Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1697-1708.doi: 10.3724/SP.J.1006.2022.14123

• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional analysis of GmTGA26 gene under salt stress in soybean

KE Dan-Xia(), HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue   

  1. College of Life Sciences, Xinyang Normal University / Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang 464000, Henan, China
  • Received:2021-07-14 Accepted:2021-10-19 Online:2022-07-12 Published:2021-11-02
  • Contact: KE Dan-Xia E-mail:kdx_029@163.com
  • Supported by:
    National Natural Science Foundation of China(U1904102);Training Plan for Young Backbone Teachers in Colleges and Universities in Henan Province;Nanhu Scholars Program for Young Scholars of Xinyang Normal University

Abstract:

TGA transcription factors are a subfamily of bZIP, which play important roles in pathogen and abiotic stress responses. A TGA transcription factor family gene GmTGA26 was screened and cloned from soybean in this study. Homologous protein comparison showed that GmTGA26 had a conserved leucine zipper domain and had the highest homology with wild soybean. The analysis of gene expression characteristics revealed that GmTGA26 gene was induced by salt stress in soybean. In addition, GmTGA26 gene encoded nuclear localization protein and had transcriptional activation activity. The “complex” soybean plants overexpressing GmTGA26 were obtained through Agrobacterium rhizogenes-mediated hairy root transformation of soybean. The growth state of “complex” soybean plants was better than the empty vector control under salt stress. Meanwhile, the MDA content and relative plasma membrane permeability decreased significantly (P < 0.05), while the chlorophyll content and root activity increased significantly (P < 0.05). The qRT-PCR results indicated that overexpression of GmTGA26 in soybean hairy roots under salt stress could significantly up-regulate the expression of stress response genes. The above results showed that overexpression of GmTGA26 significantly enhanced the salt tolerance of “complex” soybean plants. It is speculated that GmTGA26 participates in the regulation of soybean salt stress response by regulating a series of downstream stress response genes.

Key words: soybean, TGA transcription factor, hairy root transformation, saline tolerance

Table 1

Primers used for gene expression analysis and vector construction"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
GmTGA26 ATGGCTGACGCCAGTCCTA TCAGTCTCTTGGGCGGG
GmTGA26-OE CGGGATCCATGGCTGACG GGGGTACCTCAGTCTCTTGGGC
GUS GTCGCGCAAGACTGTAACCA CGGCGAAATTCCATACCTG
GmTGA26-qRT GGAGCAACAGTTAGTGGGTATCAC CTTCCATGCCCTGAGACAAAGC
ACT11-qRT GAGCTATGAATTGCCTGATGG CGTTTCATGAATTCCAGTAGC
GmDHN15-qRT TTTTGTTTTGTTGTATTGTGTAG GAAAAATCCTCCACCTGACGA
GmWD40-qRT TGCCAGTCTCGTTAGGCTTTTC CTTATTGAGTTGTTGTTTGGCAG
GmMYB48-qRT AACAACACTCTTCAGCCAGTTT GGGCAAAACAAACTTTCCTCAT
GmGST1-qRT CACAATGAGCAGCCCATAGCA CTTCAACATTCTTCTCACGCTCT
GmLEA-qRT GGTGGGTGAAACCGCACAAGA ATGGATGCCGCCACTCCGCCAG
GmNHX5-qRT GTCTGGGTTCAGTCTCGCAC ATCAGAAAGAGCAAGCCACCA
GmSOS1-qRT TTGTGCTGCATTTCTTCGAG CGTGCTTCTTCTCCTTCCAC

Fig. 1

Sequence alignment and phylogenetic tree analysis of GmTGA26 and its homologous proteins A: the conserved BRLZ (basic region leucin zipper) domain alignment analysis of GmTGA26 and its homologous proteins in some other plants; B: phylogenetic tree of GmTGA26 and its homologs. The scale represents genetic distance, indicating the proximity relationships among species."

