Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3225-3233.doi: 10.3724/SP.J.1006.2022.12088

• RESEARCH NOTES • Previous Articles    

Effects of cooking rice-to-water ratio on grain microstructure and eating characteristics of indica hybrid rice with different amylose contents

YUAN Yu-Jie(), ZHANG Si-Qi, WANG Ming-Yue, LUO Xiao, ZENG Yu-Han, SONG Lu-Xin, LU Hui, CHEN Hong, TAO You-Feng, DENG Fei, REN Wan-Jun()   

  1. Sichuan Agricultural University / Sichuan Provincial Key Laboratory of Crop Physiology, Ecology and Cultivation, Wenjiang 611130, Sichuan, China
  • Received:2021-12-21 Accepted:2022-05-05 Online:2022-12-12 Published:2022-05-24
  • Contact: REN Wan-Jun E-mail:yyjylsxty@163.com;rwjun@126.com
  • Supported by:
    Natural Science Foundation of China(U20A2022);Sichuan Students Innovation and Entrepreneurship Training Program(202010626089)

Abstract:

To investigate the effects of different cooking rice-to-water ratio (R/W) on rice eating quality can provide a theoretical basis for the selection of the optimal R/W during cooking for indica hybrid rice with different amylose contents. On the basis of the previous variety screening test, two indica hybrid rice varieties with high amylose and two with low amylose were used to investigate the response of rice appearance morphology, microstructure, texture characteristics, and the eating quality to cooking R/W. The results were as follows: (1) The indica hybrid rice with low amylose content (LAC) had high swelling factor. The large cracks appeared during soaking and penetrated through the whole grain, and water fully entered the grain, which could be gelatinized completely with less water addition. When the amount of water was too high, holes formed inside the grain and the structure was unstable. However, the indica hybrid rice with high amylose content (HAC) had the opposite trend. (2) Cooking R/W significantly affected the hardness, adhesiveness, chewiness, gumminess, cohesiveness, and resilience of rice, as well as palatability, cold rice texture, and overall eating quality of rice. (3) Increasing the amount of water could significantly improve the adhesiveness of rice, reduce the hardness, chewiness, gumminess, cohesiveness and resilience of rice, increase the adhesiveness of rice. The palatability, taste, cold rice texture, and overall eating quality increased first and then decreased with the increase of water addition, while the water addition had no significant influence on rice aroma and appearance. (4) The aroma and appearance of LAC was superior to HAC in each R/W treatment. The palatability of LAC was the best at 1:1.3 (R/W), while the HAC was the best at 1:2.3 (R/W). The taste and cold rice texture properties of the two kinds of rice were similar to the palatability properties. In conclusion, increasing the cooking water amount could significantly improve the eating quality of HAC. The LAC had the best eating quality at the 1:1.3 (R/W), while the HAC had the best taste at 1:2.3 (R/W).

Key words: indica hybrid rice, eating quality, rice-to-water ratio, amylose content, microstructure

Table 1

Physicochemical properties of rice with different amylose content"

品种类型
Variety type
品种
Variety
食味值
Taste value
水分
Moisture content (%)
直链淀粉
Amylose (%)
蛋白质
Protein (%)
脂肪
Fat (%)
溶胀因子
Swelling factor (%)
低直链品种
LAC
内5优39 Nei 5 you 39 83.83 a 15.16 a 16.49 c 5.31 b 1.57 a 6.66 a
宜香优2115 Yixiangyou 2115 81.18 a 14.52 b 18.65 b 5.95 a 1.40 a 6.12 ab
高直链品种
HAC
中优295 Zhongyou 295 71.58 c 13.09 c 25.05 a 5.60 ab 1.47 a 4.87 c
F优498 F you 498 75.52 b 13.22 c 24.37 a 5.58 ab 1.52 a 5.25 bc
F-value 品种类型 Variety type 24.08** 62.47** 101.72** 0.03 0 20.47**

Fig. 1

Scanning electron microscopy images of transverse sections (A-D) and starch granules (E-F) of kernels of LAC (A-C, E) and HAC (D, F) after soaking The cracks were marked with red arrows. LAC: indica hybrid rice with low amylose content; HAC: indica hybrid rice with high amylose content."

Fig. 2

Scanning electron microscopy images of transverse sections (A, B) and starch granules (C, D) of kernels of LAC (A, C) and HAC (B, D) at different cooking rice-to-water ratios LAC-1.1, LAC-1.5, LAC-2.1, LAC-2.5 and HAC-1.1, HAC-1.5, HAC-2.1, HAC-2.5 indicate the LAC and HAC were cooked at the rice-to- water ratio of 1∶1.1, 1∶1.5, 1∶2.1, and 1∶2.5, respectively. LAC: indica hybrid rice with low amylose content; HAC: indica hybrid rice with high amylose content."

Fig. 3

Appearance of rice of LAC (A) and HAC (B) at different cooking rice-to-water ratio (1:1.1, 1:1.5, 1:2.1, 1:2.5) The abbreviations of treatments are the same as those given in Fig. 2."

Table 2

Effects of rice-to-water ratio on texture characteristics of rice with different amylose contents"

米水比
R/W
品种类型
Variety type
硬度
Hardness
(g)
黏性
Adhesiveness
(g s)
弹性
Springiness
咀嚼性
Chewiness
(g)
胶着性
Gumminess (g)
内聚性
Cohesiveness
回复性
Resilience
1:1.1 LAC 2263.97 b -134.35 a 0.58 b 688.51 b 1187.82 b 0.52 b 0.23 b
HAC 2779.68 a -74.98 a 0.71 a 1092.25 a 1522.75 a 0.55 a 0.25 a
均值 Mean 2521.82 A -104.66 C 0.65 AB 890.38 A 1355.28 A 0.54 A 0.24 A
1:1.5 LAC 1581.54 b -235.25 a 0.59 a 441.97 b 747.71 b 0.47 b 0.19 b
HAC 2316.08 a -96.43 b 0.63 a 724.76 a 1157.84 a 0.50 a 0.21 a
均值 Mean 1948.81 B -165.84 C 0.61 B 583.36 B 952.78 B 0.49 B 0.20 B
1:2.1 LAC 1401.02 b -373.86 a 0.64 a 380.41 b 593.35 b 0.42 a 0.15 b
HAC 2280.68 a -156.36 b 0.65 a 725.11 a 1114.65 a 0.48 a 0.19 a
均值 Mean 1840.85 B -265.11 B 0.64 AB 552.76 B 854.00 B 0.45 C 0.17 C
1:2.5 LAC 1271.52 b -651.69 a 0.61 b 334.98 b 543.82 b 0.43 a 0.14 a
HAC 2302.24 a -293.09 b 0.70 a 646.28 a 921.87 a 0.40 a 0.14 a
均值 Mean 1786.88 B -472.39 A 0.66 A 490.63 B 732.84 C 0.42 D 0.14 D
F value R/W 30.46** 22.59** 2.03 25.92** 44.07** 31.57** 65.41**
Variety type (VT) 166.23** 32.60** 20.42** 91.84** 102.31** 5.03* 20.19**
R/W×VT 3.20* 3.54* 3.54* 0.55 0.96 3.97* 3.45*

Table 3

Effects of rice-to-water ratio on sensory quality of rice with different amylose contents"

米水比
R/W
气味
Aroma
外观
Appearance
适口性
Palatability
滋味
Taste
冷饭质地
Cold rice texture
综合评分
Comprehensive score
LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC
1:1.1 0.43 ab 0.01 a 0.86 a 0.38 a 0.83 bc 0.08 c 0.66 ab -0.04 c 1.01 b 0.11 a 1.07 c 0.06 cd
1:1.3 0.67 ab 0.19 a 0.85 a 0.39 a 1.28 a 0.27 bc 0.95 a 0.10 bc 1.35 a 0.23 a 1.47 a 0.11 cd
1:1.5 0.67 ab 0.19 a 0.94 a 0.16 a 0.99 ab 0.04 c 0.70 ab 0.07 bc 0.93 b 0.10 a 1.26 b 0.05 d
1:1.7 0.72 ab -0.06 a 0.97 a 0.17 a 0.52 cd 0.30 bc 0.70 ab 0.25 abc 0.93 b 0.34 a 1.03 c 0.13 cd
1:1.9 0.34 b 0.07 a 0.82 a 0.46 a 0.34 d 0.30 bc 0.73 ab 0.33 ab 0.77 bc 0.26 a 0.68 d 0.37 bc
1:2.1 0.63 ab 0.04 a 0.92 a 0.56 a -0.21 ef 0.73 ab 0.59 b 0.30 ab 0.52 cd 0.48 a 0.40 e 0.47 b
LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC
1:2.3 0.76 a 0.26 a 0.68 ab 0.61 a 0.18 de 0.87 a 0.58 b 0.52 a 0.73 bc 0.54 a 0.69 d 0.78 a
1:2.5 0.42 ab 0.33 a 0.62 ab 0.26 a -0.26 f 0.81 a 0.50 b 0.35 ab 0.50 cd 0.34 a 0.21 ef 0.68 ab
1:2.7 0.44 ab 0.03 a 0.42 b 0.13 a -0.15 ef 0.56 ab 0.57 b 0.36 ab 0.24 d 0.18 a 0.18 f 0.45 b
均值Mean 0.56 A 0.12 B 0.79 A 0.35 B 0.39 A 0.44 A 0.66 A 0.25 B 0.77 A 0.29 B 0.78 A 0.34 B
CV (%) 0.56 2.49 0.43 1.18 1.55 1.02 0.38 1.19 0.52 1.23 0.60 1.01
双因素方差分析(F值) F-values of two-ways ANOVA
R/W 1.60 1.67 3.22** 1.14 3.16** 6.04**
Variety type (VT) 61.99** 39.73** 0.52 75.34** 65.18** 109.75**
R/W×VT 1.26 1.21 17.72** 3.48** 4.78** 31.80**
[1] Mohapatra D, Bal S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J Food Eng, 2006, 73: 253-259.
doi: 10.1016/j.jfoodeng.2005.01.028
[2] Champagne E T, Bett Garber K L, McClung A M, Bergman C. Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors. Cereal Chem, 2004, 81: 237-243.
doi: 10.1094/CCHEM.2004.81.2.237
[3] Yu L, Turner M S, Fitzgerald M, Stokes J R, Witt T. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci Technol, 2017, 59: 124-138.
doi: 10.1016/j.tifs.2016.11.009
[4] Han J A, Lim S T. Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice. Cereal Chem, 2009, 86: 100-105.
doi: 10.1094/CCHEM-86-1-0100
[5] Zhu L, Wu G, Cheng L, Zhang H, Wang L, Qian H F, Qi X G. Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chem, 2019, 289: 616-624.
doi: S0308-8146(19)30559-X pmid: 30955656
[6] Ghasemi E, Mosavian M T H, Khodaparast M H H. Effect of stewing in cooking step on textural and morphological properties of cooked rice. Rice Sci, 2009, 16: 243-246.
doi: 10.1016/S1672-6308(08)60086-4
[7] He M, Qiu C, Liao Z, Sui Z Q, Corke H. Impact of cooking conditions on the properties of rice: combined temperature and cooking time. Int J Biol Macromol, 2018, 117: 87-94.
doi: S0141-8130(18)31216-9 pmid: 29792958
[8] Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr Polym, 2016, 146: 253-263.
doi: 10.1016/j.carbpol.2016.03.045
[9] Li H, Gilbert R G. Starch molecular structure: the basis for an improved understanding of cooked rice texture. Carbohydr Polym, 2018, 195: 9-17.
doi: 10.1016/j.carbpol.2018.04.065
[10] Chen X, Zhang X X, Wang B Y, Chen P R, Xu Y, Du X F. Investigation of water migration and its impacts on eating qualities of black rice during cooking process. J Cereal Sci, 2019, 89: 102810.
[11] 徐润琪. 大米品质评价技术的开发研究——米饭含水率及糊化度对米饭品质的影响. 四川工业学院学报, 2003, (1): 45-49.
Xu R Q. Development and research of rice quality evaluation technology—effect of rice moisture and gelatinization degree on rice quality. J Sichuan Inst Technol, 2003, (1): 45-49. (in Chinese)
[12] Bett Garber K L, Champagne E T, Ingram D A, McClung A M. Influence of water-to-rice ratio on cooked rice flavor and texture. Cereal Chem, 2007, 84: 614-619.
doi: 10.1094/CCHEM-84-6-0614
[13] Vidal V, Pons B, Brunnschweiler J, Handschin S, Rouau X, Mestres C. Cooking behavior of rice in relation to kernel physicochemical and structural properties. J Agric Food Chem, 2007, 55: 336-346.
doi: 10.1021/jf061945o
[14] 朱庆森, 杜永, 王志琴, 郎有忠, 汤述翥. 杂交稻米的直链淀粉含量与米饭口感黏度硬度关系的研究. 作物学报, 2001, 27: 377-382.
Zhu Q S, Du Y, Wang Z Q, Lang Y Z, Tang S C. Study on the relationship between amylose content and taste viscosity and hardness of hybrid rice. Acta Agron Sin, 2001, 27: 377-382. (in Chinese with English abstract)
[15] 张玉荣, 周显青, 张秀华, 杨兰兰. 大米蒸煮条件及蒸煮过程中米粒形态结构变化的研究. 粮食与饲料工业, 2008, (10): 1-4.
Zhang Y R, Zhou X Q, Zhang X H, Yang L L. Study on cooking condition of rice and morphological and structural changes of rice grain during cooking. Cereal Feed Ind, 2008, (10): 1-4. (in Chinese with English abstract)
[16] Khan M S, Ali C A. Cooking quality of some rice varieties: Research note. J Agric Res (Pakistan), 1985, 23: 231-233.
[17] 卢慧, 袁玉洁, 张丝琪, 陈虹, 陈多, 钟晓媛, 李博, 邓飞, 陈勇, 李贵勇, 任万军. 基于3种方法的西南杂交籼稻稻米食味评价及品种优选. 中国农业科学, 2021, 54: 1243-1257.
Lu H, Yuan Y J, Zhang S Q, Chen H, Chen D, Zhong X Y, Li B, Deng F, Chen Y, Li G Y, Ren W J. Evaluation of rice eating taste and variety optimization of indica hybrid rice in southwest China based on three methods. Sci Agric Sin, 2021, 54: 124-1257. (in Chinese with English abstract)
[18] 袁玉洁, 张丝琪, 卢慧, 李贵勇, 朱海平, 陶有凤, 陈虹, 任万军. 基于食味计评价杂交籼稻食味品质. 食品科学, 2021, 42(11): 63-70.
Yuan Y J, Zhang S Q, Lu H, Li G Y, Zhu H P, Tao Y F, Chen H, Ren W J. Taste quality of indica hybrid rice varieties evaluated by using rice taste analyzer. Food Sci, 2021, 42(11): 63-70. (in Chinese with English abstract)
[19] Perez C M, Juliano B O. Indicators of eating quality for non-waxy rices. Food Chem, 1979, 4: 185-195.
[20] Tester R F, Morrison W R. Swelling and gelatinization of cereal starches: I. Effects of amylopectin, amylose, and lipids. Cereal Chem, 1990, 67: 551-557.
[21] Xu D P, Hong Y, Gu Z B, Cheng L, Li Z F, Li C M. Effect of high-pressure steam on the eating quality of cooked rice. Food Sci Technol, 2019, 104: 100-108.
[22] Zhu L, Bi S L, Wu G C, Zhang H, Wang L, Qian H F, Qi X G, Jiang H P. Comparative analysis of the texture and physicochemical properties of cooked rice based on adjustable rice cooker. Food Sci Technol, 2020, 130: 109650.
[23] Li C, Gong B. Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. Int J Biol Macromol, 2020, 155: 721-729.
doi: S0141-8130(20)32860-9 pmid: 32259539
[24] Tao K, Yu W W, Prakash S, Gilbert R G. High-amylose rice: starch molecular structural features controlling cooked rice texture and preference. Carbohydr Polym, 2019, 219: 251-260.
doi: 10.1016/j.carbpol.2019.05.031
[25] 侯彩云, 大下诚一, 濑尾康久, 川越义则. 蒸煮过程中稻米水分状态的质子核磁共振谱测定. 农业工程学报, 2001, 17(2): 126-131.
Hou C Y, Oshita S, Seo Y, Kawagoe Y. Determination of water status of rice by proton nuclear magnetic resonance spectroscopy during cooking. Trans CSAE, 2001, 17(2): 126-131. (in Chinese with English abstract)
[26] Srichuwong S, Sunarti T C, Mishima T, Tsono N, Hisamatsu M. Starches from different botanical sources: II. Contribution of starch structure to swelling and pasting properties. Carbohydr Polym, 2005, 62: 25-34.
doi: 10.1016/j.carbpol.2005.07.003
[27] Oyeyinka S A, Oyedeji A B, Ogundele O M, Adebo O A, Njobeh P B, Kayitesi E. Infrared heating under optimized conditions enhanced the pasting and swelling behaviour of cowpea starch. Int J Biol Macromol, 2021, 184: 678-688.
doi: 10.1016/j.ijbiomac.2021.06.129
[28] Sasaki T, Matsuki J. Effect of wheat starch structure on swelling power. Cereal Chem, 1998, 75: 525-529.
doi: 10.1094/CCHEM.1998.75.4.525
[29] Vamadevan V, Bertoft E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 2020, 103: 105663.
[30] 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52: 909-920.
Zhao C F, Yue H L, Huang S J, Zhou L H, Zhao L, Zhang Y D, Chen T, Zhu Z, Zhao Q Y, Yao S, Liang W H, Lu K, Wang C L. Eating quality and physicochemical properties in Nanjing rice varieties. Sci Agric Sin, 2019, 52: 909-920. (in Chinese with English abstract)
[31] Fan D M, Ma S Y, Wang L Y, Zhao H F, Zhao J X, Zhang H, Chen W. 1H NMR studies of starch-water interactions during microwave heating. Carbohydr Polym, 2013, 97: 406-412.
doi: 10.1016/j.carbpol.2013.05.021
[32] Hu Z Q, Yang H, Chaima M, Fang C Y, Lu L, Hu X Q, Du B, Zhu Z W, Huang J Y. A visualization and quantification method to evaluate the water-absorbing characteristics of rice. Food Chem, 2020, 331: 127050.
[33] Kasai M, Lewis A, Marica F, Ayabe S, Hatae K, Fyfe C A. NMR imaging investigation of rice cooking. Food Res Int, 2005, 38: 403-410.
doi: 10.1016/j.foodres.2004.10.012
[34] Pan T, Zhao L X, Lin L S, Wang J, Liu Q Q, Wei C X. Changes in kernel morphology and starch properties of high-amylose brown rice during the cooking process. Food Hydrocolloids, 2017, 66: 227-236.
doi: 10.1016/j.foodhyd.2016.11.035
[35] Tamura M, Ogawa Y. Visualization of the coated layer at the surface of rice grain cooked with varying amounts of cooking water. J Cereal Sci, 2012, 56: 404-409.
doi: 10.1016/j.jcs.2012.06.002
[36] Horigane A K, Toyoshima H, Hemmi H, Engelaar W M H G, Okubo A, Nagata T. Internal hollows in cooked rice grains (Oryza sativa cv. Koshihikari) observed by NMR micro imaging. J Food Sci, 1999, 64: 1-5.
[37] Zhu L, Bi S L, Wu G C, Gong B, Zhang H, Wang L, Qian H F, Qi X G. Study of the migration and molecular structure of starch and protein in rice kernel during heating. Int J Biol Macromol, 2020, 147: 1116-1124.
doi: S0141-8130(19)35243-2 pmid: 31726120
[38] Patindol J, Gu X F, Wang Y J. Chemometric analysis of cooked rice texture in relation to starch fine structure and leaching characteristics. Starch (Stärke), 2010, 62: 188-197.
[39] Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016, 196: 702-711.
doi: 10.1016/j.foodchem.2015.09.112 pmid: 26593544
[40] Xu Y J, Ying Y N, Ouyang S H, Duan X L, Sun H, Jiang S K, Sun S C, Bao J S. Factors affecting sensory quality of cooked japonica rice. Rice Sci, 2018, 25: 330-339.
doi: 10.1016/j.rsci.2018.10.003
[41] Champagne E T, Bett-Garber K L, Fitzgerald M A, Grimm C C, Lea J, Ohtsubo K, Jongdee S, Xie L H, Bassinello P Z, Resurreccion A, Ahmad R, Habibi F, Habibi R. Important sensory properties differentiating premium rice varieties. Rice, 2010, 3: 270-281.
doi: 10.1007/s12284-010-9057-4
[42] 周小理, 王惠, 周一鸣, 张欢, 胡业芹. 不同烹煮方式对米饭食味品质的影响. 食品科学, 2017, 38(11): 75-80.
Zhou X L, Wang H, Zhou Y M, Zhang H, Hu Y Q. Influence of different cooking methods on eating quality of rice. Food Sci, 2017, 38(11): 75-80. (in Chinese with English abstract)
doi: 10.1111/j.1365-2621.1973.tb02779.x
[1] LI Xiu, LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties #br# [J]. Acta Agronomica Sinica, 2023, 49(1): 286-294.
[2] JIANG Yan, ZHAO Can, CHENG Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[3] ZHANG Xiao, YAN Yan, WANG Wen-Hui, ZHENG Heng-Biao, YAO Xia, ZHU Yan, CHENG Tao. Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice [J]. Acta Agronomica Sinica, 2021, 47(8): 1563-1580.
[4] LI Bo, ZHANG Chi, ZENG Yu-Ling, LI Qiu-Ping, REN Hong-Chao, LU Hui, YANG Fan, CEHN Hong, WANG Li, CHEN Yong, REN Wan-Jun, DENG Fei. Effects of sowing date on eating quality of indica hybrid rice in Sichuan Basin [J]. Acta Agronomica Sinica, 2021, 47(7): 1360-1371.
[5] WANG Shi-Ya, ZHENG Dian-Feng, FENG Nai-Jie, LIANG Xi-Long, XIANG Hong-Tao, FENG Sheng-Jie, JIN Dan, LIU Mei-Ling, MU Bao-Min. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(10): 1988-2000.
[6] ZHAO Chun-Fang,YUE Hong-Liang,TIAN Zheng,GU Ming-Chao,ZHAO Ling,ZHAO Qing-Yong,ZHU Zhen,CHEN Tao,ZHOU Li-Hui,YAO Shu,LIANG Wen-Hua,LU Kai,ZHANG Ya-Dong,WANG Cai-Lin. Physicochemical properties and sequence analysis of Wx and OsSSIIa genes in japonica rice cultivars from Jiangsu province and northeast of China [J]. Acta Agronomica Sinica, 2020, 46(6): 878-888.
[7] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[8] LIU Hong-Yan, ZHOU Fang, LI Jun, YANG Min-Min, ZHOU Ting, HAO Guo-Cun,ZHAO Ying-Zhong . Anatomical Structure and Photosynthetic Characteristics of a Yellow Leaf Mutant YL1 in Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2017, 43(12): 1856-1863.
[9] YAO Shu, CHEN Tao,ZHANG Ya-Dong,ZHU Zhen,ZHAO Qing-Yong,ZHOU Li-Hui,ZHAO Ling,ZHAO Chun-Fang,WANG Cai-Lin*. Pyramiding Pi-ta, Pi-b and Wx-mq Genes by Marker-assisted Selection in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2017, 43(11): 1622-1631.
[10] MAO Ting,LI Xu,LI Zhen-Yu,XU Zheng-Jin. Development of PCR Functional Markers for Multiple Alleles of Wx and Their Application in Rice [J]. Acta Agron Sin, 2017, 43(11): 1715-1723.
[11] REN Bai-Zhao,LI Li-Li,DONG Shu-Ting,LIU Peng,ZHAO Bin,YANG Jin-Sheng,WANG Ding-Bo,ZHANG Ji-Wang. Effects of Plant Density on Stem Traits and Lodging Resistance of Summer Maize Hybrids with Different Plant Heights [J]. Acta Agron Sin, 2016, 42(12): 1864-1872.
[12] ZHANG Qiu-Ying,LI Yan-Sheng,LIU Chang-Kai,TIAN Bo-Wen,TU Bing-Jie,MAO Jian-Wei. Key Components of Eating Quality and their Dynamic Accumulation in Vegetable Soybean Varieties [Glycine max (L.) Merr.] [J]. Acta Agron Sin, 2015, 41(11): 1692-1700.
[13] LIU Li-Hua,HU Yuan-Fu,CHEN Qiao,LI Hong-Yu,QIAN Yong-De,Lü Yan-Dong,ZHENG Gui-Ping,ZUO Yu-Hu. Interaction of Genotypes with Environments for Three Quality Traits of Rice in Cold Region by AMMI Model [J]. Acta Agron Sin, 2013, 39(10): 1849-1855.
[14] XU Quan,TANG Liang,XU Fan,FUKUSHIMA Akira,HUANG Rui-Dong,CHEN Wen-Fu,XU Zheng-Jin. Research Advances and Prospects of Eating Quality Improvement in Japonica Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2013, 39(06): 961-968.
[15] YAO Jian-Qiang,BAO Jian-Dong,ZHU Jin-Qing,GUI Yi-Jie,SHEN Qiu-Fang,HU Wei-Min,FAN Long-Jiang. Genetic Diversity of Waxy Gene in Chinese Glutinous Maize [J]. Acta Agron Sin, 2013, 39(01): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[7] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[8] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[9] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[10] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .