Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (07): 1334-1338.doi: 10.3724/SP.J.1006.2012.01334

• RESEARCH NOTES • Previous Articles     Next Articles

Developing InDel Markers from Aegilops Genus Based on Comparative Genomics

WU Lei, WANG Dan,SU Wen-Yue,GUO Chang-Hong*,SHU Yong-Jun*   

  1. Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province/College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
  • Received:2012-02-14 Revised:2012-04-20 Online:2012-07-12 Published:2012-05-11
  • Contact: 束永俊, Email: syjun2003@126.com; 郭长虹, Email: kaku3008@yahoo.com.cn E-mail:wulei_hnu2011@126.com

Abstract: The expressed sequence tags (ESTs) of Aegilops speltoides were aligned with UniGene sequences of wheat to develop molecular markers for favorable genes that can be used in wheat breeding. A total of 137 insertion/deletion (InDel) sites were identified in Ae. speltoides, and 24 pairs of primers flanking these InDel sites were designed. Of the 24 pairs of primer, 11 had polymorphic amplification in 15 species of wheat relatives, suggesting that they can be used as InDel markers. These InDel markers were functional markers involved in subcellular localization, protein binding or catalyzing, metabolic process and cell rescue, defense, and disease resistance.

Key words: Comparative genomics, Insertion/deletion mutation (InDel), Wheat, Aegilops speltoides, Functional molecular marker

[1]Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B. New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics, 2008, 9: 555

[2]Friebe B, Qi L L, Nasuda S, Zhang P, Tuleen N A, Gill B S. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet, 2000, 101: 51–58

[3]Cherukuri D P, Gupta S K, Charpe A, Koul S, Prabhu K V, Singh R B, Haq Q M R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica, 2005, 143: 19–26

[4]Noori S. Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum × Aegilops speltoides. Euphytica, 2005, 146: 149–155

[5]Mago R, Zhang P, Bariana H, Verlin D, Bansal U, Ellis J, Dundas I. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet, 2009, 119: 1441–1450

[6]Marais G, Bekker T, Eksteen A, McCallum B, Fetch T, Marais A. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica, 2010, 171: 71–85

[7]Pshenichnikova T, Lapochkina I, Shchukina L. The inheritance of morphological and biochemical traits introgressed into common wheat (Triticum aestivum L.) from Aegilops speltoides Tausch. Genet Resour Crop Evol, 2007, 54: 287–293

[8]Naik S, Gill K S, Prakasa Rao V S, Gupta V S, Tamhankar S A, Pujar S, Gill B S, Ranjekar P K. Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet, 1998, 97: 535–540

[9]Picoult-Newberg L, Ideker T E, Pohl M G, Taylor S L, Donaldson M A, Nickerson D A, Boyce-Jacino M. Mining SNPs from EST databases. Genome Res, 1999, 9: 167–174

[10]Batley J, Barker G, O’Sullivan H, Edwards K J, Edwards D. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol, 2003, 132: 84–91

[11]Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M. Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet, 2003, 107: 84–88

[12]Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 2008, 27: 617–631

[13]Chen H, Li L, Wei X, Li S, Lei T, Hu H, Wang H, Zhang X. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336

[14]Feltus F A, Wan J, Schulze S R, Estill J C, Jiang N, Paterson A H. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res, 2004, 14: 1812–1819

[15]Gao L F, Jing R L, Huo N X, Li Y, Li X P, Zhou R H, Chang X P, Tang J F, Ma Z Y, Jia J Z. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet, 2004, 108: 1392–1400

[16]Mao X-G(毛新国), Tang J-F(汤继凤), Zhou R-H(周荣华), Jing R-L(景蕊莲), Jia J-Z(贾继增) . Wheat cSNP mining based on full-length cDNA qequences. Acta Agron Sin (作物学报), 2006, 32(12): 1836–1840 (in Chinese with English abstract)

[17]Wei L-B(魏利斌), Zhang H-Y(张海洋), Zhen Y-Z(郑永战), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Development and utilization of EST-derived microsatellites in sesame (Sesamum indicum L.). Acta Agron Sin (作物学报), 2008, 34(12): 2077–2084 (in Chinese with English abstract)

[18]Zhuang L-F(庄丽芳), Song L-X(宋立晓), Feng W-G(冯祎高), Qian B-L(钱保俐), Xu H-B(徐海滨), Pei Z-Y(裴自友), Qi Z-J(亓增军). Development and chromosome mapping of 81 new wheat EST-SSR markers and application for characterizing rye chromosomes added in wheat. Acta Agron Sin (作物学报), 2008, 34(6): 926–933 (in Chinese with English abstract)

[19]Hong Y-B(洪彦彬), Chen X-P(陈小平), Liu H-Y(刘海燕), Zhou G-Y(周桂元), Li S-X(李少雄), Wen S-J(温世杰), Liang X-Q(梁炫强). Development and utiligaiton of orthologous SSR markers in Arachis through soybean (Glycine max) EST. Acta Agron Sin (作物学报), 2010, 36(3): 410–421 (in Chinese with English abstract)

[20]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326

[21]Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet, 2000, 16: 276–277

[22]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000, 132: 365–386

[23]Swarbreck D, Wilks C, Lamesch P, Berardini T Z, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucl Acids Res, 2008, 36: D1009–D1014

[24]Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 1997, 25: 3389–3402

[25]Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245–261
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[5] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[6] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[7] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[8] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[9] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[10] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[11] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[12] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[13] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[14] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[15] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!