Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 73-85.doi: 10.3724/SP.J.1006.2023.14217
• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Cheng1(), ZHANG Zhan2, YANG Jia-Bao1, MENG Wan-Qiu1, ZENG Ling-Lu1, SUN Li1,*()
[1] |
Hryvusevich P, Navaselsky I, Talkachova Y, Straltsova D, Keisham M, Viatoshkin A, Samokhina V, Smolich I, Sokolik A, Huang X, Yu M, Bhatla S, Demidchik V. Sodium influx and potassium efflux currents in sunflower root cells under high salinity. Front Plant Sci, 2020, 11: 613936.
doi: 10.3389/fpls.2020.613936 |
[2] | 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL. 作物学报, 2018, 44: 385-396. |
Lyu P, Yu H F, Hou J H. QTL mapping of yield traits in sunflower using drought resistant selection introgression lines. Acta Agron Sin, 2018, 44: 385-396. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00385 |
|
[3] |
Nelson G J. Dietary fat, trans fatty acids, and risk of coronary heart disease. Nutr Rev, 1998, 56: 250-252.
pmid: 9735680 |
[4] |
Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 1998, 95: 13018-13023.
doi: 10.1073/pnas.95.22.13018 |
[5] | 唐桂英, 柳展基, 单雷. 二酰基甘油酰基转移酶(DGAT)研究进展. 中国油料作物学报, 2010, 32: 320-328. |
Tang G Y, Liu Z J, Shan L. Progress of diacylglycerol acyltransferase (DGAT) study. Chin Oil Crop Sci, 2010, 32: 320-328. (in Chinese with English abstract) | |
[6] |
He X H, Grace Q C, Lin J T, McKeon T A. Regulation of diacylglycerol transferase in developing seeds of castor. Lipids, 2004, 39: 865-871.
doi: 10.1007/s11745-004-1308-1 |
[7] |
Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367-372.
doi: 10.1038/ng.85 pmid: 18278045 |
[8] | Nykiforuk C L, Laroche A, Weselake R J. Isolation and characterization of a cDNA encoding a second putative diacylglycerol transferase from a microspore-derived cell suspension culture of Brassica napus L. cv Jet Neuf. Plant Physiol, 1999, 121: 1957-1959. |
[9] |
Bouvier-Navé P, Benveniste P, Oelkers P, Sturley S L, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. Eur J Biochem, 2000, 267: 85-96.
pmid: 10601854 |
[10] |
Shockey J M, Gidda S K, Chapital D C, Kuan JC, Dhanoa P K, Bland J M, Rothstein S J, Mullen R T, Dyer J M. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 2006, 18: 2294-2313.
doi: 10.1105/tpc.106.043695 |
[11] |
Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. J Exp Bot, 2011, 62: 521-532.
doi: 10.1093/jxb/erq286 |
[12] |
Li R, Yu K, Hildebrand D F. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010, 45: 145-157.
doi: 10.1007/s11745-010-3385-4 |
[13] |
Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor D C. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J, 1999, 19: 645-653.
pmid: 10571850 |
[14] |
Zhou X R, Shrestha P, Yin F, Petrie J R, Singh S P. AtDGAT2 is a functional acyl-CoA: diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Lett, 2013, 587: 2371-2376.
doi: 10.1016/j.febslet.2013.06.003 |
[15] |
Zhang T T, He H, Xu C J, Fu Q, Tao Y B, Xu R, Xu Z F. Overexpression of type 1 and 2 diacylglycerol acyltransferase genes (JcDGAT1 and JcDGAT2) enhances oil production in the woody perennial biofuel plant Jatropha curcas. Plants (Basel), 2021, 10: 699.
doi: 10.3390/plants10040699 |
[16] |
Aymé L, Arragain S, Canonge M, Baud S, Touati N, Bimai O, Jagic F, Louis-Mondésir C, Briozzo P, Fontecave M, Chardot T. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis. Sci Rep, 2018, 8: 17254.
doi: 10.1038/s41598-018-35545-7 |
[17] |
Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol, 2006, 141: 1533-1543.
pmid: 16798944 |
[18] |
Gao H, Gao Y, Zhang F, Liu B, Ji C, Xue J, Yuan L, Li R. Functional characterization of an novel acyl-CoA: diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from Camelina sativa. Plant Sci, 2021, 303: 110752.
doi: 10.1016/j.plantsci.2020.110752 |
[19] |
Kalscheuer R, Steinbüchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem, 2003, 278: 8075-8082.
doi: 10.1074/jbc.M210533200 pmid: 12502715 |
[20] | Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol, 2008, 148: 97-107. |
[21] |
Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer A J, Schreiber L, Dörmann P. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J, 2019, 98: 727-744.
doi: 10.1111/tpj.14269 |
[22] |
Abdullah H M, Rodriguez J, Salacup J M, Castañeda I S, Schnell D J, Pareek A, Dhankher O P. Increased cuticle waxes by overexpression of WSD1 improves osmotic stress tolerance in Arabidopsis thaliana and Camelina sativa. Int J Mol Sci, 2021, 22: 5173.
doi: 10.3390/ijms22105173 |
[23] | 牛永志, 王国平, 郑昀晔, 马文广. 烟草DGAT基因家族全基因组鉴定与分析. 中国烟草科学, 2020, 41(1): 1-8. |
Niu Y Z, Wang G P, Zheng Y Y, Ma W G. Genome-wide identification and analysis of DGAT family genes in tobacco. Chin Tob Sci, 2020, 41(1): 1-8. (in Chinese with English abstract) | |
[24] |
Zhao Y, Wu N, Li W, Shen J, Chen C, Li F, Hou Y. GhDGAT3D evolution and characterization of acetyl coenzyme A: diacylglycerol acyltransferase genes in cotton identify the roles of in oil biosynthesis and fatty acid composition. Genes (Basel), 2021, 12: 1045.
doi: 10.3390/genes12071045 |
[25] | 郑玲, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英. 花生DGAT基因家族的生物信息学分析. 山东农业科学, 2018, 50(6): 10-18. |
Zheng L, Shan L, Li X G, Guo F, Meng J J, Wan S B, Peng Z Y. Bioinformatics analysis of peanut DGAT gene family. Shandong Agric Sci, 2018, 50(6): 10-18. (in Chinese with English abstract) | |
[26] |
Yan B, Xu X, Gu Y, Zhao Y, Zhao X, He L, Zhao C, Li Z, Xu J. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome, 2018, 61: 735-743.
doi: 10.1139/gen-2018-0029 pmid: 30092654 |
[27] | Rosli R, Chan P, Chan K, Amiruddin N, Low E, Singh R, Harwood J, Murphy D. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Sci, 2018, 275: 84-96. |
[28] |
Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA: diacylglycerol acyltransferase from soybean identifies GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. J Plant Physiol, 2019, 242: 153019.
doi: 10.1016/j.jplph.2019.153019 |
[29] |
Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol, 2009, 60: 433-453.
doi: 10.1146/annurev.arplant.043008.092122 pmid: 19575588 |
[30] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[31] | 李培江, 米瑶, 余竟, 李碧娟, 廖芳, 李关荣. 美国引进向日葵种子含油量和脂肪酸组成比较分析. 中国油脂, 2015, 40(11): 104-106. |
Li P J, Mi Y, Yu J, Li B J, Liao F, Li G R. Comparative analysis of oil content and fatty acid composition of sunflower seeds introduced from the United States. China Oils Fats, 2015, 40(11): 104-106. (in Chinese with English abstract) | |
[32] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[33] |
Xu C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol, 2016, 67: 179-206.
doi: 10.1146/annurev-arplant-043015-111641 pmid: 26845499 |
[34] |
Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiol, 2016, 171: 2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366 |
[35] |
Misra A, Khan K, Niranjan A, Nath P, Sane V A. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry, 2013, 96: 37-45.
doi: 10.1016/j.phytochem.2013.09.020 |
[36] |
Xu J, Francis T, Mietkiewska E, Giblin E M, Barton D L, Zhang Y, Zhang M, Taylor D C. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol J, 2008, 6: 799-818.
doi: 10.1111/j.1467-7652.2008.00358.x |
[37] |
Zhang M, Fan J L, Taylor D C, Ohlrogge J B. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 2009, 21: 3885-3901.
doi: 10.1105/tpc.109.071795 |
[38] |
Lu C L, de Noyer S B, Hobbs D H, Kang J, Wen Y, Krachtus D, Hills M J. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Plant Mol Biol, 2003, 52: 31-41.
doi: 10.1023/A:1023935605864 |
[39] |
鲁庚, 唐鑫, 陆俊杏, 李丹, 胡秋芸, 胡田, 张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究. 作物学报, 2020, 46: 1283-1290.
doi: 10.3724/SP.J.1006.2020.94192 |
Lu G, Tang X, Lu J X, Li D, Hu Q Y, Hu T, Zhang T. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens. Acta Agron Sin, 2020, 46: 1283-1290. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94192 |
|
[40] |
Takeda S, Iwasaki A, Matsumoto N, Uemura T, Tatematsu K, Okada K. Physical interaction of floral organs controls petal morphogenesis in Arabidopsis. Plant Physiol, 2013, 161: 1242-1250.
doi: 10.1104/pp.112.212084 pmid: 23314942 |
[41] |
Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L, Wang T, Wang M, Yang Z, Wang Q. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One, 2014, 9: e105834.
doi: 10.1371/journal.pone.0105834 |
[42] |
Tan W J, Yang Y C, Zhou Y, Huang L P, Xu L, Chen Q F, Yu L J, Xiao S. Diacylglycerol acyltransferase and diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant Physiol, 2018, 177: 1303-1318.
doi: 10.1104/pp.18.00402 |
[43] |
Lu C, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiol, 2002, 129: 1352-1358.
doi: 10.1104/pp.006122 |
[44] |
Weselake R J, Shah S, Tang M, Quant P A, Snyder C L, Furukawa-Stoffer T L, Zhu W, Taylor D C, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney M M, Harwood J L. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot, 2008, 59: 3543-3549.
doi: 10.1093/jxb/ern206 pmid: 18703491 |
[1] | YANG Jia-Bao, ZHANG Zhan, ZHOU Zhi-Ming, LYU Xin-Hua, SUN Li. Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 426-437. |
[2] | LI Juan, ZHOU Jing-Ru, CHU Na, SUN Hui-Dong, HUANG Mei-Ting, FU Hua-Ying, GAO San-Ji. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection [J]. Acta Agronomica Sinica, 2023, 49(1): 97-104. |
[3] | CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350. |
[4] | ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027. |
[5] | LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613. |
[6] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[7] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[8] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[9] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[10] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[11] | ZHENG Yun-Pu, CHANG Zhi-Jie, HAN Yi, LU Yun-Ze, CHEN Wen-Na, TIAN Yin-Shuai, YIN Jia-Wei, HAO Li-Hua. Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat [J]. Acta Agronomica Sinica, 2022, 48(11): 2920-2933. |
[12] | JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545. |
[13] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[14] | SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308. |
[15] | QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786. |
|