Fig. 2

Relative expression analysis of GmTGA26 gene under different abiotic stresses treatments * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 3

Subcellular localization and transcription activation analysis of GmTGA26 A: co-localization of GmTGA26; the recombinant plasmids of GmTGA26-GFP and NtTGA2.2-RFP were co-transformed into Arabidopsis protoplasts, and 35S::GFP and NtTGA2.2-RFP were used as positive control; bar: 10 µm; B: transcriptional activity analysis of GmTGA26 in yeast cells. DDO: double dropout medium (SD/-Leu/-Trp); DDO/X/A: double dropout medium with 125 ng mL-1 Aureobasidin A and 40 μg mL-1 X-α-gal; QDO: quadruple dropout medium (SD/-Ade/-His/-Leu/-Trp); BD-53+AD-T: positive interaction control; BD-Lam+AD-T: negative control."

Fig. 4

Positive hairy roots identification of transgenic soybean composite plants A: GUS staining of negative hairy root; B: GUS staining of positive hairy root; C: detection of GUS gene in positive hairy roots by PCR. Bar: 200 μm; M: 1 kb DNA ladder; 1-7: PCR amplification of GUS gene."

Fig. 5

Performance of GmTGA26 transgenic composite soybean plants under salt stress A: growth status of plants treated with different concentrations of salt for one week; bar: 2 cm; B: relative GmTGA26 expression level in hairy roots by qRT-PCR, and ACTIN11 gene was used as internal reference; C-E: total root length, shoot and root dry weight were measured one week after treatments. EV: empty vector; OE: overexpressing GmTGA26 plants. Values are presented as means of three independent replicates (n = 20); the error bars indicate SDs; * and ** mean significant difference at the 0.05 and 0.01probability levels, respectively."

Fig. 6

Physiological characteristics of transgenic soybean under salt stress EV: empty vector; OE: overexpressing GmTGA26 plants. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 7

Relative expression levels of five stress-responsive genes in soybean hairy roots under the normal and 100 mmol L-1 NaCl treatments EV: empty vector; OE: overexpressing GmTGA26 plants. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 8

Relative expression levels of two salt stress-responsive genes in soybean hairy roots under the normal and 100 mmol L-1 NaCl treatments EV: empty vector; OE: overexpressing GmTGA26 plants. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

[1] 唐宁, 王旭熙, 余娇娇. 世界大豆生产走势及我国大豆产业复兴策略. 南方农业, 2018, 12(31): 88-92.
Tang N, Wang X X, Yu J J. The trend of soybean production in the world and the revival strategy of soybean industry in China. South China Agric, 2018, 12(31): 88-92. (in Chinese with English abstract)
[2] 盖钧镒. 发展我国大豆遗传改良事业解决国内大豆供给问题. 中国工程科学, 2003, 5(5): 1-6.
Gai J Y. Developing soybean genetic improvement in China, solve the problem of domestic soybean supply. Eng Sci, 2003, 5(5): 1-6. (in Chinese with English abstract)
[3] 张威, 廖锡良, 喻德跃, 阚贵珍. 大豆耐盐性研究进展. 土壤与作物, 2018, 7: 284-292.
Zhang W, Liao X L, Yu D Y, Kan G Z. A review of salt tolerance in soybean (Glycine max (L.) Merill). Soils Crops, 2018, 7: 284-292. (in Chinese with English abstract)
[4] 唐晓飞, 董兴月, 魏崃, 薛永国, 刘丽君. 转大豆Na+/H+逆向转运蛋白GmNHX1基因植株的获得. 分子植物育种, 2016, 14: 904-909.
Tang X F, Dong X Y, Wei L, Xue Y G, Liu L J. Obtaining transgenic soybean plant with Na+/H+ antiporter (GmNHX1). Mol Plant Breed, 2016, 14: 904-904. (in Chinese with English abstract)
[5] Sun T J, Fan L, Yang J, Cao R Z, Zhang J, Wang D M. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na+ efflux rate and K+/Na+ ratio in Arabidopsis. BMC Plant Biol, 2019, 19: 469.
doi: 10.1186/s12870-019-2084-4
[6] 周国安. 大豆抗逆基因GmUBC2GmPKGmNHX2分离与功能研究. 中国农业科学院博士学位论文, 北京, 2009.
Zhou G A. Isolation and Function of Stress Resistance Genes GmUBC2, GmPK and GmNHX2 in Soybean. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2009. (in Chinese with English abstract)
[7] Zhou G A, Guan R X, Li Y H. Molecular characterization of GmNHX2, a Na+/H+ antiporter gene homolog from soybean and its heterologous expression to improve salt tolerance in Arabidopsis. Chin Sci Bull , 2009, 54: 3536-3545.
[8] Sun T J, Ma N, Wang C Q, Fan H F, Wang M X, Zhang J, Cao J F, Wang D M. A golgi-localized sodium/hydrogen exchanger positively regulates tolerance by maintaining higher K+/Na+ ratio in soybean. Front Plant Sci, 2021, 12: 1-15.
[9] Guan R X, Qu Y, Guo Y, Yu L L, Yin L, Jiang J H, Chen J G, Ren Y L, Liu G Y, Tian L, Jin L G, Liu Z X, Hong H L, Chang R Z, Gilliham M, Qiu L J. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 2014, 80: 937-950.
doi: 10.1111/tpj.12695
[10] Luo G Z, Wang H W, Huang J, Tian A G, Wang Y J, Zhang J S, Chen S Y. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 2005, 59: 809-820.
doi: 10.1007/s11103-005-1386-0
[11] Wei P P, Wang L C, Liu A L, Yu B J, Lam H M. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front Plant Sci, 2016, 7: 1082.
[12] Chen H T, Chen X, Gu H P, Wu B Y, Zhang H M, Yuan X X, Cui X Y. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul, 2014, 73: 299-308.
doi: 10.1007/s10725-014-9890-3
[13] 陈华涛, 陈新, 顾和平, 陈满峰, 张红梅, 袁星星, 崔晓艳. 大豆GmHKT6;2基因的克隆与表达特性分析. 华北农学报, 2012, 27(3): 1-5.
Chen H T, Chen X, Gu H P, Chen M F, Zhang H M, Yuan X X, Cui X Y. Cloning and expressing pattern analysis of GmHKT6;2 in soybean. Acta Agric Boreali-Sin, 2012, 27(3): 1-5. (in Chinese with English abstract)
[14] 王传琦, 孔稳稳, 李晶. 植物转录因子最新研究方法. 生物技术通讯, 2013, 24(1): 118-123.
Wang C Q, Kong W W, Li J. Current research method of transcription factors in plants. Lett Biotechnol, 2013, 24(1): 118-123. (in Chinese with English abstract)
[15] 王冰, 程宪国. 干旱、高盐及低温胁迫下植物生理及转录因子的应答调控. 植物营养与肥料学报, 2017, 23: 1565-1574.
Wang B, Cheng X G. Physiological responses and regulatory pathways of transcription factors in plants under drought, high-salt, and low temperature stress. J Plant Nutr Fert, 2017, 23: 1565-1574. (in Chinese with English abstract)
[16] Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran L P. In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Res, 2009, 16: 353-369.
doi: 10.1093/dnares/dsp023
[17] Wang F B, Ren X Q, Zhang F, Qi M Y, Zhao H Y, Chen X H, Ye Y X, Yang J Y, Li S G, Zhang Y, Niu Y, Zhou Q. A R2R3-type MYB transcription factor gene from soybean, Gm-MYB12, is involved in flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis. Plant Biotechnol Rep , 2019, 13: 219-233.
doi: 10.1007/s11816-019-00530-7
[18] Wang F, Chen H W, Li Q T, Wei W, Li W, Zhang W K, Ma B, Bi Y D, Lia Y C, Liu X L, Man W Q, Zhang J S, Chen S Y. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J, 2015, 83: 224-236.
doi: 10.1111/tpj.12879
[19] Li X W, Wang Y, Yan F, Li J W, Zhao Y, Zhao X, Zhai Y, Wang Q Y. Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis. Genet Mol Res, 2016, 15: doi: 10. 4238/gmr.15026573.
[20] Du Y T, Zhao M J, Wang C T, Gao Y, Wang Y Z, Liu Y W, Chen M, Chen J, Zhou Y B, Xu Z S, Ma Y Z. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol, 2018, 18: 320.
doi: 10.1186/s12870-018-1551-7
[21] Zhang W X, Wang N, Yang J T, Guo H, Liu Z H, Zheng X J, Li S, Xiang F N. The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean. Plant Sci, 2020, 291: 110326.
doi: 10.1016/j.plantsci.2019.110326
[22] Zhao M J, Yin L J, Liu Y, Ma J, Zheng J Z, Lan J H, Fu J D, Chen M, Xu Z S, Ma Y Z. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biol, 2019, 19: 506.
doi: 10.1186/s12870-019-2066-6
[23] Zhao M J, Yin L J, Ma J, Zheng J C. The roles of GmERF135 in improving salt tolerance and decreasing ABA sensitivity in soybean. Front Plant Sci, 2019, 10: 940.
doi: 10.3389/fpls.2019.00940
[24] Xu Z L, Raza Q, Xu L, He X L, Huang Y Z, Yi J Z, Zhang D Y, Shao H B, Ma H Z, Ali Z. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis. Front Plant Sci, 2018, 9: 809.
doi: 10.3389/fpls.2018.00809
[25] Shi W Y, Du Y T, Ma J, Min D H, Jin L G, Chen J, Cheng M, Zhou Y B, Ma Y Z, Xu Z S, Zhang X H. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci, 2018, 19: 4087.
doi: 10.3390/ijms19124087
[26] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lie G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J, 2011, 68: 302-313.
doi: 10.1111/j.1365-313X.2011.04687.x
[27] Li M, Hu Z, Jiang Q Y, Sun X J, Guo Y, Qi J C, Zhang H. GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean. J Integr Agric, 2018, 17: 530-538.
doi: 10.1016/S2095-3119(17)61721-0
[28] Singh K, Foley R C, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430-436.
doi: 10.1016/S1369-5266(02)00289-3
[29] Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F.bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106-111.
pmid: 11906833
[30] Amir H M, Lee Y, Cho J I, Ahn C H, Lee S K, Jeon J S, Kang H, Lee C H, An G, Park P B. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol, 2010, 72: 557-566.
doi: 10.1007/s11103-009-9592-9
[31] Henriquez-Valencia C, Moreno A A, Sandoval-Ibañez O, Mitina I, Blanco-Herrera F, Cifuentes-Esquivel N, Orellana A. bZIP17 and bZIP60 regulate the expression of BiP3 and other salt stress responsive genes in an UPR-independent manner in Arabidopsis thaliana. J Cell Biochem, 2015, 116: 1638-1645.
doi: 10.1002/jcb.25121 pmid: 25704669
[32] Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228: 225-240.
doi: 10.1007/s00425-008-0731-3
[33] Gibalová A, Renák D, Matczuk K, Dupl’áková N, Cháb D, Twell D, Honys D. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol, 2009, 70: 581-601.
doi: 10.1007/s11103-009-9493-y pmid: 19449183
[34] Assunção A G, Herrero E, Lin Y F, Huettel B, Talukdar S, Smaczniak C, Immink R G, Van Eldik M, Fiers M, Schat H, Aarts M G. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA , 2010, 107: 10296-10301.
doi: 10.1073/pnas.1004788107
[35] Yang O, Popova O, Süthoff U, Lüking I, Dietz K J, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 2009, 436: 45-55.
doi: 10.1016/j.gene.2009.02.010
[36] Chern M S. The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. Plant Synthetic, 1996, 8: 305-321.
[37] Burman N, Bhatnagar A, Khurana J P. OsbZIP48, a HY5 transcription factor ortholog, exerts pleiotropic effects in light- regulated development. Plant Physiol, 2017, 176: 1262-1285.
doi: 10.1104/pp.17.00478
[38] Estiati A, Astuti D, Widyajayantie D, Nugroho S. Overexpression of RF2a in transgenic rice plants cultivar IR64 enhances tolerance to rice tungro virus. J Crop Sci Biotechnol, 2018, 21: 291-299.
doi: 10.1007/s12892-018-0058-0
[39] Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis.Plant Cell Physiol, 2004, 45: 309-317.
[40] 田义, 张彩霞, 康国栋, 李武兴, 张利益, 丛佩华. 植物TGA转录因子研究进展. 中国农业科学, 2016, 49: 632-642.
Tian Y, Zhang C X, Kang G D, Li W X, Zhang L Y, Cong P H. Progress on TGA transcription factors in plant. Sci Agric Sin, 2016, 49: 632-642. (in Chinese with English abstract)
[41] Butterbrodt T, Thurow C, Gatz C. Chromatin immunoprecipitation analysis of the tobacco PR-1a and the truncated CaMV 35S promoter reveals differences in salicylic acid-dependent TGA factor binding and histone acetylation. Plant Mol Biol , 2006, 61: 665-674.
pmid: 16897482
[42] Kesarwani M, Yoo J, Dong X. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis . Plant Physiol, 2007, 144: 336-346.
[43] Canales J, Contreras-López O, Álvarez J M, Gutiérrez R A. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana .Plant J, 2017, 92: 305-316.
[44] Noshi M, Mori D, Tanabe N, Maruta T. Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flag22 . Plant Sci , 2016, 252: 12-21.
[45] Gatz C. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant-Microbe Interact, 2013, 26: 151-159.
doi: 10.1094/MPMI-04-12-0078-IA
[46] Li S, Lauri A, Ziemann M, Busch A, Bhave A, Zachgo S. Nuclearactivity of ROXY1, a glutaredoxin interacting with TGA factors is required for petal development in Arabidopsis thaliana. Plant Cell, 2009, 21: 429-441.
doi: 10.1105/tpc.108.064477
[47] Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller M J, Berger S. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell, 2008, 20: 768-785.
doi: 10.1105/tpc.107.054809 pmid: 18334669
[48] Li N, Muthreich M, Huang L, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana . New Phytol, 2018, 221: 1906-1918.
doi: 10.1111/nph.15496
[49] Li B, Liu Y, Cui X Y, Fu J D, Zhou Y B, Zheng W J, Lan J H, Jin L G, Chen M, Ma Y Z, Xu Z S, Min D H. Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance. Front Plant Sci, 2019, 10: 549.
doi: 10.3389/fpls.2019.00549
[50] 李红丽.大豆转录因子GmTGA基因的克隆及抗逆功能分析. 吉林农业大学硕士学位论文, 吉林长春, 2019.
Li H L. Cloning and Stress Resistance Analysis of Transcription Factor GmTGA in Glycine max. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2019. (in Chinese with English abstract)
[51] Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolor K, Gatz C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J, 2005, 44: 100-113.
doi: 10.1111/j.1365-313X.2005.02513.x
[52] Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes- mediated transformation of soybean to study root biology. Nat Prot, 2007, 2: 948-952.
doi: 10.1038/nprot.2007.141
[53] Ke D, Li X, Han Y, Cheng L, Yuan H, Wang L. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus. Plant Physiol Biochem, 2016, 108: 488-498.
doi: 10.1016/j.plaphy.2016.08.015
[54] 柯丹霞, 李祥永, 王磊, 程琳, 刘永辉, 李小艳, 王慧芳. 大豆GmHAT5的克隆及其转基因百脉根的抗盐分析. 中国农业科学, 2017, 50: 1559-1570.
Ke D X, Li X Y, Wang L, Cheng L, Liu Y H, Li X Y, Wang H F. Isolation of GmHAT5 from Glycine max and analysis of saline tolerance for transgenic Lotus japonicus. Sci Agric Sin, 2017, 50: 1559-1570. (in Chinese with English abstract)
[55] Gao S Q, Chen M, Xu Z S, Zhao C P, Li L, Xu H J, Tang Y M, Zhao X, Ma Y Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol, 2011, 75: 537-553.
doi: 10.1007/s11103-011-9738-4
[56] Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. J Plant Physiol, 2015, 173: 19-27.
doi: 10.1016/j.jplph.2014.09.001
[57] Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli G B, Pezzotti M, Cheng Z M. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine(Vitis vinifera). BMC Genomics, 2014, 15: 281.
doi: 10.1186/1471-2164-15-281
[58] Dong Q, Xu Q, Kong J, Peng X, Zhou W, Chen L, Wu J, Xiang Y, Jiang H, Cheng B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci, 2019, 283: 407-415.
doi: 10.1016/j.plantsci.2019.03.001
[59] Kesarwani M, Yoo J, Dong X.Genetic interactions of TGA transcription factors in the regulation of pathogenesis related genes and disease resistance in Arabidopsis. Plant Physiol, 2007, 144: 336-346.
pmid: 17369431
[60] Alvarez J M, Riveras E, Vidal E A, Gras D E, Contreras-López O, Tamayo K P, Aceituno F, Gómez I, Ruffel S, Lejay L, Jordana X, Gutiérrez R A. Systems approach identifies TGA1 and TGA4transcription factor as important regulatory components of the nitrate response of Arabidopsis thaliana. Plant J, 2014, 80: 12618.
[61] Du X, Du B, Chen X, Zhang S, Zhang Z, Qu S. Overexpression of the MhTGA2 gene from crab apple (Malus hupehensis) confers increased tolerance to salt stress in transgenic apple (Malus domestica). J Agric Sci, 2014, 152: 634-641.
doi: 10.1017/S0021859613000130
[62] Zhong L, Chen D D, Min D H, Li W W, Xu Z S, Zhou Y B, Li L C, Cheng M, Ma Y Z. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun , 2015, 457: 433-439.
doi: 10.1016/j.bbrc.2015.01.009
[63] Canales J, Contreras-López O, Álvarez J M, Gutiérrez R A. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana . Plant J , 2017, 92: 305-316.
doi: 10.1111/tpj.13656
[64] Espín F M I, Peraza-Echeverria S, Fuentes G, Santamaría J M. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya. Plant Physiol Biochem, 2012, 54: 113-122.
doi: 10.1016/j.plaphy.2012.02.011
[65] Zhang Y L, Tessaro M J, Lassner M W, Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 2003, 15: 2647-2653.
doi: 10.1105/tpc.014894
[66] Mueller S, Hibert B, Dueckershoff K, Roitsch T, Krischke M, Mueller M J, Susanne B. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell, 2008, 20: 768-785.
[67] Stotz H U, Mueller S, Zoeller M, Mueller M J, Berger S. TGA transcription factors and jasmonate-independent col1 signalling regulate specific plant responses to reactive oxylipins. J Exp Bot, 2013, 64: 963-975.
doi: 10.1093/jxb/ers389
[68] Murmu J, Bush M J, DeLong C, Li S, Xu M, Khan M, Khan M, Malcolmson C, Fobert P R, Zachgo S, Hepworth S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and redundantly required for anther development. Plant Physiol, 2010, 154: 1492-1504.
doi: 10.1104/pp.110.159111
[69] Noshi M, Mori D, Tanabe N, Maruta T, Shigeoka S. Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flag22. Plant Sci, 2016, 252: 12-21.
doi: 10.1016/j.plantsci.2016.06.019
[70] Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol, 2008, 146: 333-350.
doi: 10.1104/pp.107.112821 pmid: 18065552
[71] Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP suppresses the production of diterpenoid phytoalexin in rice cells. J Plant Physiol, 2015, 173: 19-27.
doi: 10.1016/j.jplph.2014.09.001
[72] Guo X, Zhang L, Wang X, Zhang M, Xi Y, Wang A, Zhu J. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PLoS One, 2019, 14: e0225090.
doi: 10.1371/journal.pone.0225090
[73] Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep, 2011, 38: 4823-4832.
doi: 10.1007/s11033-010-0625-x
[74] Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105
[75] Qi J, Song C P, Wang B, Zhou J, Kangasjärvi J, Zhu J K, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol, 2018, 60: 805-826.
doi: 10.1111/jipb.12654
[76] Magwanga R O, Lu P, Kirungu J N, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet, 2018, 19: 1-31.
doi: 10.1186/s12863-017-0594-3
[77] Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047-1060.
doi: 10.1038/cr.2008.280
[78] Mishra A K, Muthamilarasan M, Khan Y, Parida S K, Prasad M. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One, 2014, 9: e86852.
doi: 10.1371/journal.pone.0086852
[79] Yang Y, Yu T F, Ma J, Chen J, Zhou Y B, Chen M, Ma Y Z, Wei W L, Xu Z S. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int J Mol Sci, 2020, 21: 670.
doi: 10.3390/ijms21020670
[1] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[2] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[3] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[6] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[7] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[8] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[9] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[10] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[11] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[12] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[13] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[14] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[15] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .