Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 310-320.doi: 10.3724/SP.J.1006.2023.24015

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Fine mapping of qPRO-20-1 related to high protein content in soybean

YANG Shuo1,3(), WU Yang-Chun4, LIU Xin-Lei2, TANG Xiao-Fei2, XUE Yong-Guo2, CAO Dan2, WANG Wan3, LIU Ting-Xuan3, QI Hang3, LUAN Xiao-Yan2,*, QIU Li-Juan1,3,*()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2Heilongjiang Academy of Agricultural Sciences, Harbin 150030, Heilongjiang, China
    3National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4College of Life Sciences, Jilin Agricultural University, Changchun 130000, Jinlin, China
  • Received:2022-01-10 Accepted:2022-06-07 Online:2022-07-08 Published:2022-07-08
  • Contact: LUAN Xiao-Yan,QIU Li-Juan E-mail:857813782@qq.com;qiulijuan@caas.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31960408);Central Public-interest Scientific Institution Basal Research Fund(S2022ZD02);Agricultural Science and Technology Innovation Program

Abstract:

Protein content is a crucial quality trait of soybean, which is controlled by multiple genes. It is of great significance to locate soybean protein content-related loci and mine candidate genes for directional breeding of soybean varieties with high protein content. In this study, an F2 population consisting of 265 individual plants was constructed by crossing the excellent variety Heinong 88 as the female parent with the high-protein germplasm P73-6B as the male parent. The genotypes of F2 population were identified by using high-density SNP chip of “ZDX1” and the physical map was constructed. Combined with the protein content phenotypic data, the initial mapping interval of a 2.46 Mb QTL was located on chromosome 20 using the IciMapping 4.2 software. Using 11 polymorphic SSR markers screened out, the mapping range was narrowed from 2.46 Mb to 100.8 kb. Adding four SNP markers (Gm20_28349696, Gm20_30805913, Gm20_31341532, and Gm20_31483719), the interval was further reduced to 95.8 kb. The relative expression levels of the four genes contained in the interval in nine different tissues in both databases Phytozome v13.1 and PPRD RNA-seq yielded two candidate genes (Glyma.20g081800 and Glyma.20g082000). These results provide a theoretical basis for soybean protein content gene cloning and protein regulation mechanism research, as well as elite material and molecular marker for breeding high protein soybean.

Key words: soybean, protein content, QTL mapping, candidate genes

Table 1

SSR markers for fine mapping"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
BARCSOYSSR_20_0608 GTGTTCCACTCCACGTTTCC CATTTCCCCTTTCACAATCG
BARCSOYSSR_20_0613 AACCGAGTTTGGTTCGATTC TGCTGCTTGATGATGAGGAC
BARCSOYSSR_20_0616 CCATCTTATGGACTTGTTTGGA GCCAAGAATGACCATTATGC
BARCSOYSSR_20_0618 TCACTAATCACAACAACCCAAA CGACCGGTGTGTTTAAGGTC
BARCSOYSSR_20_0619 TCAGTCGCAGATTGATCAGG CCCAATTGTATCCATCAACG
BARCSOYSSR_20_0629 AACCTAGCATTGCAACCTGC TCATCACCCCTTATCCGTTC
BARCSOYSSR_20_0636 AAAACGAGGCCTTAATCGAAA AAACCAAAGAATACCGTGAAAAA
BARCSOYSSR_20_0638 CGAAATGCCACCTTTTCAAT AGCAAACTAAGGTCGTTTTCG
BARCSOYSSR_20_0644 GCAGTTGTGCGTGGGAGAGAG GCGACATAGCTAATTAAGTAAGTT
BARCSOYSSR_20_0647 GCGTGGTGCACGATCATATAGA GCGTCTCCTTCGCTATCTCAAAC
BARCSOYSSR_20_0649 CCAGGAATGCAGGTTTCTCT CGTGACTCTTCTTCCTTTCCA

Fig. 1

Histogram of frequency distribution of protein content in parents and F2 population Mean value and standard deviation of parental phenotypes are indicated by vertical dotted lines. Curve represents density plot. ***, P < 0.001."

Table 2

Statistical analysis of protein content of parents and F2 population"

群体
Population
母本
Female parent
(mean±SD, %)
父本
Male parent
(mean±SD, %)
F2分离群体F2 segregation population
变异范围
Range
平均数±标准差
(mean±SD, %)
变异系数
CV (%)
峰度
Kurtosis
偏度
Skewness
黑农88×P73-6B
Heinong 88×P73-6B
43.67±0.67 49.64±2.50 39.22-53.25 47.01±3.98 8.48 2.94 0.26

Fig. 2

A protein QTL mapped on chromosome 20 of soybean by F2 population consisting of Heinong 88 and P73-6B"

Table 3

Protein QTLs identified in F2 population of Heinong 88 × P73-6B"

群体
Population
染色体
Chr.
标记区间
Marker interval
LOD得分
LOD score
表型贡献率
R2
加性效应
Additive
effect
显性效应
Dominant
effect
F2 20 Gm20_28349696-Gm20_30805913 12.23 19.31 -1.79 0.19

Fig. 3

Fine mapping of protein content QTL qPRO-20-1 A: construct a genetic map to locate the QTL site qPRO-20-1 between SNP 2839696-SNP 30805913 using Heinong 88×P73-6B F2 200K chip sequencing data. B: the genotypes of five exchange monocultures (297, 272, 68, 72, and 209) were identified using a total of 11 markers BARCSOYSSR_20_0608, BARCSOYSSR_20_0613, BARCSOYSSR_20_0616, BARCSOYSSR_20_0618, BARCSOYSSR_20_0619, BARCSOYSSR_20_0629, BARCSOYSSR_20_0636, BARCSOYSSR_20_0638, BARCSOYSSR_20_0644, BARCSOYSSR_20_0647, BARCSOYSSR_20_0649; the genotypes were verified and primed. C: the interval was finely localized to the SNP marker 30805913-BARCSOYSSR_20_0636, BARCSOYSSR_20_0649 using the chip data bits SNP locus markers 28349696, 30805913, 31343532, 31483719, and the three SSR markers (BARCSOYSSR_20_0636, BARCSOYSSR_20_0647, BARCSOYSSR_20_0649). D: four candidate genes of Glyma.20g081800, Glyma.20g081900, Glyma.20g082000, and Glyma.20g082100 were obtained."

Fig. 4

Mapping QTL on chromosome 20 for soybean seed protein content in F2 population from the cross of Heinong 88 and P73-6B using seven molecular markers"

Table 4

QTL verified in the population of Heinong 88 × P73-6B F2"

群体
Population
染色体
Chr.
标记区间
Marker interval
LOD得分
LOD score
表型贡献率
R2
加性效应
Additive effect
显性效应
Dominant effect
F2 20 Gm20_30805913-BARCSOYSSR_20_0649 12.75 21.44 -2.03 0.56

Fig. 5

Correlation analysis of genotype and protein phenotype of markers Gm20_30805913 and BARCSOYSSR_20_0649 on both sides of qPRO-20-1 locus in F2 population A: genotype and phenotype correlation of Gm20_30805913; B: genotype and phenotype correlation of BARCSOYSSR_20_0649. The abscissa is the genotype, the high protein is denoted as b, the low protein is denoted as a, and the vertical ordinate is protein content. ***: P < 0.001."

Table 5

Gene annotation of genes in the location interval"

基因
Gene name
基因注释
Gene annotation
Glyma.20g081800 具有RNA结合(RRM-RBD-RNP基序)域的核运输因子2 (NTF2)家族蛋白
Nuclear transport factor 2 (NTF2) family protein with RNA binding (RRM-RBD-RNP motifs) domain
Glyma.20g081900 PTHR32246:SF16与钙相关的脂质结合蛋白
PTHR32246:SF16-calcium-dependentlipid-binding domain-containing protein-related
Glyma.20g082000 未知
Unknown
Glyma.20g082100 PantherFam黄嘌呤-尿嘧啶/维生素C渗透酶家族成员
PantherFam Xanthine-uracil/Vitamin C permease family member

