Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 62-72.doi: 10.3724/SP.J.1006.2023.24007

• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean

QI Yang-Yang(), DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng()   

  1. Northeast Agricultural University, Key Laboratory of Soybean Biology in Chinese Ministry of Education / Key Laboratory of Soybean Biology and Genetics Breeding of Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China
  • Received:2022-01-04 Accepted:2022-03-25 Online:2023-01-12 Published:2022-04-20
  • Contact: JIANG Zhen-Feng E-mail:qyy2022@126.com;jzhf@neau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31571693);National Natural Science Foundation of China(32172072);China Agriculture Research System of MOF and MARA (Soybean, Key Task)(CARS-04-04B);Natural Science Foundation of Heilongjiang Province(LH2021C025)

Abstract:

The objective of this study is to explore the effects of temperature and exogenous GA on the development of soybean internode and the key genes related to gibberellin (GA) signal transduction pathway. The soybean variety ‘Charleston’ was grown in chambers or in pots under outdoor condition, and subjected to the treatments with different temperature and concentration of GA solutions. Phenotype observation, section with hand, LC-MS analysis, and RNA-seq experiments were performed to investigate the internode changes and the genes involved in the GA signal transduction pathway. Different temperature and exogenous GA all induced the internode elongation and the longer the length increased, the slender the internode became. Exogenous GA had an evident elongating effect on the cell length of the internode despite of no effect on the cell width. The internodes grown in 30℃ growth condition were longer than those in 25℃ growth condition. GA2-oxidase, GA19, GA53, GA20, and bioactive GA3 were detected in the elongation zone of soybean internode, suggesting that GA2-oxidase might play an important role in the developmental process of soybean internode. Tissue-specific genes in DELLA, GAI, and PIF gene families could be identified and facilitate the gene selection to regulate the internode growth and plant height from GA signal transduction pathway. Soybean internode was regulated by temperature and exogenous GA. From GA53 to GA19 to GA20 and ultimately to GA3 was an important GA synthesis pathway. GA2-oxidase played an important role on the internode development of soybean. The GA-GID1-DELLA complex was expressed specifically in soybean internode. The candidate genes related to the internode development could be filtered from GID1 and DELLA gene family.

Key words: soybean, internode development, GA pathway, GA-GID1-DELLA

Fig. 1

High temperature accelerates the internode development of soybean plant Left: two plants grown at 30℃; Right: two plants grown at 25℃."

Table 1

Effect of vary temperature on the developmental internode of soybean plants"

温度处理
Temperature treatment
处理前
Before treatment (cm)
12 h后
After 12 hours (cm)
差值
Range (cm)
30℃ 3.02±0.32 3.38±0.35 0.36±0.03
25℃ 2.74±0.13 2.99±0.14 0.25±0.01

Fig. 2

Exogenous GA accelerates the growth of soybean internode A: 100 mmol L-1 GA treatment; B: 250 mmol L-1 GA treatment; C: CK."

Fig. 3

Effects of different concentrations of exogenous GA on the growth of soybean internodes A: the internode length of GA treatment at 25℃; B: the internode length of GA treatment at 30℃. 0 h: the internode length before GA treatment; 24 h: the internode length 24 hours after GA treatment."

Fig. 4

Effects of exogenous GA on the cells of elongation zone (EZ) and mature zone (MZ) in the soybean developmental internode in vary temperatures A: EZ grown in 30℃; B: MZ grown at 30℃; C: EZ grown in 25℃; D: MZ grown at 25℃."

Table 2

Cell length and width of soybean developmental internode in vary temperatures with exogenous GA"

节间
Internode
30℃ 25℃
长度 Length (pixel) 宽度 Width (pixel) 长度 Length (pixel) 宽度 Width (pixel)
伸长区 EZ 206.00±4.48 63.78±6.00 131.59±6.48 54.87±1.20
成熟区 MZ 708.33±21.20 65.78±1.11 665.79±27.51 79.18±2.51

Table 3

GA content in the developmental internode of soybean plants (ng g-1)"

节间
Internode
GA3 GA15 GA19 GA20 GA53
伸长区 EZ 0.13±0.01 0.24±0.03 48.14±0.01 0.24±0.02 19.40±0.01
成熟区 MZ 47.91±0.02 19.38±0.02

Fig. 5

Relative expression levels of key genes involved in internode development of soybean plant grown in vary temperature and exogenous GA treatments HCK: control at 30℃; LCK: control at 25℃; HG: GA treatment at 30℃; LG: GA treatment at 25℃."

Fig. 6

Relative expression levels of key genes related to GA under high or low plant densities CD1: the first internode of the apex in low plant density; CD21: the elongation zone of the second internode in low density; CD22: the mature zone of the second internode in low density; CD3: the third internode in low density; CH1: the first internode of the apex in high density; CH21: the elongation zone of the second internode in high density; CH22: the mature zone of the second internode in high density; CH3: the third internode in low density."

Table 4

Tissue-specific expression analysis of key genes related to GA signal transduction in soybean"

基因
Gene name
嫩叶
Young leaf

Flower
1 cm荚
One-cm pod
10 d种子
Seed of 10 DAF
42 d种子
Seed of 42 DAF

Root
根瘤
Nodule
Glyma.12g213700
Glyma.13g288000 2.88 3.91 6.75
Glyma.20g141200 1.60 5.00 4.03
Glyma.05g130600 8.09
Glyma.13g361700 3.44 3.61 1.58 0.35 6.34 3.70
Glyma.15g012100 3.83 1.27 4.58 2.67 6.34 6.61
Glyma.04g150500 2.05 4.54 4.43 1.15 1.48 1.73 0.86
Glyma.06g213100 2.37 3.25 1.30 1.03 1.70 2.36 1.97
Glyma.06g213100 2.37 3.25 1.30 1.03 1.70 2.36 1.97
Glyma.11g216500 -2.88 -0.36 0.01 -0.03 -2.63 -2.33 -4.65
Glyma.18g040000 -2.31 -0.33 1.40 0.77 -3.97 -2.12 -4.03
Glyma.08g095800 -0.83 -1.01 -0.08 -0.87 -1.33 -1.96 -2.62
Glyma.20g200500 3.75 2.83 2.63 1.28 0.17 3.09 1.76
Glyma.05g140400 -1.51 -1.34 -0.84 -2.29 -1.65 -1.80 -1.94
Glyma.10g190200 3.66 3.14 2.00 1.03 -1.08 4.77 2.44
Glyma.15g141400 5.00 6.61
Glyma.03g148300 1.20 -1.75 0.65 -0.67 1.13 -1.49 -1.42
Glyma.10g022900 2.62 1.57 6.17 4.67 1.39 0.88 0.46
Glyma.02g151100 3.51 2.25 3.51 2.09 2.88 1.55 1.22
Glyma.20g230600 2.70 3.42 2.05 3.09 2.25 2.02 1.53
Glyma.10g158000 1.44 1.96 1.43 0.50 2.25 0.39 -0.10
Glyma.03g170300
Glyma.03g225000
Glyma.10g142600 3.66 2.54 3.85 -0.35 3.17 3.50 3.16
Glyma.20g091200 6.71 4.97 0.06
Glyma.02g282100 7.83 3.68 8.09
Glyma.U031209
[1] Lyu X, Cheng Q, Qin C, Li Y, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2020, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016
[2] Jiang Z F, Liu D D, Wang T Q, Liang X L, Cui Y H, Liu Z H, Li W B. Concentration difference of Auxin involved in stem development in soybean. J Integr Agric, 2020, 19: 952-963.
[3] Shi D B, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova V V, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. Plant Cell, 2021, 33: 200-223.
doi: 10.1093/plcell/koaa019
[4] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[5] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[6] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
doi: 10.1038/416701a
[7] 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 38(2): 195-204.
Li Y D, Shan X H. Regulation of gibberellin metabolism and the green revolution. Biotechnol Bull, 38(2): 195-204. (in Chinese with English abstract)
[8] Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
doi: 10.1073/pnas.1000088107
[9] Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210.
doi: 10.1104/pp.109.150607
[10] 张久坤, 齐阳阳, 李立竹, 宁哓霜, 刘志华, 姜振峰, 李文滨. 利用BSA法定位大豆全基因组株高QTL及关键候选基因分析. 华北农学报, 2020, 35(增刊1): 1-10.
Zhang J K, Qi Y Y, Li L Z, Ning X S, Liu Z H, Jiang Z F, Li W B. Mapping soybean whole genome plant height QTL and key candidate gene analysis using BSA method. Acta Agric Boreali-Sin, 2020, 35(S1): 1-10. (in Chinese with English abstract)
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位. 作物学报, 2022, 48: 1091-1102.
doi: 10.3724/SP.J.1006.2022.14063
Yu C M, Zhang Y, Wang H R, Yang X Y, Dong Q Z, Xue H, Zhang M M, Li W W, Wang L, Hu K F, Gu Y Z, Qiu L J. High-density genetic map construction of cultivated soybean × semi-wild soybean and QTL mapping of plant height. Acta Agron Sin, 2022, 48: 1091-1102. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14063
[12] Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62: 1868-1879.
doi: 10.1111/jipb.12988
[13] Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12: 667242.
doi: 10.3389/fpls.2021.667242
[14] Li Z F, Guo Y, Ou L, Hong H L, Wang J, Liu Z X, Guo B F, Zhang L J, Qiu L J. Identification of the dwarf gene GmDW1 in soybean (Glycine max L.) by combining mapping-by- sequencing and linkage analysis. Theor Appl Genet, 2018, 131: 1001-1016.
doi: 10.1007/s00122-017-3044-8
[15] Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S L, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9- mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562-572.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439
[16] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[17] Radley M. Comparison of endogenous gibberellins and response to applied gibberellin of some dwarf and tall wheat cultivars. Planta, 1970, 92: 292-300.
doi: 10.1007/BF00385096 pmid: 24500299
[18] Spielmeyer W, Ellis M H, Chandler P M. Semi-dwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043-9048.
doi: 10.1073/pnas.132266399
[19] Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D. Exploiting DELLA signaling in cereals. Trends Plant Sci, 2017, 22: 880-893.
doi: S1360-1385(17)30161-9 pmid: 28843766
[20] Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-698.
doi: 10.1038/nature04028
[21] Harberd N P, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell, 2009, 21: 1328-1339.
doi: 10.1105/tpc.109.066969
[22] Franklin K A, Whitelam G C. Phytochromes and shade-avoidance responses in plants. Ann Bot, 2005, 96: 169-175.
doi: 10.1093/aob/mci165
[23] Liu W G, Jiang T, Zhou X R, Yang W Y. Characteristics of expansins in soybean internodes and responses to shade stress. Asian J Crop Sci, 2011, 3: 26-34.
doi: 10.3923/ajcs.2011.26.34
[24] 王一, 杨文钰, 张霞, 雍太文, 刘卫国, 苏本营. 不同生育时期遮阴对大豆形态性状和产量的影响. 作物学报, 2013, 39: 1871-1879.
doi: 10.3724/SP.J.1006.2013.01871
Wang Y, Yang W Y, Zhang X, Yong T W, Liu W G, Sun B Y. The effect of shading at different growth periods on the morphological characters and yield of soybean. Acta Agron Sin, 2013, 39: 1871-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01871
[25] Cooper R L. Development of short-statured soybean cultivars 1. Crop Sci, 1981, 21: 27-131.
[26] Cooper R L. Breeding semidwarf soybeans. Plant Breed Rev, 1985, 3: 89-311.
[27] 姜振峰, 赵彩桐, 李佳男, 孙士祥, 刘志华, 李文滨. 不同生长习性大豆株高形成规律分析. 东北农业大学学报, 2019, 50: 33-42.
Jiang Z F, Zhao C T, Li J N, Sun S X, Liu Z H, Li W B. Analysis on the formation law of soybean plant height with different growth habits. J Northeast Agric Univ, 2019, 50: 33-42. (in Chinese with English abstract)
[28] 任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转录组分析. 作物学报, 2016, 42: 1319-1331.
doi: 10.3724/SP.J.1006.2016.01319
Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of soybean stalk morphogenesis under shade stress. Acta Agron Sin, 2016, 42: 1319-1331. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01319
[29] Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G, Zhang H, Liu Z, Shi Miao, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182: 1-15.
doi: 10.1016/j.cell.2020.05.008
[30] 吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响. 大豆科学, 2007, 26: 868-872.
Wu Q L, Wang Z, Yang W Y. Effect of shading in seedling stage on soybean stalk morphology and substance accumulation. Soybean Sci, 2007, 26: 868-872 (in Chinese with English abstract).
[31] Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol Plant, 2018, 11: 288-299.
doi: S1674-2052(17)30374-X pmid: 29253619
[32] Lyu X, Cheng Q, Qin C, Li Y, Xu X, Ji R, Mu R, Li H, Zhao T, Liu J, Zhou Y, Li H, Yang G, Chen Q, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2021, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016 pmid: 33249237
[33] Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014
[34] Jiang B, Shi Y, Peng Y, Dong X, Li H, Dong J, Li J, Gong Z, Thomashow M F, Yang S. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol Plant, 2020, 13: 894-906.
doi: 10.1016/j.molp.2020.04.006
[35] Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23: 623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429
[36] Jiang B, Shi Y, Zhang X, Xin X, Yang S. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2017, 114: E66695-E6702.
[1] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[2] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[3] LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35.
[4] BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187.
[5] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[6] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[7] KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708.
[8] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[9] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[10] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[11] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[12] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[13] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[14] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[15] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[3] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[4] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[7] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[8] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[9] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[10] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .