Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 73-85.doi: 10.3724/SP.J.1006.2023.14217

• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and relative expression analysis of DGATs gene family in sunflower

ZHANG Cheng1(), ZHANG Zhan2, YANG Jia-Bao1, MENG Wan-Qiu1, ZENG Ling-Lu1, SUN Li1,*()   

  1. 1College of Life Science, Shihezi University, Shihezi 832003, Xinjiang, China
    2Bingtuan Xingxin Vocational and Technical College, Bazhou 841007, Xinjiang, China
  • Received:2021-11-23 Accepted:2022-05-05 Online:2023-01-12 Published:2022-05-24
  • Contact: SUN Li E-mail:2020002371@qq.com;sunlishz@126.com
  • Supported by:
    National Natural Science Foundation of China(31760064);National Natural Science Foundation of China(31360052)

Abstract:

Diacylglycerol acyltransferase (DGAT) plays an important role in plant oil metabolism and stress resistance. To explore the evolution of DGAT gene in sunflower (Helianthus annuus L.) and its function in oil biosynthesis and response to abiotic stresses, 18 homologous gene sequences of DGAT were obtained from the sunflower genome database by alignment with Arabidopsis thaliana AtDGATs genes. Then, chromosome distribution, gene structure, conserved protein motifs, phylogenetic relationship, tissue-specific expression of HaDGATs, and their expressing patterns under abiotic stresses were systematically investigated. The results showed that sunflower DGATs genes were divided into four subfamilies (DGAT1, DGAT2, DGAT3, and WSD), and the members of the same subfamily shared similar gene structures and conserved motifs. The promoter regions of HaDGATs harbored multiple cis-elements related to environmental stresses and plant hormone response. The main factor for HaDGATs amplification was fragment duplication. The qRT-PCR indicated that HaDGAT1, HaDGAT2, and HaDGAT3 were mainly expressed in the early and middle stages of sunflower seed development, which coincided with the rapid accumulation period of oil in seeds, while HaWSD subfamily genes were mainly expressed in stems, leaves, and petals. Most of HaWSD genes could be induced by NaCl, low temperature, drought, and ABA treatments in sunflower roots, stems, and leaves, indicating that they might play essential roles in dealing with various abiotic stresses. The results revealed that HaDGATs had functional differentiation in regulating lipid biosynthesis and abiotic stresses. This study provides an important foundation for further understanding the function of sunflower DGAT genes.

Key words: sunflower, DGAT gene family, abiotic stresses, gene expression

Table 1

Primers for qRT-PCR"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
HaDGAT1-1 TACGTAGGCGTCCGATCACA AATAGGCCTGCATGACTCTGTTT
HaDGAT1-2 GAGGAGCGTGAAGCCTGATG ATGCGCTGGAGAAGAAGCAC
HaDGAT1-3 GCCTAACATCGCCGAATCCA AACGCAACACACTCGTCTGA
HaDGAT2-1 AGTACGGGCGTGGCTATTTT GCCAATGACAGTCCCATCCA
HaDGAT2-2 TCTGGCCGATTGGAGTTGTC TGAACGCCACCTGGTATGAC
HaDGAT3 GTGGGTGTTAAGCAGCGGAA TTGACTTGCTGACCCAACCC
HaWSD1 GAGGATACCGAAACGCCGAT ACCTTCGTCTTTTTGCCCCT
HaWSD2 TGGATGCCGCTAAACACGTC CGGCGATGAAACCGTGAGAT
HaWSD3 TGGAGGATAGGCCAAGACGA TTGTTTCCCCATGTGCCATCT
HaWSD4 GAAAGGAGAGGACCACGACC GCTCCCGTTTTCCTTGTCCA
HaWSD5 GTTGGTCACGGACAAACACG ACGATAGAAGCGAAACGCCA
HaWSD6 GGGGCCAAAGATGACCAAGA CCACCACCGTTGCTTCTAGT
HaWSD7 TTCGTTAGGCGACGGTTTGT GCCCATGCTGCCTTTTAACG
HaWSD8 TGTGTGCACTGGGCTGTTTC ACACCCGCGATTTCACTGTATC
HaWSD9 CACTAAAAGGGTCCGCAGGT GTCGAACGCCTTTGGGAATG
HaWSD10 GCACGACGAACCACTATCCC TCCGCCAATGTTCATGTCCG
HaWSD11 AGCGTGTTTGGCCTCGAAC GTGAGGTCGGCTAGGTATTCG
HaWSD12 TGTGTGGAGGATGTGACCATGT GGTCTTCCCCCTTCACTTCAAC
18S rRNA CTACCACATCCAAGGAAGGCAG CGACAGAAGGGACGAGTAAACC

Table 2

Detailed information of HaDGATs genes in sunflower"

转录本ID
Transcript ID
基因名称
Gene name
氨基酸数量
Amino acid amounts (aa)
分子量
Molecular
weight (kD)
等电点
pI
亲水性系数
Hydrophilicity coefficient
跨膜结构域数量Transmembrane
domain amounts
OTG30061 HaDGAT1-1 479 55.74 9.24 0.243 8
OTG13343 HaDGAT1-2 517 59.81 8.56 0.166 9
OTG03739 HaDGAT1-3 507 58.52 9.11 0.219 9
OTF98266 HaDGAT2-1 330 37.47 9.12 0.294 2
OTF96040 HaDGAT2-2 336 38.09 9.85 0.191 2
OTG25557 HaDGAT3 329 35.59 8.63 -0.416 0
OTG29248 HaWSD1 666 74.73 6.84 -0.249 0
OTG29986 HaWSD2 455 50.68 8.62 -0.037 0
OTG23138 HaWSD3 476 54.00 8.95 -0.241 0
OTG23434 HaWSD4 486 55.54 9.20 -0.244 0
OTG11715 HaWSD5 474 52.63 8.55 -0.003 0
OTG11716 HaWSD6 461 51.91 8.77 -0.025 0
OTG12880 HaWSD7 491 56.20 9.00 -0.221 1
OTG03949 HaWSD8 508 57.33 9.21 -0.176 1
OTG03950 HaWSD9 509 57.11 9.21 -0.190 1
OTF91362 HaWSD10 458 51.51 8.41 -0.079 0
OTF91364 HaWSD11 456 50.79 8.65 -0.057 0
OTF86778 HaWSD12 475 53.16 7.11 -0.111 0

Fig. 1

Phylogenetic tree of DGAT family proteins in sunflower and other plants Ha: Helianthus annuus; At: Arabidopsis thaliana; Gm: Glycine max; Ah: Arachis hypogaea; Bn: Brassica napus; Sb: Sorghum bicolor; Os: Oryza sativa; Eg: Elaeis guineensis; Aa: Artemisia annua; Ct: Carthamus tinctorius; Zm: Zea mays."

Fig. 2

Gene structures of HaDGATs genes in sunflower"

Fig. 3

Conserved motifs of HaDGATs proteins in sunflower"

Fig. 4

Chromosome distribution (A) and cis-acting elements in sunflower HaDGATs promoters (B)"

Table 3

Gene duplication events and divergence time of HaDGATs family in sunflower"

重复基因对
Duplicated gene pairs
非同义替换率
Ka
同义替换率
Ks
Ka/Ks 重复类型
Duplicated type
选择类型
Selective type
分化时间
Differentiation time (Mya)
HaDGAT1-1/HaDGAT1-2 0.1424 1.1312 0.1259 片段重复Segmental 纯化Purifying 37.70
HaDGAT1-1/HaDGAT1-3 0.1334 1.0506 0.1270 片段重复Segmental 纯化Purifying 35.02
HaDGAT1-2/HaDGAT1-3 0.0906 0.4019 0.2255 片段重复Segmental 纯化Purifying 13.39
HaWSD3/HaWSD4 0.1488 0.4223 0.3523 串联重复Tandem 纯化Purifying 14.07
HaWSD7/HaWSD8 0.1271 0.5899 0.2155 片段重复Segmental 纯化Purifying 19.66
HaWSD7/HaWSD9 0.1349 0.5677 0.2377 片段重复Segmental 纯化Purifying 18.92
HaWSD8/HaWSD9 0.0635 0.3272 0.1942 串联重复Tandem 纯化Purifying 10.90
HaWSD10/HaWSD11 0.1251 0.3299 0.3793 串联重复Tandem 纯化Purifying 10.99

Fig. 5

Collinearity analysis A: collinearity analysis of HaDGATs in sunflower; B: collinearity analysis of DGATs among sunflower, Arabidopsis, and safflower."

Fig. 6

Relative expression patterns of HaDGATs in different tissues and seed development stages of sunflower DAF: days after flowering. The relative expression levels of HaDGATs genes are compared with the relative expression in roots."

Fig. 7

Oil contents in sunflower seeds at different developmental stages Different lowercase letters indicate there are significantly different at P < 0.05."

Fig. 8

Relative expression levels of sunflower HaDGATs under salt (A) and low temperature (B) stresses"

Fig. 9

Relative expression levels of sunflower HaDGATs under ABA (A) and drought (B) treatments"

[1] Hryvusevich P, Navaselsky I, Talkachova Y, Straltsova D, Keisham M, Viatoshkin A, Samokhina V, Smolich I, Sokolik A, Huang X, Yu M, Bhatla S, Demidchik V. Sodium influx and potassium efflux currents in sunflower root cells under high salinity. Front Plant Sci, 2020, 11: 613936.
doi: 10.3389/fpls.2020.613936
[2] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL. 作物学报, 2018, 44: 385-396.
Lyu P, Yu H F, Hou J H. QTL mapping of yield traits in sunflower using drought resistant selection introgression lines. Acta Agron Sin, 2018, 44: 385-396. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00385
[3] Nelson G J. Dietary fat, trans fatty acids, and risk of coronary heart disease. Nutr Rev, 1998, 56: 250-252.
pmid: 9735680
[4] Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 1998, 95: 13018-13023.
doi: 10.1073/pnas.95.22.13018
[5] 唐桂英, 柳展基, 单雷. 二酰基甘油酰基转移酶(DGAT)研究进展. 中国油料作物学报, 2010, 32: 320-328.
Tang G Y, Liu Z J, Shan L. Progress of diacylglycerol acyltransferase (DGAT) study. Chin Oil Crop Sci, 2010, 32: 320-328. (in Chinese with English abstract)
[6] He X H, Grace Q C, Lin J T, McKeon T A. Regulation of diacylglycerol transferase in developing seeds of castor. Lipids, 2004, 39: 865-871.
doi: 10.1007/s11745-004-1308-1
[7] Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367-372.
doi: 10.1038/ng.85 pmid: 18278045
[8] Nykiforuk C L, Laroche A, Weselake R J. Isolation and characterization of a cDNA encoding a second putative diacylglycerol transferase from a microspore-derived cell suspension culture of Brassica napus L. cv Jet Neuf. Plant Physiol, 1999, 121: 1957-1959.
[9] Bouvier-Navé P, Benveniste P, Oelkers P, Sturley S L, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. Eur J Biochem, 2000, 267: 85-96.
pmid: 10601854
[10] Shockey J M, Gidda S K, Chapital D C, Kuan JC, Dhanoa P K, Bland J M, Rothstein S J, Mullen R T, Dyer J M. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 2006, 18: 2294-2313.
doi: 10.1105/tpc.106.043695
[11] Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. J Exp Bot, 2011, 62: 521-532.
doi: 10.1093/jxb/erq286
[12] Li R, Yu K, Hildebrand D F. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010, 45: 145-157.
doi: 10.1007/s11745-010-3385-4
[13] Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor D C. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J, 1999, 19: 645-653.
pmid: 10571850
[14] Zhou X R, Shrestha P, Yin F, Petrie J R, Singh S P. AtDGAT2 is a functional acyl-CoA: diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Lett, 2013, 587: 2371-2376.
doi: 10.1016/j.febslet.2013.06.003
[15] Zhang T T, He H, Xu C J, Fu Q, Tao Y B, Xu R, Xu Z F. Overexpression of type 1 and 2 diacylglycerol acyltransferase genes (JcDGAT1 and JcDGAT2) enhances oil production in the woody perennial biofuel plant Jatropha curcas. Plants (Basel), 2021, 10: 699.
doi: 10.3390/plants10040699
[16] Aymé L, Arragain S, Canonge M, Baud S, Touati N, Bimai O, Jagic F, Louis-Mondésir C, Briozzo P, Fontecave M, Chardot T. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis. Sci Rep, 2018, 8: 17254.
doi: 10.1038/s41598-018-35545-7
[17] Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol, 2006, 141: 1533-1543.
pmid: 16798944
[18] Gao H, Gao Y, Zhang F, Liu B, Ji C, Xue J, Yuan L, Li R. Functional characterization of an novel acyl-CoA: diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from Camelina sativa. Plant Sci, 2021, 303: 110752.
doi: 10.1016/j.plantsci.2020.110752
[19] Kalscheuer R, Steinbüchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem, 2003, 278: 8075-8082.
doi: 10.1074/jbc.M210533200 pmid: 12502715
[20] Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol, 2008, 148: 97-107.
[21] Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer A J, Schreiber L, Dörmann P. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J, 2019, 98: 727-744.
doi: 10.1111/tpj.14269
[22] Abdullah H M, Rodriguez J, Salacup J M, Castañeda I S, Schnell D J, Pareek A, Dhankher O P. Increased cuticle waxes by overexpression of WSD1 improves osmotic stress tolerance in Arabidopsis thaliana and Camelina sativa. Int J Mol Sci, 2021, 22: 5173.
doi: 10.3390/ijms22105173
[23] 牛永志, 王国平, 郑昀晔, 马文广. 烟草DGAT基因家族全基因组鉴定与分析. 中国烟草科学, 2020, 41(1): 1-8.
Niu Y Z, Wang G P, Zheng Y Y, Ma W G. Genome-wide identification and analysis of DGAT family genes in tobacco. Chin Tob Sci, 2020, 41(1): 1-8. (in Chinese with English abstract)
[24] Zhao Y, Wu N, Li W, Shen J, Chen C, Li F, Hou Y. GhDGAT3D evolution and characterization of acetyl coenzyme A: diacylglycerol acyltransferase genes in cotton identify the roles of in oil biosynthesis and fatty acid composition. Genes (Basel), 2021, 12: 1045.
doi: 10.3390/genes12071045
[25] 郑玲, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英. 花生DGAT基因家族的生物信息学分析. 山东农业科学, 2018, 50(6): 10-18.
Zheng L, Shan L, Li X G, Guo F, Meng J J, Wan S B, Peng Z Y. Bioinformatics analysis of peanut DGAT gene family. Shandong Agric Sci, 2018, 50(6): 10-18. (in Chinese with English abstract)
[26] Yan B, Xu X, Gu Y, Zhao Y, Zhao X, He L, Zhao C, Li Z, Xu J. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome, 2018, 61: 735-743.
doi: 10.1139/gen-2018-0029 pmid: 30092654
[27] Rosli R, Chan P, Chan K, Amiruddin N, Low E, Singh R, Harwood J, Murphy D. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Sci, 2018, 275: 84-96.
[28] Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA: diacylglycerol acyltransferase from soybean identifies GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. J Plant Physiol, 2019, 242: 153019.
doi: 10.1016/j.jplph.2019.153019
[29] Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol, 2009, 60: 433-453.
doi: 10.1146/annurev.arplant.043008.092122 pmid: 19575588
[30] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[31] 李培江, 米瑶, 余竟, 李碧娟, 廖芳, 李关荣. 美国引进向日葵种子含油量和脂肪酸组成比较分析. 中国油脂, 2015, 40(11): 104-106.
Li P J, Mi Y, Yu J, Li B J, Liao F, Li G R. Comparative analysis of oil content and fatty acid composition of sunflower seeds introduced from the United States. China Oils Fats, 2015, 40(11): 104-106. (in Chinese with English abstract)
[32] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[33] Xu C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol, 2016, 67: 179-206.
doi: 10.1146/annurev-arplant-043015-111641 pmid: 26845499
[34] Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiol, 2016, 171: 2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366
[35] Misra A, Khan K, Niranjan A, Nath P, Sane V A. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry, 2013, 96: 37-45.
doi: 10.1016/j.phytochem.2013.09.020
[36] Xu J, Francis T, Mietkiewska E, Giblin E M, Barton D L, Zhang Y, Zhang M, Taylor D C. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol J, 2008, 6: 799-818.
doi: 10.1111/j.1467-7652.2008.00358.x
[37] Zhang M, Fan J L, Taylor D C, Ohlrogge J B. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 2009, 21: 3885-3901.
doi: 10.1105/tpc.109.071795
[38] Lu C L, de Noyer S B, Hobbs D H, Kang J, Wen Y, Krachtus D, Hills M J. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Plant Mol Biol, 2003, 52: 31-41.
doi: 10.1023/A:1023935605864
[39] 鲁庚, 唐鑫, 陆俊杏, 李丹, 胡秋芸, 胡田, 张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究. 作物学报, 2020, 46: 1283-1290.
doi: 10.3724/SP.J.1006.2020.94192
Lu G, Tang X, Lu J X, Li D, Hu Q Y, Hu T, Zhang T. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens. Acta Agron Sin, 2020, 46: 1283-1290. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94192
[40] Takeda S, Iwasaki A, Matsumoto N, Uemura T, Tatematsu K, Okada K. Physical interaction of floral organs controls petal morphogenesis in Arabidopsis. Plant Physiol, 2013, 161: 1242-1250.
doi: 10.1104/pp.112.212084 pmid: 23314942
[41] Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L, Wang T, Wang M, Yang Z, Wang Q. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One, 2014, 9: e105834.
doi: 10.1371/journal.pone.0105834
[42] Tan W J, Yang Y C, Zhou Y, Huang L P, Xu L, Chen Q F, Yu L J, Xiao S. Diacylglycerol acyltransferase and diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant Physiol, 2018, 177: 1303-1318.
doi: 10.1104/pp.18.00402
[43] Lu C, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiol, 2002, 129: 1352-1358.
doi: 10.1104/pp.006122
[44] Weselake R J, Shah S, Tang M, Quant P A, Snyder C L, Furukawa-Stoffer T L, Zhu W, Taylor D C, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney M M, Harwood J L. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot, 2008, 59: 3543-3549.
doi: 10.1093/jxb/ern206 pmid: 18703491
[1] YANG Jia-Bao, ZHANG Zhan, ZHOU Zhi-Ming, LYU Xin-Hua, SUN Li. Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 426-437.
[2] LI Juan, ZHOU Jing-Ru, CHU Na, SUN Hui-Dong, HUANG Mei-Ting, FU Hua-Ying, GAO San-Ji. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection [J]. Acta Agronomica Sinica, 2023, 49(1): 97-104.
[3] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[4] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[5] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[6] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[7] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[8] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] ZHENG Yun-Pu, CHANG Zhi-Jie, HAN Yi, LU Yun-Ze, CHEN Wen-Na, TIAN Yin-Shuai, YIN Jia-Wei, HAO Li-Hua. Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat [J]. Acta Agronomica Sinica, 2022, 48(11): 2920-2933.
[12] JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545.
[13] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[14] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[15] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[3] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[6] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[7] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[8] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[9] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[10] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .