Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 703-718.doi: 10.3724/SP.J.1006.2023.24028

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and validation of functional markers of GBSSI gene in proso millet

DING Min1(), DUAN Zheng-Yong1, WANG Yu-Zhuo1, XUE Ya-Peng1, WANG Hai-Gang2, CHEN Ling2, WANG Rui-Yun1,2,*(), QIAO Zhi-Jun2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Center for Agricultural Genetic Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs / Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, Shanxi, China
  • Received:2022-01-22 Accepted:2022-06-07 Online:2023-03-12 Published:2022-07-07
  • Contact: WANG Rui-Yun,QIAO Zhi-Jun E-mail:yksin646@163.com;wry925@126.com;nkypzs@126.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-06-14.5-A16);Shanxi Agriculture Research System (Minor Grain Crop)(2022-03);National Natural Science Foundation of China(31271791);Natural Science Foundation of Shanxi Province(201901D11126)

Abstract:

Functional molecular markers were designed based on nucleotide differences of known functional loci on Waxy (GBSSI), a regulation gene for amylose synthesis in proso millet. Genotypes and phenotypes of 270 proso millet accessions from Shanxi province were tested and verified by combining phenotypes and genotypes. The amylose content of 46 proso millet accessions with different genotypes was determined to explore the genetic effect of this gene and evaluate its breeding value. Waxy gene of proso millet existed in two forms (L and S), targeting 15 bp on S type gene. A functional marker was designed for InDel (RYW214), which could effectively distinguish 126 bp, 141 bp, and heterozygous (126/141 bp) types. The consistency between the marker and phenotypic identification was 93.30%, and the Pearson correlation index (r) was 0.745. Two CAPS markers (RYW215, RYW216) were designed for a single nucleotide insertion site and a SNP site in the L-type gene. Among 270 accessions, genotype S-15/LF accounted for the most (31.10%), S0/S-15/LF was the second (22.96%), and S-15/LY/LF was the least (0.74%). Genotype S-15/LC was absent. Among 46 proso millet accessions, the genotypes with the highest mean amylose content were S0/LY/LF (15.50%) and S-15/LF (0.58%). The mutant alleles of L type gene had little effect on amylose content, and the existence of wild type S0 was enough to guarantee amylose content in endosperm. The existence of mutant S-15 would lead to a qualitative decline in amylose content, and the amylose content of heterozygous genotype S0S-15 was slightly higher than that of homozygous genotype S-15.

Key words: proso millet, GBSSI gene, functional molecular marker, amylose content

Table S1

Proso millet accessions"

编号
Serial number
统一编号
Unicode
名称
Name
来源
Accession donor
品种类型
Variety type
1 00006548 太原1047 Taiyuan 1047 太原市 Taiyuan, Shanxi 地方品种 Local variety
2 00007523 A75-7 山西 Shanxi 地方品种 Local variety
3 00007526 A75-10 山西 Shanxi 地方品种 Local variety
4 00000832 鸭爪白 Yazhuabai 大同市 Datong, Shanxi 地方品种 Local variety
5 00000838 小红黍 Xiaohongshu 大同市 Datong, Shanxi 地方品种 Local variety
6 00000843 大白黍 Dabaishu 大同市 Datong, Shanxi 地方品种 Local variety
7 00000956 大青黍 Daqingshu 大同市 Datong, Shanxi 地方品种 Local variety
8* 00001263 大白黍 Dabaishu 阳泉市 Yangquan, Shanxi 地方品种 Local variety
9 00001275 小黑黍 Xiaoheishu 晋中市 Jinzhong, Shanxi 地方品种 Local variety
10 00001374 白鹅蛋糜子 Baiedanmizi 吕梁市 Lyuliang, Shanxi 地方品种 Local variety
11 00001514 黄硬黍 Huangyingmi 临汾市 Linfen, Shanxi 地方品种 Local variety
12* 晋黍1号 Jinshu 1 大同市 Datong, Shanxi 育成品种 Breed variety
13 晋黍2号 Jinshu 2 大同市 Datong, Shanxi 育成品种 Breed variety
14 晋黍3号 Jinshu 3 大同市 Datong, Shanxi 育成品种 Breed variety
15 晋黍4号 Jinshu 4 大同市 Datong, Shanxi 育成品种 Breed variety
16 晋黍5号 Jinshu 5 大同市 Datong, Shanxi 育成品种 Breed variety
17* 晋黍6号 Jinshu 6 大同市 Datong, Shanxi 育成品种 Breed variety
18 晋黍7号 Jinshu 7 大同市 Datong, Shanxi 育成品种 Breed variety
19 晋黍8号 Jinshu 8 大同市 Datong, Shanxi 育成品种 Breed variety
20 00009143 晋黍9号 Jinshu 9 大同市 Datong, Shanxi 育成品种 Breed variety
21 雁黍7号 Yanshu 7 大同市 Datong, Shanxi 育成品种 Breed variety
22 红黍子 Hongshuzi 阳泉市 Yangquan, Shanxi 农家种 Farm variety

Table 1

Detail of primers used in this study"

标记名称
Marker name
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
内切酶名称
Endonuclease name
备注
Remark
RYW214 M5 GGACGTCAGCGAGTGGGACC Hunt et al. [31]
R11 CAGGCACACTGCTCCCAATG
M5QT1 CAAGTACGACGTGTCGACGG
R11QT1 AAGGACGATCTGGACGTCCT
M5QT2 AGTGCGTCGTCGGACTCTG
R11QT2 TCCTCCAGCCTGCCGACAAA
RYW215 int5Lf ATGTTTGAATGAATGCTCC ACC I Hunt et al. [31]
R3 TGGTAGTTGCTCTTGAGGTA
RYW216 M12 CGTGACCATCTCTTCCTGTA EcoN I Hunt et al. [31]
R12 CGACGACGAACTCTCAACAC

Fig. 1

Electrophoretic diagram of amplification products at InDel site of some proso millet accessions M: marker 500; 168: Erhongshu; 169: Dahongshu; 170: Xiaoheishu; 175: Yingdihuang; 176: Huangshuzi; 177: Laolaihong; 178: Bianmeishu; 183: Chengshuhong; 180: Gouweidan; 181: Baikulou; 182: Xiaohongruanmi; 184: Ruanbaimi."

Fig. 2

Electrophoretic patterns of amplification products at SNP (A/G substitution) site of some accessions M: marker 2000; 197: Yuza 1; 198: Dahuangmizi; 199: Xiaoqingmizi; 200: Dabaiyingmi; 203: Dahuangya."

Fig. 3

Electrophoretic diagram of amplification products of some materials at frame-shift mutation site M: marker 2000; 179: Jizhuahong; 180: Gouweidan; 181: Baikulou; 182: Xiaohongruanmi; 183: Chengshuhong; 184: Ruanbaimi; 185: Qianjinshu; 186: Zhenzhulianruanmi; 187: Bairuanmi; 188: Hongshuzi; 189: Jinhongshu; 191: Mizi."

Fig. 4

DNAMAN sequence alignment of 7 proso millet accessions amplified by 3 pairs of primers A, B, and C indicate primer M5/R11, M12/R12, and int5Lf/R3, respectively. 41: Baishuzi; 49: Shuzi; 60: Heimizi; 73: Baimizi; 80: Liushitianxiaohongshu; 87: Dabaishu; 89: Dabaishu."

Fig. 5

Waxy/non-waxy phenotype identification of proso millet accessions A: Non-waxy type; B: Waxy type."

Table 2

Genotype of 270 proso millet accessions"

基因型
Genotype
LC LY LF LY/LF
S0 24 14 43 5
S-15 0 10 84 2
S0/S-15 3 15 62 8

Table 3

Amylose content in different genotypes of proso millet accessions"

基因型
Genotype
种质份数
No. of accessions
直链淀粉含量
Amylose content (%)
变异区间
Range of variation (%)
变异系数
Coefficient of variation (%)
S0/LC 4 13.13±2.28 10.14-15.63 17.40
S0/LF 3 16.28±5.66 11.60-22.57 34.76
S0/LY 3 12.47±2.66 9.42-14.33 21.36
S0/LY/LF 3 15.50±2.61 12.50-17.31 16.88
S-15/LF 6 0.48±0.32 0.10-0.84 66.05
S-15/LY 4 1.67±1.09 0.69-2.92 65.17
S-15/LY/LF 2 2.81±1.30 1.89-3.73 46.30
S0S-15/LC 3 1.85±0.60 1.38-2.53 32.75
S0S-15/LF 7 4.75±2.38 1.97-7.36 50.20
S0S-15/LY 6 4.43±2.53 1.59-8.21 57.08
S0S-15/LY/LF 5 4.84±3.43 1.31-9.03 70.87

Fig. 6

Multiple comparison of amylose content in different genotypes of proso millet accessions Different lowercase letters indicate significant differences at P < 0.05."

[1] 何杰丽, 石甜甜, 陈凌, 王海岗, 高志军, 杨美红, 王瑞云, 乔治军. 糜子EST-SSR分子标记的开发及种质资源遗传多样性分析. 植物学报, 2019, 54: 723-732.
doi: 10.11983/CBB19037
He J L, Shi T T, Chen L, Wang H G, Gao Z J, Yang M H, Wang R Y, Qiao Z J. The genetic diversity of common millet (Panicum miliaceum) germplasm resources based on the EST-SSR markers. Bull Bot, 2019, 54: 723-732. (in Chinese with English abstract)
[2] 邵欢欢, 陆平, 史梦莎, 王璐琳, 乔治军, 刘敏轩, 王瑞云. 黍稷芽、苗期抗旱性评价及抗旱资源鉴定. 分子植物育种, 2021, 19: 1284-1296.
Shao H H, Lu P, Shi M S, Wang L L, Qiao Z J, Liu M X, Wang R Y. Evaluation and identification of broomcorn millet resources for drought resistance at germination and seedling stages. Mol Plant Breed, 2021, 19: 1284-1296 (in Chinese with English abstract).
[3] Yuan Y H, Liu C J, Gao Y B, Ma Q, Yang Q H, Feng B L. Proso millet (Panicum miliaceum L.): a potential crop to meet demand scenario for sustainable saline agriculture. J Environ Manage, 2021, 296: 113216-113228.
doi: 10.1016/j.jenvman.2021.113216
[4] Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell’Acqua M. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC Plant Biol, 2021, 21: 330.
doi: 10.1186/s12870-021-03111-5 pmid: 34243721
[5] Grawford G W. Agricultural origins in North China pushed back to the Pleistocene-Holocene Boundary. Proc Natl Acad Sci USA, 2009, 106: 7271-7272.
doi: 10.1073/pnas.0903375106 pmid: 19416918
[6] Lu H Y, Zhang J P, Liu K B, Wu N Q, Li Y M, Zhou K S, Ye M L, Zhang T Y, Zhang H J, Yang X Y, Shen L C, Xu D K, Li Q. Earliest domestication of common millet (Panicum miliaceum L.) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372.
doi: 10.1073/pnas.0900158106
[7] 王星玉, 王纶, 温琪汾, 师颖. 山西是黍稷的起源和遗传多样性中心. 植物遗传资源学报, 2009, 10: 465-470.
Wang Y X, Wang L, Wen Q F, Shi Y. Shanxi province is the center of the origin and genetic diversity of proso millet. J Plant Genet Resour, 2009, 10: 465-470 (in Chinese with English abstract).
[8] 袁雨豪, 杨清华, 党科, 杨璞, 高金锋, 高小丽, 王鹏科, 陆平, 刘敏轩, 冯佰利. 糜子资源耐盐性评价与盐胁迫生理响应. 中国农业科学, 2019, 52: 4066-4078.
Yuan Y H, Yang Q H, Dang K, Yang P, Gao J F, Gao X L, Wang P K, Lu P, Liu M X, Feng B L. Salt-tolerance evaluation and physiological response of salt stress of broomcorn millet (Panicum miliaceum L.). Sci Agric Sin, 2019, 52: 4066-4078. (in Chinese with English abstract)
[9] Ivits E, Cherlet M, Tóth T, Lewińska K E, Tóth G. Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators. Land Degrad Dev, 2013, 24: 438-452.
[10] Yuan Y H, Liu J J, Ma Q, Gao Y B, Yang Q H, Gao X L, Feng B L. Cleaner production of proso millet (Panicum miliaceum L.) in salt-stressed environment using re-watering: from leaf structural alleviations to multi-omics responses. J Clean Prod, 2022, 334: 130205.
doi: 10.1016/j.jclepro.2021.130205
[11] Yuan Y H, Liu L, Gao Y B, Yang Q H, Dong K J, Liu T P, Feng B L. Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Ind Crops Prod, 2022, 177: 114498.
doi: 10.1016/j.indcrop.2021.114498
[12] 杜春微, 高梦晗, 刘庆, 吕璇, 杜双奎. 黄米品质特性研究. 食品工业, 2018, 39(2): 83-87.
Du C W, Gao M H, Liu Q, Lyu X, Du S K. Study on quality characteristics of yellow rice. Food Industry, 2018, 39(2): 83-87. (in Chinese with English abstract)
[13] 王瑞云. 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017. pp 8-9.
Wang R Y. Genetic Diversity and Evolution Advancement in Common Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2017. pp 8-9. (in Chinese)
[14] 柴岩. 糜子. 北京: 中国农业出版社, 1999. pp 56-59.
Chai Y. Common Millet. Beijing: China Agriculture Press, 1999. pp 56-59. (in Chinese)
[15] Araki M, Numaoka A, Kawase M, Fukunaga K. Origin of Waxy common millet, Panicum miliaceumL. in Japan. Genet Resour Crop Evol, 2011, 59: 1303-1308.
doi: 10.1007/s10722-011-9755-9
[16] Okagaki R J. Nucleotide sequence of a long cDNA from the rice waxy gene. Plant Mol Biol, 1992, 19: 513-516.
pmid: 1377969
[17] Hirano H Y, Sano Y. Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol, 1991, 32: 989-997.
doi: 10.1093/oxfordjournals.pcp.a078186
[18] Clark J R, Robertson M, Ainsworth C C. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol Biol, 1991, 16: 1099-1101.
pmid: 1863765
[19] 曾礼华, 汪瀚宇, 谢程程, 曹墨菊. 玉米淀粉合成酶基因GBSS启动子的克隆与鉴定. 植物生理学报, 2015, 51: 1433-1439.
Zeng L H, Wang H Y, Xie C C, Cao M J. Clone and identification of granule-bound starch synthase gene promoter in maize. Plant Physiol J, 2015, 51: 1433-1439. (in Chinese with English abstract)
[20] 袁文娅, 赵晓雷, 周旭梅, 王磊, 彭勃, 王奕. Waxy基因功能标记开发及在糯玉米育种中的应用. 作物杂志, 2020, (4): 99-106.
Yuan W Y, Zhao X L, Zhou X M, Wang L, Peng B, Wang Y. The development of waxy gene function marker and its application in waxy maize breeding. Crops, 2020, (4): 99-106. (in Chinese with English abstract)
[21] 沈宝云, 刘玉汇, 张俊莲, 王蒂. 马铃薯块茎GBSSI基因的cDNA克隆及其序列特征分析. 草业学报, 2010, 19(5): 1-8.
Shen B Y, Liu Y H, Zhang J L, Wang D. Analysis of cloning and sequence characteristics of cDNA encoding the GBSS I gene from tubers of Solanum tuberosum. Acta Pratac Sin, 2010, 19(5): 1-8. (in Chinese with English abstract)
[22] 侯夫云, 李丰, 秦桢, 李爱贤, 董顺旭, 王庆美, 张立明. 甘薯淀粉合成相关酶基因的克隆与表达分析. 分子植物育种, 2019, 17: 7663-7668.
Hou F Y, Li F, Qin Z, Li A X, Dong S X, Wang Q M, Zhang L M. Cloning and expression analysis of starch synthesis related enzyme gene in sweet potato. Mol Plant Breed, 2019, 17: 7663-7668. (in Chinese with English abstract)
[23] Klösgen R B, Gierl A, Schwarz-Sommer Z, Saedler H. Molecular analysis of the waxy locus of Zea mays. Mol Gen Genet, 1986, 203: 237-244.
doi: 10.1007/BF00333960
[24] 徐春艳, 陈亭亭, 李松, 崔德周, 李鹏, 宁丽华, 李德涛, 王莉雯, 刘旭, 姜川, 马侠, 张华, 陈化榜. 糯玉米waxy基因序列特征分析及分子标记开发. 分子植物育种, 2015, 13: 531-540.
Xu C Y, Chen T T, Li S, Cui D Z, Li P, Ning L H, Li D T, Wang L W, Liu X, Jiang C, Ma X, Zhang H, Chen H B. Molecular characterization of the waxy maize key starch synthesis gene and development of molecular markers. Mol Plant Breed, 2015, 13: 531-540. (in Chinese with English abstract)
[25] Patron N J, Smith A M, Fathy B F, Hylton C M, Naldrett M J, Rossnagel B G, Denyer K. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5′-non-coding region. Plant Physiol, 2002, 130: 190-198.
doi: 10.1104/pp.005454
[26] 谈移芳, 张启发. 水稻蜡质基因引导区的两个SSR序列与直链淀粉含量的相关性. 植物学报, 2001, 43: 146-150.
Tan Y F, Zhang Q F. Correlation of simple sequence repeat (SSR) variants in the leader sequence of the waxy gene with amylose content of grain in rice. Acta Bot Sin, 2001, 43: 146-150. (in Chinese with English abstract)
[27] Ayres N M, McClung A M, Larkin P D, Bligh H F J, Jones C A, Park W D. Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm. Theor Appl Genet, 1997, 94: 773-781.
[28] Kawase M, Fukunaga K, Kato K. Diverse origins of Waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Mol Gen Genomics, 2005, 274: 131-140.
doi: 10.1007/s00438-005-0013-8
[29] Fukunaga K, Kawase M, Kato K. Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol Gen Genomics, 2002, 268: 214-222.
doi: 10.1007/s00438-002-0728-8
[30] Graybosch R A, Baltensperger D D. Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum L.). Plant Breed, 2009, 128: 70-73.
doi: 10.1111/j.1439-0523.2008.01511.x
[31] Hunt H V, Denyer K, Packman L C, Jones M K, Howe C J. Molecular basis of the waxy endosperm starch phenotype in broomcorn millet (Panicum miliaceum L). Mol Biol Evol, 2010, 27: 1478-1494.
doi: 10.1093/molbev/msq040
[32] Hunt H V, Moots H M, Graybosch R A, Jones H, Parker M, Romanova O, Jones M K, Howe C J, Trafford K. Waxy phenotype evolution in the allotetraploid cereal broomcorn millet: mutations at the GBSSI locus in their functional and phylogenetic context. Mol Biol Evol, 2013, 30: 109-122.
doi: 10.1093/molbev/mss209
[33] Wang R Y, Wang H G, Liu X H, Ji X, Chen L, Lu P, Liu M X, Teng B, Qiao Z J. Waxy allelic diversity in common millet (Panicum miliaceum L.) in China. Crop J, 2018, 6: 377-385.
doi: 10.1016/j.cj.2018.02.004
[34] Bonnecarrere V, Rosas J, Ferraro B. Economic impact of marker- assisted selection and rapid generation advance on breeding programs. Euphytica, 2019, 10: 859.
[35] 刘纪麟. 玉米育种的策略. 玉米科学, 2003, 11(增刊2): 54-57.
Liu J L. Strategies for maize breeding. J Maize Sci, 2003, 11(S2): 54-57. (in Chinese with English abstract)
[36] 宋同明. 糯玉米与WX基因. 玉米科学, 1993, 1(2): 1-2.
Song T M. Waxy corn and WX gene. J Maize Sci, 1993, 1(2): 1-2. (in Chinese with English abstract)
[37] 石甜甜, 何杰丽, 高志军, 陈凌, 王海岗, 乔治军, 王瑞云. 利用EST-SSR评估糜子资源遗传差异. 中国农业科学, 2019, 52: 4100-4109.
Shi T T, He J L, Gao Z J, Chen L, Wang H G, Qiao Z J, Wang R Y. Genetic diversity of common millet resources assessed with EST-SSR markers. Sci Agric Sin, 2019, 52: 4100-4109. (in Chinese with English abstract)
[38] 刘晓欢. 中国糜子资源的农艺性状及Waxy基因的多态性研究. 山西农业大学硕士学位论文, 山西太谷, 2015.
Liu X H. Study on Agronomic Traits and Polymorphism of Waxy Gene in Broomcorn Millet in China. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2015. (in Chinese with English abstract)
[39] Chu H W, Tu R J, Niu F A, Zhou J H, Sun B, Luo Z Y, Cheng C, Cao L M. A new PCR/LDR-based multiplex functional molecular marker for marker-assisted breeding in rice. Rice Sci, 2021, 28: 6-10.
doi: 10.1016/j.rsci.2020.11.002
[40] 毛艇, 李旭, 李振宇, 徐正进. 水稻Wx复等位基因基于PCR的功能标记开发与利用. 作物学报, 2017, 43: 1715-1723.
doi: 10.3724/SP.J.1006.2017.01715
Mao T, Li X, Li Z Y, Xu Z J. Development of PCR functional markers for multiple alleles of Wx and their application in rice. Acta Agron Sin, 2017, 43: 1715-1723. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01715
[41] Sabar M, Akhter M, Bibi T, Riaz A, Haider Z, Khan A R, Bibi A. Basmati rice lines development carrying multiple bacterial blight resistance genes pyramided using the marker-assisted backcross breeding approach. Mol Breed, 2019, 39: 155.
doi: 10.1007/s11032-019-1047-7
[42] Gordeeva E, Shamanin V, Shoeva O, Kukoeva T, Morgounov A, Khlestkina E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia. Agronomy, 2020, 10: 1603.
doi: 10.3390/agronomy10101603
[43] Qutub M, Chandran S, Rathinavel K, Sampathrajan V, Rajasekaran R, Manickam S, Adhimoolam K, Muniyandi S J, Natesan S. Improvement of a Yairipok Chujak maize landrace from North Eastern Himalayan region for β-carotene content through molecular marker-assisted backcross breeding. Genes, 2021, 12: 762.
doi: 10.3390/genes12050762
[44] Hechanova S L, Bhattarai K, Simon E V, Clave G, Karunarathne P, Ahn E K, Li C P, Lee J S, Kohli A, Hamilton N R S, Hernandez J E, Gregorio G B, Kshirod K, Jena K K, An G, Kim S R. Development of a genome-wide InDel marker set for allele discrimination between rice (Oryza sativa) and the other seven AA-genome Oryza species. Sci Rep, 2021, 11: 8962.
doi: 10.1038/s41598-021-88533-9 pmid: 33903715
[45] 王娟, 刘宇, 李春娟, 闫彩霞, 赵小波, 单世华. 基于简化基因组的花生InDel标记开发和功能解析. 植物遗传资源学报, 2019, 20: 179-187.
Wang J, Liu Y, Li C J, Yan C X, Zhao X B, Shan S H. InDel marker development and functional analysis of peanut based on simplified genome. J Plant Genet Resour, 2019, 20: 179-187. (in Chinese with English abstract)
[46] 陶爱芬, 游梓翊, 徐建堂, 林荔辉, 张立武, 祁建民, 方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证. 作物学报, 2020, 46: 987-996.
doi: 10.3724/SP.J.1006.2020.94158
Tao A F, You Z Y, Xu J T, Lin L H, Zhang L W, Qi J M, Fang P P. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.). Acta Agron Sin, 2020, 46: 987-996. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94158
[47] Burow G, Chopra R, Sattler S, Burke J, Acosta-Martinez V, Xin Z. Deployment of SNP (CAPS and KASP) markers for allelic discrimination and easy access to functional variants for brown midrib genes bmr6 and bmr12 in Sorghum bicolor. Mol Breed, 2019, 39: 115.
doi: 10.1007/s11032-019-1010-7
[1] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[2] YUAN Yu-Jie, ZHANG Si-Qi, WANG Ming-Yue, LUO Xiao, ZENG Yu-Han, SONG Lu-Xin, LU Hui, CHEN Hong, TAO You-Feng, DENG Fei, REN Wan-Jun. Effects of cooking rice-to-water ratio on grain microstructure and eating characteristics of indica hybrid rice with different amylose contents [J]. Acta Agronomica Sinica, 2022, 48(12): 3225-3233.
[3] ZHANG Xiao, YAN Yan, WANG Wen-Hui, ZHENG Heng-Biao, YAO Xia, ZHU Yan, CHENG Tao. Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice [J]. Acta Agronomica Sinica, 2021, 47(8): 1563-1580.
[4] ZHAO Chun-Fang,YUE Hong-Liang,TIAN Zheng,GU Ming-Chao,ZHAO Ling,ZHAO Qing-Yong,ZHU Zhen,CHEN Tao,ZHOU Li-Hui,YAO Shu,LIANG Wen-Hua,LU Kai,ZHANG Ya-Dong,WANG Cai-Lin. Physicochemical properties and sequence analysis of Wx and OsSSIIa genes in japonica rice cultivars from Jiangsu province and northeast of China [J]. Acta Agronomica Sinica, 2020, 46(6): 878-888.
[5] Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG. Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems [J]. Acta Agronomica Sinica, 2019, 45(12): 1880-1890.
[6] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[7] YAO Shu, CHEN Tao,ZHANG Ya-Dong,ZHU Zhen,ZHAO Qing-Yong,ZHOU Li-Hui,ZHAO Ling,ZHAO Chun-Fang,WANG Cai-Lin*. Pyramiding Pi-ta, Pi-b and Wx-mq Genes by Marker-assisted Selection in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2017, 43(11): 1622-1631.
[8] MAO Ting,LI Xu,LI Zhen-Yu,XU Zheng-Jin. Development of PCR Functional Markers for Multiple Alleles of Wx and Their Application in Rice [J]. Acta Agron Sin, 2017, 43(11): 1715-1723.
[9] YAO Jian-Qiang,BAO Jian-Dong,ZHU Jin-Qing,GUI Yi-Jie,SHEN Qiu-Fang,HU Wei-Min,FAN Long-Jiang. Genetic Diversity of Waxy Gene in Chinese Glutinous Maize [J]. Acta Agron Sin, 2013, 39(01): 43-49.
[10] WU Lei, WANG Dan,SU Wen-Yue,GUO Chang-Hong,SHU Yong-Jun. Developing InDel Markers from Aegilops Genus Based on Comparative Genomics [J]. Acta Agron Sin, 2012, 38(07): 1334-1338.
[11] YU Chun-Hua, BIE Tong-De, WANG Cheng, ZHANG Xiao, WU Rong-Lin, CHENG Xiao-Ming, WANG Can-Guo, ZHAO Yun, CHENG Shun-He. Development of Near-isogenic Lines with Different Wheat Wx Genes and Their Effects on Amylose Content and Noodle Quality [J]. Acta Agron Sin, 2012, 38(03): 454-461.
[12] WU Hun-Lun, ZHAO Yuan, CHI De-Zhao. Relationship between Polymorphism at Wx Gene and Amylose Content in Hulless Barley [J]. Acta Agron Sin, 2012, 38(01): 71-79.
[13] GU Dan-Dan, LIU Zheng-Hui, LIU Yang, WANG Chao-Hua, WANG Jiang-Cheng, LI Gang-Hua, DING Yan-Feng. Effect of Lipid Content and Components on Cooking Quality and Their Response to Nitrogen in Milled Japonica Rice [J]. Acta Agron Sin, 2011, 37(11): 2001-2010.
[14] CHEN Shu-Qiang;JIN Feng;DONG Dan;LIU Bai-Lin;XUE Jing-Fang;ZHANG Wen-Zhong;XU Zheng-Jin;CHEN Wen-Fu. Comparisons of Several Nutritional and Cooking Qualities of Grains at Different Grain Positions of Panicle between Two Panicle Types of Japo- nica Rice [J]. Acta Agron Sin, 2008, 34(04): 641-652.
[15] LÜ Wen-Yan;WU Cui;CHENG Hai-Tao;SHAO Guo-Jun;CAO Ping;MA Lian-Ju;CUI Xin-Fu;YIN Chang-Bin;XU Xing-Wei. Genetic Analysis on Amylose Content of Japonica Hybrid Rice in Different Environments [J]. Acta Agron Sin, 2008, 34(04): 724-728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .