Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 62-72.doi: 10.3724/SP.J.1006.2023.24007
• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles Next Articles
QI Yang-Yang(), DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng()
[1] |
Lyu X, Cheng Q, Qin C, Li Y, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2020, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016 |
[2] | Jiang Z F, Liu D D, Wang T Q, Liang X L, Cui Y H, Liu Z H, Li W B. Concentration difference of Auxin involved in stem development in soybean. J Integr Agric, 2020, 19: 952-963. |
[3] |
Shi D B, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova V V, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. Plant Cell, 2021, 33: 200-223.
doi: 10.1093/plcell/koaa019 |
[4] |
Hedden P. The genes of the green revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241 |
[5] |
Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307 |
[6] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
doi: 10.1038/416701a |
[7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 38(2): 195-204. |
Li Y D, Shan X H. Regulation of gibberellin metabolism and the green revolution. Biotechnol Bull, 38(2): 195-204. (in Chinese with English abstract) | |
[8] |
Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
doi: 10.1073/pnas.1000088107 |
[9] |
Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210.
doi: 10.1104/pp.109.150607 |
[10] | 张久坤, 齐阳阳, 李立竹, 宁哓霜, 刘志华, 姜振峰, 李文滨. 利用BSA法定位大豆全基因组株高QTL及关键候选基因分析. 华北农学报, 2020, 35(增刊1): 1-10. |
Zhang J K, Qi Y Y, Li L Z, Ning X S, Liu Z H, Jiang Z F, Li W B. Mapping soybean whole genome plant height QTL and key candidate gene analysis using BSA method. Acta Agric Boreali-Sin, 2020, 35(S1): 1-10. (in Chinese with English abstract) | |
[11] |
于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位. 作物学报, 2022, 48: 1091-1102.
doi: 10.3724/SP.J.1006.2022.14063 |
Yu C M, Zhang Y, Wang H R, Yang X Y, Dong Q Z, Xue H, Zhang M M, Li W W, Wang L, Hu K F, Gu Y Z, Qiu L J. High-density genetic map construction of cultivated soybean × semi-wild soybean and QTL mapping of plant height. Acta Agron Sin, 2022, 48: 1091-1102. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14063 |
|
[12] |
Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62: 1868-1879.
doi: 10.1111/jipb.12988 |
[13] |
Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12: 667242.
doi: 10.3389/fpls.2021.667242 |
[14] |
Li Z F, Guo Y, Ou L, Hong H L, Wang J, Liu Z X, Guo B F, Zhang L J, Qiu L J. Identification of the dwarf gene GmDW1 in soybean (Glycine max L.) by combining mapping-by- sequencing and linkage analysis. Theor Appl Genet, 2018, 131: 1001-1016.
doi: 10.1007/s00122-017-3044-8 |
[15] |
Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S L, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9- mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562-572.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[16] |
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378 |
[17] |
Radley M. Comparison of endogenous gibberellins and response to applied gibberellin of some dwarf and tall wheat cultivars. Planta, 1970, 92: 292-300.
doi: 10.1007/BF00385096 pmid: 24500299 |
[18] |
Spielmeyer W, Ellis M H, Chandler P M. Semi-dwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043-9048.
doi: 10.1073/pnas.132266399 |
[19] |
Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D. Exploiting DELLA signaling in cereals. Trends Plant Sci, 2017, 22: 880-893.
doi: S1360-1385(17)30161-9 pmid: 28843766 |
[20] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-698.
doi: 10.1038/nature04028 |
[21] |
Harberd N P, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell, 2009, 21: 1328-1339.
doi: 10.1105/tpc.109.066969 |
[22] |
Franklin K A, Whitelam G C. Phytochromes and shade-avoidance responses in plants. Ann Bot, 2005, 96: 169-175.
doi: 10.1093/aob/mci165 |
[23] |
Liu W G, Jiang T, Zhou X R, Yang W Y. Characteristics of expansins in soybean internodes and responses to shade stress. Asian J Crop Sci, 2011, 3: 26-34.
doi: 10.3923/ajcs.2011.26.34 |
[24] |
王一, 杨文钰, 张霞, 雍太文, 刘卫国, 苏本营. 不同生育时期遮阴对大豆形态性状和产量的影响. 作物学报, 2013, 39: 1871-1879.
doi: 10.3724/SP.J.1006.2013.01871 |
Wang Y, Yang W Y, Zhang X, Yong T W, Liu W G, Sun B Y. The effect of shading at different growth periods on the morphological characters and yield of soybean. Acta Agron Sin, 2013, 39: 1871-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01871 |
|
[25] | Cooper R L. Development of short-statured soybean cultivars 1. Crop Sci, 1981, 21: 27-131. |
[26] | Cooper R L. Breeding semidwarf soybeans. Plant Breed Rev, 1985, 3: 89-311. |
[27] | 姜振峰, 赵彩桐, 李佳男, 孙士祥, 刘志华, 李文滨. 不同生长习性大豆株高形成规律分析. 东北农业大学学报, 2019, 50: 33-42. |
Jiang Z F, Zhao C T, Li J N, Sun S X, Liu Z H, Li W B. Analysis on the formation law of soybean plant height with different growth habits. J Northeast Agric Univ, 2019, 50: 33-42. (in Chinese with English abstract) | |
[28] |
任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转录组分析. 作物学报, 2016, 42: 1319-1331.
doi: 10.3724/SP.J.1006.2016.01319 |
Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of soybean stalk morphogenesis under shade stress. Acta Agron Sin, 2016, 42: 1319-1331. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01319 |
|
[29] |
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G, Zhang H, Liu Z, Shi Miao, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182: 1-15.
doi: 10.1016/j.cell.2020.05.008 |
[30] | 吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响. 大豆科学, 2007, 26: 868-872. |
Wu Q L, Wang Z, Yang W Y. Effect of shading in seedling stage on soybean stalk morphology and substance accumulation. Soybean Sci, 2007, 26: 868-872 (in Chinese with English abstract). | |
[31] |
Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol Plant, 2018, 11: 288-299.
doi: S1674-2052(17)30374-X pmid: 29253619 |
[32] |
Lyu X, Cheng Q, Qin C, Li Y, Xu X, Ji R, Mu R, Li H, Zhao T, Liu J, Zhou Y, Li H, Yang G, Chen Q, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2021, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016 pmid: 33249237 |
[33] |
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014 |
[34] |
Jiang B, Shi Y, Peng Y, Dong X, Li H, Dong J, Li J, Gong Z, Thomashow M F, Yang S. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol Plant, 2020, 13: 894-906.
doi: 10.1016/j.molp.2020.04.006 |
[35] |
Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23: 623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429 |
[36] | Jiang B, Shi Y, Zhang X, Xin X, Yang S. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2017, 114: E66695-E6702. |
[1] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[2] | WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118. |
[3] | LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35. |
[4] | BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187. |
[5] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[6] | HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976. |
[7] | KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708. |
[8] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[9] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[10] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[11] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[12] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[13] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[14] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[15] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
|