Fig. 6

Relative expression profiles of four genes by Phytozome v13.1"

Fig. 7

Relative expression of four genes in nine different tissues of soybean obtained with the PRRD database"

[1] Leamy L J, Zhang H Y, Li C B, Chen C Y, Song B H. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics, 2017, 18: 18.
doi: 10.1186/s12864-016-3397-4 pmid: 28056769
[2] 陈静静, 刘谢香, 于莉莉, 卢一鹏, 张嗣天, 张昊辰, 关荣霞, 邱丽娟. 利用BSA法发掘野生大豆种子硬实性相关QTL. 中国农业科学, 2019, 52: 2208-2219.
Chen J J, Liu X X, Yu L L, Lu Y P, Zhang S T, Zhang H C, Guan R X, Qiu L J. Mining QTLs related to seed firmness of wild soybean by BSA method. Sci Agric Sin, 2019, 52: 2208-2219. (in Chinese with English abstract)
[3] 邱丽娟. 大豆高蛋白育种的研究概况与展望. 作物杂志, 1990, (2): 3-5.
Qiu L J. Research situation and prospect of soybean high protein breeding. Crops, 1990, (2): 3-5 (in Chinese with English abstract).
[4] 时玉强, 鲁绪强, 马军, 刘军, 刘汝萃. 大豆蛋白在传统豆制品中的应用. 中国油脂, 2017, 42(3): 155-157.
Shi Y Q, Lu X Q, Ma J, Liu J, Liu R C. Application of soybean protein in traditional soybean products. China Oils Fats, 2017, 42(3): 155-157. (in Chinese with English abstract)
[5] Liu Z H, Zhao J H. Research progress of soybean protein. Int J Comput Eng, 2019, 4: 69-72.
[6] Teng W, Lei F, Wen L, Wu D, Xue Z, Han W, Li W. Dissection of the genetic architecture for soybean seed weight across multiple environments. Crop Pasture Sci, 2017, 68: 358-365.
doi: 10.1071/CP16462
[7] 刘代铃, 谢俊锋, 何乾瑞, 陈四维, 胡跃, 周佳, 佘跃辉, 刘卫国, 杨文钰, 武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析. 作物学报, 2020, 46: 341-353.
doi: 10.3724/SP.J.1006.2020.94076
Liu D L, Xie J F, He Q R, Chen S W, Hu Y, Zhou J, She Y H, Liu W G, Yang W Y, Wu X L. QTL analysis of relative contents of 11S and 7S components of soybean storage protein under net cropping and intercropping. Acta Agron Sin, 2020, 46: 341-353. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94076
[8] Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271
[9] 李曙光, 曹永策, 贺建波, 王吴彬, 邢光南, 杨加银, 赵团结, 盖钧镒. 大豆巢式关联作图群体蛋白质含量的遗传解析. 中国农业科学, 2020, 53: 1743-1755.
Li S G, Cao Y C, He J B, Wang S B, Xing G N, Yang J Y, Zhao T J, Gai J Y. Genetic analysis of protein content in soybean population based on nested association mapping. Sci Agric Sin, 2020, 53: 1743-1755. (in Chinese with English abstract)
[10] 张琦, 尹彦斌, 蒋洪蔚, 张维耀, 潘校成, 武小霞. 大豆子粒蛋白质含量QTL的精细定位. 分子植物育种, 2019, 17: 8152-8157.
Zhang Q, Yin Y B, Jiang H W, Zhang W Y, Pan X C, Wu X X. Fine mapping of QTL for protein content in soybean kernel. Mol Plant Breed, 2019, 17: 8152-8157 (in Chinese with English abstract).
[11] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8-15.
doi: 10.1007/BF02772108
[12] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[13] Mao T T, Jiang Z M, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.12091
[14] Chung J, Babka H L, Graef G L, Staswicka P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053-1067.
doi: 10.2135/cropsci2003.1053
[15] 魏荷, 王金社, 卢为国. 大豆籽粒蛋白质含量分子遗传研究进展. 中国油料作物学报, 2015, 37: 394-400.
Wei H, Wang J S, Lu W G. Advances in molecular genetics of soybean grain protein content. Chin J Oil Crop Sci, 2015, 37: 394-400. (in Chinese with English abstract)
[16] 郭方亮. 大豆7S与11S球蛋白亚基缺失品系的鉴定与品质评价. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Guo F L. Identification and Quality Evaluation of Soybean 7S and 11S Globulin Subunit Deletion Strains. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019. (in Chinese with English abstract)
[17] 武阳春, 郭兵福, 谷勇哲, 栾晓燕, 邱红梅, 刘鑫磊, 李海燕, 邱丽娟. 大豆蛋白含量新位点qPRO-19-1的定位. 植物遗传资源学报, 2021, 22: 139-148.
Wu Y C, Guo B F, Gu Y Z, Luan X Y, Qiu H M, Liu X L, Li H Y, Qiu L J. Localization of a new protein content locus qPRO-19-1 in soybean. J Plant Genet Resour, 2021, 22: 139-148. (in Chinese with English abstract)
[18] Yang H Y, Wang W B, He Q Y, Xiang S H, Tian D, Zhao T J, Gai J. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theor Appl Genet, 2019, 132: 2793-2807.
doi: 10.1007/s00122-019-03388-z pmid: 31280342
[19] Zhang T F, Wu T T, Wang L W, Jiang B J, Zhen C X, Yuan S, Hou W S, Wu C X, Han T F, Sun S. A combined linkage and GWAS analysis identifies QTLs linked to soybean seed protein and oil content. Int J Mol Sci, 2019, 20: 19.
doi: 10.3390/ijms20010019
[20] 郭茜茜. 大豆子粒蛋白质积累与碳代谢关系的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Guo X X. Study on the Relationship Between Protein Accumulation and Carbon Metabolism in Soybean Seeds. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract)
[21] Zhong Y S, Lu X D, Deng Z W, Lu Z Q, Fu M H. A 1232 bp upstream sequence of glutamine synthetase 1b from Eichhornia crassipes is a root-preferential promoter sequence. BMC Plant Biol, 2021, 21: 14.
doi: 10.1186/s12870-020-02788-4
[22] 陈欢. 大豆籽粒不同发育时期基因表达谱的研究. 吉林农业大学博士学位论文, 吉林长春, 2012.
Chen H. Study on Gene Expression Profile of Soybean Grain at Different Development Stages. PhD Dissertation of Jilin Agricultural University, Changchun, Jilin, China, 2012. (in Chinese with English abstract)
[23] Wei Z Y, Pan T, Zhao Y Y, Song B H, Qiu L J. Rab5a and its gefs are involved in post-golgi trafficking of storage proteins in developing soybean cotyledon. J Exp Bot, 2019, 71: 808-822.
doi: 10.1093/jxb/erz454
[24] Wolf W J, Briggs D R. Purification and characterization of the 11S component of soybean proteins. Arch Biochem Biophys, 1959, 85: 186-199.
pmid: 13845671
[25] Hara-Nishimura I, Nishimura M. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons. Plant Physiol, 1987, 85: 440-445.
doi: 10.1104/pp.85.2.440 pmid: 16665717
[26] Kirsch T, Paris N, Butler J M, Beevers L, Rogers J C. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA, 1994, 91: 3403-3407.
doi: 10.1073/pnas.91.8.3403
[27] Okita T W, Rogers J C. Compartmentation of proteins in the endomembrane system of plant cells. Annu Rev Plant Physiol, 1996, 47: 327-350.
doi: 10.1146/annurev.arplant.47.1.327
[28] Nishizawa K, Maruyama N, Satoh R, Fuchikami Y, Higasa T, Utsumi S. A C-terminal sequence of soybean β-conglycinin α’ subunit acts as a vacuolar sorting determinant in seed cells. Plant J, 2003, 34: 647-659.
pmid: 12787246
[29] Rillingos S. Insights to the evolution of nucleobase-ascorbate transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ. Int J Biochem Mol Biol, 2012, 3: 250-272.
pmid: 23097742
[30] Karena E, Frillingos S. The role of transmembrane segment TM3 in the xanthine permease XanQ of Escherichia coli. J Biol Chem, 2011, 286: 39595-39605.
doi: 10.1074/jbc.M111.299164
[31] Amillis S, Kosti V, Pantazopoulou A, Mikros E, Diallinas G. Mutational analysis and modeling reveal functionally critical residues in transmembrane segments 1 and 3 of the uapa transporter. J Mol Biol, 2011, 411: 567-580.
doi: 10.1016/j.jmb.2011.06.024 pmid: 21722649
[32] Gournas C, Papageorgiou I, Diallinas G. The nucleobase- ascorbate transporter (NAT) family: genomics, evolution, structure- function relationships and physiological role. Mol BioSyst, 2008, 4: 404-416.
doi: 10.1039/b719777b
[33] Eberhardt R Y, Chang Y Y, Bateman A G, Axelrod A L, Hwang W C, Aravind L. Filling out the structural map of the NTF2-like superfamily. BMC Bioinf, 2013, 327: 11.
[34] Guillen K D, Lorrain C, Tsan P, Barthe P, Hecker A. Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. Sci Rep, 2019, 9: 18084.
doi: 10.1038/s41598-019-53816-9 pmid: 31792250
[35] Carazo-Salas R E, Gruss O J, Mattaj I W, Karsenti E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol, 2001, 3: 228-234.
pmid: 11231571
[36] Hetzer M, Bilbaocortés D, Walther T C, Gruss O J, Mattaj I W. GTP hydrolysis by ran is required for nuclear envelope assembly. Mol Cell, 2000, 5: 1013-1024.
pmid: 10911995
[37] Zhang Q, Wang B, Wei J, Wang X, Han Q, Kang Z. TaNTF2, a contributor for wheat resistance to the stripe rust pathogen. Plant Physiol Biochem, 2018, 123: 260-267.
doi: 10.1016/j.plaphy.2017.12.020
[38] Yang J, Yu D, Shen S. Expression analyses of miRNA Up-MIR- 843 and its target genes in Ulva prolifera. Acta Oceanol Sin, 2020, 39: 27-34.
doi: 10.1007/s13131-020-1657-2
[39] 王婉, 韩德志, 闫洪睿, 栾晓燕, 王俊, 邱丽娟. 大豆高蛋白种质中引1106蛋白质含量的QTL分析. 植物遗传资源学报, 2020, 21: 130-138.
Wang W, Han D Z, Yan H R, Luan X Y, Wang J, Qiu L J. QTL analysis of protein content in soybean high-protein germplasm for citation 1106. J Plant Genet Resour, 2020, 21: 130-138. (in Chinese with English abstract)
[40] 闫海波, 王艳, 赵琳, 韩英鹏, 李文滨, 王桂玲. 大豆蛋白和油分含量的QTL分析. 大豆科学, 2016, 35: 228-233.
Yan H B, Wang Y, Zhao L, Han Y P, Li W B, Wang G L. QTL analysis associated with protein and oil content in soybean. Soybean Sci, 2016, 35: 228-233. (in Chinese with English abstract)
[41] Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271
[42] Kaleri A, Li L, Zhang Y, Liu W, Jiang C, Zhang Y, Liu C, Kaleri A H, Nizamani M M, Mehmood A, Bahadur S, Li W X, Ning H. Recognition of QTL for seed protein and oil content in two soybean recombinant inbred lines populations. J Animal Plant Sci, 2021, 31: 1669-1685.
[1] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[2] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.)  [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[3] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[4] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[5] LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35.
[6] BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187.
[7] QI Yang-Yang, DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng. Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 62-72.
[8] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[9] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[10] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[11] KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708.
[12] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[13] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[14] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[15] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!