Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 343-353.doi: 10.3724/SP.J.1006.2023.24035

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of heterotic groups and heterosis patterns of sorghum in early- maturing area

CHEN Bing-Ru1(), YU Miao1, GE Zhan-Yu2, LI Hong-Kui3, HUANG Yan3, LI Hai-Qing1, SHI Gui-Shan1, XIE Li1, XU Ning1, YAN Feng4, GAO Shi-Jie1, ZHOU Zi-Yang1,*(), WANG Nai1,*   

  1. 1Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
    2Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng 024031, Inner Mongolia, China
    3Jilin Province Baicheng Academy of Agricultural Sciences, Baicheng 137000, Jilin, China
    4Qiqihar Sub-academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, Heilongjiang, China
  • Received:2022-02-07 Accepted:2022-05-05 Online:2022-05-31 Published:2022-05-31
  • Contact: ZHOU Zi-Yang,WANG Nai E-mail:chenbingru1979@163.com;ziyang_z@163.com
  • Supported by:
    Youth Fund of Key Laboratory of Sorghum Genetics and Germplasm Innovation in Shanxi Province(2016K-01);Science and Technology Development Program of Jilin Province(20210202001NC);Science and Technology Innovation Project of Jilin Province(CXGC2021DX005);China Agriculture Research System of MOF and MARA(CARS-06)

Abstract:

The division of heterotic groups can play an important guiding role in broadening the genetic basis of parents, improving breeding efficiency and developing breakthrough new hybrids. In this study, we used the whole genome resequencing technology to scan the whole genome of 55 parent lines of dominant hybrids lines in spring sowing early maturing region for more than 40 years, analyzed their population structure, estimated genetic distance, divided heterosis groups, and analyzed heterosis patterns of dominant hybrid lines. The results showed that the genetic distance of 55 germplasm were 0.704, with a range of 0.627-0.927, and the average polymorphism information content (PIC) was 0.2935, range from 0.1 to 0.5. Fifty-five parents’ lines were classified into 4 heterotic groups that Durra, Kafir/Durra, Russia/Kafir, Kaoliang by the population structure and principal components analysis. Meanwhile, heterosis models of 76% hybrids of 25 main release hybrids from 1973-2014 years were Kafir/Durra × Kaoliang. The sterile line of main release hybrids was derived from Kafir and durra groups from abroad, and the restorer lines were derived from the Kaoliang group produced in China. The heterotic groups divided in this study clarified the genetic basis of sorghum parents’ lines in early- maturing area in China, which provided a scientific basis for the improvement of parental lines and the innovation of heterotic patterns.

Key words: sorghum, parental lines, SNP, heterosis, heterotic groups, heterotic patterns

Table 1

Name and pedigree of sorghum parental lines in early-maturing area"

编号
No.
种质名称
Germplasm name
系谱
Pedigree
1 1230B (TX 3197B×矬1B)×黑30B (TX 3197B×Cuo 1B)×Hei 30B
2 黑龙30B Heilong 30B “库班红”天然杂交株 Natural hybrid of Kuban red
3 忻4B Xin 4B 山西省忻县地区农业科学研究所选育
Bred by Xinxian Regional Institute of Agricultural Sciences, China
4 4190B (1105B×麦辽B)×TAM428 (1105B×Mailiao B)×TAM428
5 哲15B Zhe 15B 哲里木盟农业科学研究所选育 Bred by Zhelimu League Institute of Agricultural Sciences, China
6 2316B T239B/1031B
7 赤6B Chi 6B TX 3197B×212小青米 TX 3197B×212 Xiaoqingmi
8 314B TX3197B×库班红 TX 3197B×Kuban red
9 吉2055B Ji 2055B 314B×A2V4B
10 吉5535B Ji 5535B 521B×2055B
11 繁8B Fan 8B 197B×大同B×314B 197B×Datong B×314B
12 QL33B 澳大利亚引进 Introduced from Australia
13 404B 403B×TX622B
14 TX623B TX3197B×SCD-170-6 (IS12661)
15 辽宁黏B Liaoningnian B 辽宁省农业科学院选育 Bred by Liaoning Academy of Agricultural Sciences, China
16 吉521B Ji 521B 406B×ICS-34B
17 406B 印度高粱群体材料 Indian sorghum population material
18 A2V4 V4 (PICKLET)
19 L407B ICS12B×(TAM428×TNS30)
20 5222B 印度高粱群体材料 Indian sorghum population material
21 SX44B (V4B×F4B)×V4B
22 TAM428B 美国引进 Introduced from USA
23 352B 421B (SPL132A)×TAM428B
24 7050B 421B (SPL132A)×TAM428B
25 MHB 美国引进 Introduced from USA
26 晋长早B Jinchangzao B 大同10B×(TX623×TAM428) Datong 10B×(TX623×TAM428)
27 赤恢428 Chihui 428 赤峰农牧科学院选育
Bred by Chifeng Academy of Agricultural and Animal Husbandry Sciences, China
28 哈恢144 Hahui 144 黑龙江省农业科学院选育 Bred by Heilongjiang Academy of Agricultural Sciences, China
29 吉R117 Ji R117 LR9198天然变异株 Natural hybrid of LR9198
30 LR9198 矮四(矮202×4003)×5-26 (沈4003//IS2914/7511)
Aisi (Ai 202×4003)×5-26 (Shen 4003//IS2914/7511)
31 吉R159 Ji R159 吉R117×吉R5062 Ji R117×Ji R5062
32 吉2731B Ji 2731B 红棒子×黑壳打锣锤Hongbangzi × Heikedaluochui
33 299 恢5×黏/6115 Hui 5×Nian/6115
34 哈恢75 Hahui 75 大红棒 Dahongbang
35 盘陀早 Pantuozao 山西祁县地方品种Qixian landraces in Shanxi, China
36 5933 5903×三尺三 5903×Sanchisan
37 7788 忻粱7号×平罗娃娃头 Xinliang 7×Pingluowawatou
38 6115 3814 (早熟亨加利×洋高粱)×二青叶 3814 (Zaoshuhengjiali×Yangkaolaing)×Erqingye
39 7313 3814 (早熟亨加利×洋高粱)×护4 3814 (Zaoshuhengjiali×Yangkaolaing)×Hu 4
40 7384 3814 (早熟亨加利×洋高粱)×护4 3814 (Zaoshuhengjiali×Yangkaolaing)×Hu 4
41 2598 吉林省农业科学院选育 Bred by Jilin Academy of Agricultural Sciences, China
42 吉R9060 Ji R9060 盘九七×奥红矮C42y×L116R Panjiuqi×aohong’ai C42y×L116R
43 南108 Nan 108 L116×矮四 L116×Aisi
44 忻粱52 Xiliang 52 三尺三× (九头鸟×盘陀高粱) Sanchisan×(Jiutouniao×Pantuogaoliang)
45 吉R105 Ji R105 309-4×R132
46 吉R107 Ji R107 亨加利高粱后代319-4×304-4 Progeny of Hengeri sorghum 319-4×304-4
47 吉R8036 Ji R8036 亨加利高粱后代319-4×304-4 Progeny of Hengeri sorghum 319-4×304-4
48 吉R109 Ji R109 HM65 (晋粱5/三尺三/沈409*八52*渤1*晋2)×1105B
HM65 (Jinliang 5/sanchisan/Shen 409*Ba 52*Bo 1*Jin 2)×1105B
49 吉恢13 Jihui 13 恢10 (2731B×7043B×9127) Hui 10 (2731B×7043B×9127)
50 LR116 晋粱5号/铁恢6号 Jinliang 5/Tiehui 6
51 南133 Nan 133 忻粱52×VI494 Xinliang 52×VI494
52 T180 铁岭市农业科学院选育 Bred by Tieling Academy of Agricultural Sciences, China
53 0-30 (分枝大红穗×晋梁5号)×(晋辐1号×辽阳猪跷脚)
(Branch big red spike×Jinliang 5)×(Jinfu 1×Liaoyangzhuqiaojiao)
54 7616-533 (NK300×晋辐)×享长×17/6115 (NK300×Jinfu)×Henglong×17/6115
55 三尺三 Sanchisan 山西汾阳地方品种 Fenyang landraces in Shanxi, China

Fig. 1

Heatmap of IBS values in sorghum parental lines in early-maturing area Red represents a high IBS value, showing a greater distance between two lines. Blue represents a low IBS value, showing a close distance between two lines."

Fig. 2

Clustering, population structure and PCA of sorghum parental lines in early-maturing area A: the clustering and population structure of 55 sorghum parental lines. The population structure analysis using 1,304,623 SNP. Each individual is represented by a horizontal bar, partitioned into colored segments with the length of each segment representing the proportion of the individual’s genome from K=2-4 groups. When K=4, the genetic groups named the Durra, Kafir/Durra, Russia/Kafir, Kaoliang. B: PCA plot of the three components (PC1, PC2, and PC3) of the 55 sorghum parental lines. Black plot represents Kafir/Durra group, blue plot represents Kaoliang group, green plot represents Durra group and red plot represents Russia/Kafir group."

Table 2

Heterotic Patterns s of main release hybrids in early-maturing area"

编号
No.
杂交种名称
Hybrids name
母本
Female
父本
Male
遗传距离
Genetic
distance
杂优模式1
Heterosis pattern 1
杂优模式2
Heterotic Patterns 2
审定年份
Released year
1 敖杂1号Aoza 1 314A 5933 0.7358 倾南非类型×中国类型 Trend South African×Kaoliang KD×K 1973
2 吉杂26 Jiza 26 吉2731A Ji 2731A 7313 0.7358 中国类型×中国类型Kaoliang×Kaoliang K×K 1978
3 吉杂27 Jiza 27 吉2731A Ji 2731A 6115 0.8463 中国类型×中国类型Kaoliang×Kaoliang K×K 1978
4 吉杂52 Jiza 52 黑龙30A Heilong 30A 吉恢13Jihui 13 0.7424 中国类型×中国类型Kaoliang×Kaoliang RK×K 1979
5 四杂21 Siza 21 404A 忻粱52 Xinliang 52 0.7557 印度类型×中国类型Indian×Kaoliang KD×K 1995
6 辽杂10 Liaiza 10 7050A LR9198 0.7235 南非类型×中国类型South African×Kaoliang KD×K 1997
7 四杂25 Siza 25 TAM428A 南133 Nan 133 0.6876 倾南非类型×中国类型Trend South African×Kaoliang KD×K 1998
8 吉杂83 Jiza 83 352A L116 0.7092 倾印度类型×中国类型Trend Indian×Kaoliang KD×K 1999
9 白杂8 Baiza 8 QL33A 2598 0.7152 倾南非类型×中国类型Trend South African ×Kaoliang KD×K 1999
10 四杂29 Siza 29 哲15A Zhe 15A 南108 Nan 108 0.7466 南非类型×倾中国类型South African×Trend Kaoliang KD×K 1999
11 四杂30 Siza 30 QL33A 南108 Nan 108 0.7337 倾南非类型×倾中国类型Trend South African×Trend Kaoliang KD×K 2000
12 吉杂90 Jiza 90 4190A 吉R9060 Ji R9060 0.7220 倾南非类型×中国类型Trend South African×Kaoliang KD×K 2001
13 吉杂96 Jiza 96 5222A 南133 Nan 133 0.6993 印度类型×中国类型Indian ×Kaoliang D×K 2003
14 吉杂97 Jiza 97 352A 南133 Nan 133 0.7052 倾南非类型×中国类型Trend South African×Kaoliang KD×K 2004
15 吉杂99 Jiza 99 TAM428A 吉R107 Ji R107 0.7433 倾南非类型×倾中国类型Trend South African×Trend Kaoliang KD×K 2005
16 吉杂118 Jiza 118 吉2055A Ji 2055A 吉R8036 Ji R8036 0.7295 倾南非类型×倾中国类型Trend South African×Trend Kaoliang KD×K 2007
17 吉杂210 Jiza 210 吉2055A Ji 2055A 南133 Nan 133 0.7276 倾南非类型×倾中国类型Trend South African×Trend Kaoliang KD×K 2008
18 吉杂121 Jiza 121 314A 吉R105 Ji R105 0.7457 倾中国类型×倾亨加利类型Trend Kaoliang ×Trend Hengeri KD×K 2008
19 吉杂305 Jiza 305 吉521A Ji 521A 0-30 0.7151 印度类型×倾中国类型Indian ×Trend Kaoliang D×K 2008
20 吉杂123 Jiza 123 晋长早A Jinchangzao A 吉R105 Ji R105 0.7519 倾南非类型×倾亨加利类型Trend South African×Trend Hengeri KD×K 2009
21 吉杂122 Jiza 122 吉2055A Ji 2055A 吉R105 Ji R105 0.7451 倾南非类型×倾亨加利类型Trend South African ×Trend Hengeri KD×K 2009
22 吉杂124 Jiza 124 吉2055A Ji 2055A 吉R107 Ji R107 0.7276 倾南非类型×倾亨加利类型Trend South African×Trend Hengeri KD×K 2009
23 吉杂127 Jiza 127 吉2055A Ji 2055A 吉R117 Ji R117 0.7543 倾南非类型×倾中国类型Trend South African×Trend Kaoliang KD×K 2010
24 吉杂130 Jiza 130 吉2055A Ji 2055A T180 0.7259 倾南非类型×倾中国类型Trend South African×Trend Kaoliang KD×K 2010
25 吉杂141 Jiza 141 1230A 吉R109 Ji R109 0.7303 中国类型×中国类型Kaoliang×Kaoliang RK×K 2014
[1] 王胜军. 杂交籼稻亲本杂种优势群的划分及杂种优势模式的构建. 南京农业大学博士论文, 江苏南京, 2006.
Wang S J. Grouping of Parental Lines and Establishment of Heterotic Patterns in Indica Hybrid Rice (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2006. (in Chinese with English abstract)
[2] 姜思奇, 郭瑞, 张敖, 赵艳贺, 时免免, 邓丽霞, 崔震海, 阮燕晔. 利用核心SNP标记划分辽宁省常用玉米自交系杂种优势群的研究. 玉米科学, 2018, 26(4): 17-23.
Jiang S Q, Guo R, Zhang A, Zhao Y H, Shi M M, Deng L X, Cui Z H, Ruan Y Y. Heterotic grouping by core SNP markers for maize inbred lines widely used in Liaoning province. J Maize Sci, 2018, 26(4): 17-23. (in Chinese with English abstract)
[3] 卢柏山, 史亚兴, 宋伟, 徐丽, 赵久然. 利用SNP标记划分甜玉米自交系的杂种优势类群. 玉米科学, 2015, 23(1): 58-62.
Lu B S, Shi Y X, Song W, Xu L, Zhao J R. Heterotic grouping of sweet corn inbred lines by SNP markers. J Maize Sci, 2015, 23(1): 58-62. (in Chinese with English abstract)
[4] 刘炜, 史延丽, 李白超, 马洪文, 王坚, 张洪亮. 粳型水稻杂种优势生态型与杂种优势模式的研究. 西北农林科技大学学报(自然科学版), 2005, 33(1): 108-114.
Liu W, Shi Y L, Li Z C, Ma H W, Wang J, Zhang H L. Studies on heterotic ecotypes and heterotic patters of japonica rice. J Northwest A&F Univ (Nat Sci Edn) 2005, 33(1): 108-114. (in Chinese with English abstract)
[5] 逯腊虎, 李振兴, 倪中福, 彭惠茹, 聂秀玲, 孙其信. 小麦杂种优势群研究: VI. 普通小麦与穗分枝小麦、轮回选择后代材料、西藏半野生小麦和斯卑尔脱小麦早熟诱变系的SSR分子标记遗传差异研究. 麦类作物学报, 2007, 27(2): 201-206.
Lu L H, Li Z X, Ni Z F, Peng H R, Nie X L, Sun Q X. Study on wheat heterotic group: VI. Genetic diversity revealed by SSR marker between common wheat, ear branched wheat, wheat lines derived from recurrent selection, Tibetan wheat and early spelt wheat mutant lines. J Triticeae Crops, 2007, 27(2): 201-206. (in Chinese with English abstract)
[6] 刘正理. 谷子杂种优势群的构建方法及研究进展. 河北农业科学, 2010, 14(11): 102-104.
Liu Z L. Establish method of heterotic group in foxtail millet and its research progress. Hebei Agric Sci, 2010, 14(11): 102-104. (in Chinese with English abstract)
[7] 陈冰嬬, 李继洪, 王阳, 李淑杰, 胡喜连, 李伟, 马英慧, 高鸣, 高士杰. 高粱(Sorghum bicolor (L.) Moench)种质资源研究进展. 西北农林科技大学学报(自然科学版), 2013, 41(1): 67-72.
Chen B R, Li J H, Wang Y, Li S J, Hu X L, Li W, Ma Y H, Gao M, Gao S J. Advances in germplasm resources of sorghum (Sorghum bicolor (L.) Moench). J Northwest A&F Univ (Nat Sci Edn), 2013, 41(1): 67-72. (in Chinese with English abstract)
[8] 高士杰, 韩少颖. 中国杂交高粱的研究与利用. 北京农业大学学报, 1993, 19(增刊1): 92-94.
Gao S J, Han S Y. A study and application of sorghum hybrids in China. Acta Agric Univ Pekinensis, 1993, 19(S1): 92-94. (in Chinese with English abstract)
[9] 马鸿图. 高粱杂种优势与类型血缘关系的探讨. 沈阳农业大学学报, 1974, (1): 60-68.
Ma H T. The relation of heterosis in sorghum and consanguinity of type. J Shenyang Agric Univ, 1974, (1): 60-68. (in Chinese with English abstract)
[10] 邹剑秋, 朱凯, 王艳秋, 杨晓光. 高粱雄性不育系7050A的选育与应用. 作物杂志, 2010, (2): 101-104.
Zou J Q, Zhu K, Wang Y Q, Yang X G. Development and application of sorghum males sterile line 7050A. Crops, 2010, (2): 101-104. (in Chinese with English abstract)
[11] 李团银, 张福耀, 李三棉, 韦耀明, 柳青山. 高粱新型细胞质雄性不育系A2V4A选育及其应用研究, 中国农学通报, 1995, 11(5): 10-13.
Li T Y, Zhang F Y, Li S M, Wei Y M, Liu Q S. Development of a new type cytoplasmic male sterile line A2V4A and its application in sorghum. Chin Agric Sci Bull, 1995, 11(5): 10-13. (in Chinese with English abstract)
[12] 卢庆善. 我国高粱杂种优势利用回顾与展望. 辽宁农业科学, 1992, (3): 40-44.
Lu Q S. Retrospect and prospect on heterosis utilization of sorghum in China. Liaoning Agric Sci, 1992, (3): 40-44. (in Chinese)
[13] 高士杰, 刘晓辉, 郭中校, 李继洪. 中国杂交高粱的种质基础及优势利用模式研究. 中国农学通报, 2005, 21(10): 106-108.
Gao S J, Liu S H, Guo Z X, Li J H. Chinese hybrid sorghum germplasm foundation and superiority use pattern. Chin Agric Sci Bull, 2005, 21(10): 106-108. (in Chinese with English abstract)
[14] 王方, 张凤昌. 高粱不同类群杂种优势研究. 吉林农业科学, 1982, (3): 6-12.
Wang F, Zhang F C. The Heterosis analysis of different groups of sorghum. Jilin Agric Sci, 1982, (3): 6-12.
[15] Wang L M, Jiao S J, Jiang Y X, Yan H D, Su D F, Sun G Q, Yan X F, Sun LF. Genetic structure analysis of sorghum parent lines based on SSR markers. Cereal Res Commun, 2013, 41: 359-365.
doi: 10.1556/CRC.2013.0018
[16] 王瑞, 王金胜, 张福耀, 程庆军, 田承华, 凌亮. 1970s-2000s中国高粱杂交种亲本遗传距离演变的SSR分析. 中国农业科学, 2015, 48: 415-425.
Wang R, Wang J S, Zhang F Y, Cheng Q J, Tian C H, Ling L. Evolution of genetic distance between parental lines of Chinese sorghum hybrids from 1970s-2000s based on SSR analysis. Sci Agric Sin, 2015, 48: 415-425. (in Chinese with English abstract)
[17] 高旭, 周棱波, 张国兵, 邵明波, 张立异. 基于SSR 标记的粒用高粱资源遗传多样性及群体结构. 贵州农业科学, 2016, 44(9): 13-19.
Gao X, Zhou L B, Zhang G B, Shao M B, Zhang L Y. Genetic diversity and population structure of grain sorghum germplasm resources based on SSR marker. Guizhou Agric Sci, 2016, 44(9): 13-19. (in Chinese with English abstract)
[18] 肖松, 周棱波, 张国兵, 邵明波, 乙引, 张立异. 酱香型白酒用糯高粱种质遗传多样性分析. 江苏农业科学, 2016, 44(4): 45-49.
Xiao S, Zhou L B, Zhang G B, Shao M B, Yi Y, Zhang L Y. Genetic diversity analysis of Maotai-flavor liquor-making waxy sorghum. Jiangsu Agric Sci, 2016, 44(4): 45-49. (in Chinese with English abstract)
[19] 汪灿, 周棱波, 高旭, 张国兵, 程斌, 曹宁, 丁延庆, 徐燕, 邵明波, 张立异. 基于分型测序技术的粒用高粱的遗传多样性和群体结构分析. 植物遗传资源学报, 2019, 20: 677-684.
Wand C, Zhou L B, Gao X, Zhang G B, Cheng B, Cao N, Ding Y Q, Xu Y, Shao M B, Zhang L Y. Genetic diversity and population structure analysis of grain-use sorghum based on genotyping by sequencing technology. J Plant Genet Resour, 2019, 20: 677-684. (in Chinese with English abstract)
[20] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
pmid: 7433111
[21] Liu K, Muse S V. Power Marker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
doi: 10.1093/bioinformatics/bti282
[22] Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Giga Sci, 2015, 4: 7.
doi: 10.1186/s13742-015-0047-8
[23] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829
[24] Heng L.http://treesoft.Sourceforge.net/treebest.shtml. Version: 1.9.2, 2014 Apr.
[25] Raj A, Stephens, Pritchard J K. Fast STRUCTURE: variational inference of population structure in large SNP data sets. Genetics, 2014, 1975: 573-589.
[26] Yang J, Lee S H, Goddard M E. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88: 76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468
[27] 任羽, 王得元, 张银东. 分子标记预测作物杂种优势的研究进展. 分子植物育种, 2004, 2: 401-406.
Ren Y, Wang D Y, Zhang Y D. Progresses in the heterosis molecular prediction in the crops. Mol Plant Breed, 2004, 2: 401-406. (in Chinese with English abstract)
[28] 李新海, 袁力行, 李晓辉, 张世煌, 李明顺, 李文华. 利用SSR标记划分70份我国玉米自交系的杂种优势群. 中国农业科学, 2003, 36: 622-627.
Li X H, Yuan L X, Li X H, Zhang S H, Li M S, Li W H. Heterotic grouping of 70 maize inbred lines by SSR markers. Sci Agric Sin, 2003, 36: 622-627. (in Chinese with English abstract)
[29] Harlan J R, Wet J M. A simplified classification of cultivated sorghum. Crop Sci, 1972, 12: 172-176.
doi: 10.2135/cropsci1972.0011183X001200020005x
[30] 吴金凤, 宋伟, 王蕊, 田红丽, 李雪, 王凤格, 赵久然, 蔚荣海. 利用SNP标记对51份玉米自交系进行类群划分. 玉米科学, 2014, 22(5): 29-34.
Wu J F, Song W, Wang R, Tian H L, Li X, Wang F G, Zhao J R, Wei R H. Heterotic grouping of 51 maize inbred lines by SNP markers. J Maize Sci, 2014, 22(5): 29-34. (in Chinese with English abstract)
[31] 王富德, 卢庆善. 我国主要高粱杂交种的系谱分析. 作物学报, 1985, 11: 9-14.
Wang F D, Lu Q S. An analysis of pedigrees of the main hybrid sorghums in China. Acta Agron Sin, 1985, 11: 9-14. (in Chinese with English abstract)
[32] 张辉, 曲文祥, 李书田. 内蒙古特色作物. 北京: 中国农业科学技术出版社, 2010. pp 166-167.
Zhang H, Qu W X, Li S T. Special Crop of Inner Mongolia. Beijing: China Agricultural Science and Technology Press, 2010. pp 166-167. (in Chinese)
[33] 马忠良, 张淑君, 周紫阳, 王江红, 闫鸿雁, 李光华, 马英慧. 优良高粱恢复系南133的选育与利用. 杂粮作物, 2006, 26(3): 178-179.
Ma Z L, Zhang S J, Zhou Z Y, Wang J H, Yan H Y, Li G H, Ma Y H. Breeding and utilization of grain sorghum excellent restorer line Nan 133. Rain Fed Crops, 2006, 26(3): 178-179. (in Chinese with English abstract)
[34] 高士杰, 李继洪, 李伟. 高粱优良恢复系吉R105的选育与利用. 种子, 2009, 28(5): 107-108.
Gao S J, Li J H, Li W. Breeding and utilization of grain sorghum excellent restorer line Ji R105. Seed, 2009, 28(5): 107-108. (in Chinese with English abstract)
[35] 陈冰嬬, 李继洪, 高士杰, 王阳, 马英慧. 高粱长穗型恢复系吉R107的选育与应用. 现代农业科技, 2011, (24): 107-108.
Chen B R, Li J H, Gao S J, Wang Y, Ma Y H. Breeding and application of sorghum long panicle restorer line Ji R107. Mod Agric Sci Technol, 2011, (24): 107-108. (in Chinese)
[1] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.)  [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[2] WANG Jin-Song, BAI Ge, ZHANG Yan-Hui, SHEN Tian-Yu, DONG Er-Wei, JIAO Xiao-Yan. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant activities and yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(3): 845-855.
[3] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[4] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[5] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[8] LI Jian-Ling, GONG Dan, WANG Su-Hua, CHEN Hong-Lin, CHENG Xu-Zhen, XIONG Tao, WANG Li-Xia. Construction of SNP high-density genetic map and QTL analysis of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2475-2482.
[9] WANG Qian, LIU Shao-Xiong, CHAI Xiao-Jiao, LI Hai, ZHANG Fen, LU Ping, WANG Rui-Yun, LIU Min-Xuan. Content diversity of phenolic compounds of waxy sorghum grains in different provinces, cities, and autonomous regions of China [J]. Acta Agronomica Sinica, 2022, 48(10): 2505-2516.
[10] ZHANG Xiao-Wen, LI Shi-Jiao, ZHANG Xiao-Jun, LI Xin, YANG Zu-Jun, ZHANG Shu-Wei, CHEN Fang, CHANG Li-Fang, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. QTL mapping for salt tolerance in wheat line CH7034 [J]. Acta Agronomica Sinica, 2022, 48(10): 2654-2662.
[11] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[12] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[13] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[14] WANG Rui, SHI Long-Jian, TIAN Hong-Li, YI Hong-Mei, YANG Yang, GE Jian-Rong, FAN Ya-Ming, REN Jie, WANG Lu, LU Da-Lei, ZHAO Jiu-Ran, WANG Feng-Ge. Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids [J]. Acta Agronomica Sinica, 2021, 47(4): 770-779.
[15] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!