[30] |
Li F, Guo S Y, Zhao Y, Chen D Z, Chong K, Xu Y Y . Overexpression of a homopeptide repeat-containing bHLH protein gene ( OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 2010,29:977-986.
doi: 10.1007/s00299-010-0883-z |
[31] |
Zhou J, Li F, Wang J L, Ma Y, Chong K, Xu Y Y . Basic helix-loop-helix transcription factor from wild rice ( OrbHLH2) improves tolerance to salt and osmotic stress in Arabidopsis. J Plant Physiol, 2009,166:1296-1306.
doi: 10.1016/j.jplph.2009.02.007 pmid: 19324458 |
[32] |
Liu W W, Tai H H, Li S S, Gao W, Zhao M, Xie C X, Li W X . bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol, 2014,201:1192-1204.
doi: 10.1111/nph.12607 |
[33] |
Xu W R, Zhang N B, Jiao Y T, Li R M, Xiao D M, Wang Z . The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Mol Biol Rep, 2014,41:5329-5342.
doi: 10.1007/s11033-014-3404-2 |
[34] |
Zhao Q, Xiang X, Liu D, Yang A, Wang Y . Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front Plant Sci, 2018,9:381.
doi: 10.3389/fpls.2018.00381 pmid: 29643858 |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[6] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[7] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[8] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[9] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[10] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[11] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[12] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[13] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[14] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[15] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
|