Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 770-779.doi: 10.3724/SP.J.1006.2021.03031

• RESEARCH NOTES • Previous Articles     Next Articles

Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids

WANG Rui1(), SHI Long-Jian1,2(), TIAN Hong-Li1, YI Hong-Mei1, YANG Yang1, GE Jian-Rong1, FAN Ya-Ming1, REN Jie1, WANG Lu1, LU Da-Lei2, ZHAO Jiu-Ran1,*(), WANG Feng-Ge1,*()   

  1. 1Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
    2Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-06-14 Accepted:2020-10-14 Online:2021-04-12 Published:2020-11-19
  • Contact: ZHAO Jiu-Ran,WANG Feng-Ge E-mail:skywangr@126.com;SLJ18752782386@163.com;maizezhao@126.com;gege0106@163.com
  • Supported by:
    13th Five-Year National Key Research and Development Program of China(2017YFD0102001)

Abstract:

Purity is one of the most important indexes of maize seed quality, especially for inbred seedlings in hybrids which is a key factor affecting field yield. A new high-throughput and economical technology named KASP (Kompetitive allele specific PCR) is suitable for seed purity detection. This study was based on 12 sets of triplet samples of hybrids with their parents and 335 SNP fingerprint data which was nationally approved as standard samples of maize hybrids. Sixty candidate loci were selected from 384 SNP basic loci, and the success rate of transformation from chip to KASP primers was 95%. Considering comprehensive elements including parental complementary rate, polymorphism and other indicators such as stability and genotyping effect of primers, 20 core primers were finally determined for purity identification of maize hybrids. The results showed these core primers were able to effectively identify the purity of 99.7% of tested samples. The purity of tested sample Jingke 968 was identified by searching SNP-DNA fingerprint database and selecting parental complementary primers. One inbred seedling and two off-types were detected in 110 individuals, and the purity value was 97.3%. Meanwhile, a high-throughput purity detection scheme was established based on the core primers of purity identification for batch samples, which is fast, accurate, high-throughput and low-cost, providing more options of purity identification for government regulatory agencies and enterprises.

Key words: purity, SNP, KASP, maize hybrid, core primers

Table 1

Maize triplet sample information"

编号
No.
杂交种
Hybrid
母本
Maternal parent
父本
Paternal parent
1 先玉335 Xianyu 335 PH6WC PH4CV
2 郑单958 Zhengdan 958 郑58 Zheng 58 昌7-2 Chang 7-2
3 农大108 Nongda 108 X178 黄C Huang C
4 鲁单981 Ludan 981 齐319 Qi 319 Lx 9801
5 沈单16 Shendan 16 K12 沈137 Shen 137
6 东单60 Dongdan 60 A801 丹598 Dan 598
7 丹玉39 Danyu 39 C8605-2 丹598 Dan 598
8 中单2号 Zhongdan 2 Mo17 自330 Zi 330
9 掖单13 Yedan 13 掖478 Ye 478 丹340 Dan 340
10 SC704 B73 Mo17
11 京科糯2000 Jingkenuo 2000 京糯6 Jingnuo 6 白糯6 Bainuo 6
12 农华101 Nonghua 101 NH60 S121

Table 2

List of candidate primer for purity identification in maize hybrids"

引物编号
Primer ID
引物名称
Primer name
等位变异
Allelic variation
引物序列
Primer sequence (5'-3')
MSNP01 MG002 A/G F1: GGAACTGTGCGTAGTTCCTGAGA
F2: GAACTGTGCGTAGTTCCTGAGG
R: TGATCGAGGAGGACCCCTGCAA
MSNP02 MG013 A/G F1: CCGGAGCTGGCTTCTGAATCAA
F2: CGGAGCTGGCTTCTGAATCAG
R: ACATCCCCATCCTGGGGAGGAA
MSNP03 MG016 T/C F1: GAGCGTCAACGACAAAGCCAAGT
F2: AGCGTCAACGACAAAGCCAAGC
R: CCTGTTAGGTTGTAAGAATTGAGCCTTAT
MSNP04 MG035 A/G F1: GGAGATGCTCTACAAGTTTGTCA
F2: GGAGATGCTCTACAAGTTTGTCG
R: CCTTCGAGGAGGCCAAGGACTT
MSNP05 MG046 A/G F1: CCATGGTTTTAAGGAACTATCGAAAGA
F2: CATGGTTTTAAGGAACTATCGAAAGG
R: ATCAATGTACTCCCATAAGCAGCAACTTT
MSNP06 MG049 C/T F1: CCGTATCATTTAGTGCATCAGAACC
F2: CCGTATCATTTAGTGCATCAGAACT
R: GAGAAATGCAATGCATCAGATCCGGAT
MSNP07 MG055 A/G F1: CATCGAATGGCTGATCATGTTGCAT
F2: ATCGAATGGCTGATCATGTTGCAC
R: CCATTCCCTGTATGACAGACACGAT
MSNP08 MG059 C/T F1: GCCCCTGCATTGTTTGCAGC
F2: CTGCCCCTGCATTGTTTGCAGT
R: GCCACTGCAAATCCAAAGAATCCGTA
MSNP09 MG064 G/T F1: GACTAAACACACTCACTTTCCTGC
F2: CTGACTAAACACACTCACTTTCCTGA
R: AATCGGTGATGAGTGAGTGTCTAACTAAA
MSNP10 MG066 A/C F1: AGGATCACAATCCATCTGCTGCAAA
F2: GATCACAATCCATCTGCTGCAAC
R: CCTGCAGTTGCTACTGATAGTTCTCAA
MSNP11 MG067 A/G F1: ATGTTTCTCAGGACGGTAATAGTGAT
F2: GTTTCTCAGGACGGTAATAGTGAC
R: CCCATCCATTCCACATATTCGGCAA
MSNP12 MG072 A/C F1: GAGTTGTGCTCTGATCCACCCT
F2: AGTTGTGCTCTGATCCACCCG
R: TATTGCGGCATTAAACAAGGGAAAGGAAA
MSNP13 MG088 C/T F1: CGGCCTCCATGCTTGATGATG
F2: CCGGCCTCCATGCTTGATGATA
R: GTCGGTCGAGTCAAAATTCATTTTGGAT
MSNP14 MG092 C/T F1: ACGTCTGACTTGCACGAAACGG
F2: GACGTCTGACTTGCACGAAACGA
R: CTCCGGAGATGATCTCCCGTAATTT
MSNP15 MG094 G/T F1: ATTCGAACTGCTGCCTTGACTAATC
F2: ATTCGAACTGCTGCCTTGACTAATA
R: GCAGCAGTGACTATCCTTCTGAAGAA
MSNP16 MG101 A/C F1: CAATTCCTCCCCTGCAATTTCAACAA
F2: AATTCCTCCCCTGCAATTTCAACAC
R: CAGCCTGGTCGTTGCTTCTGTAATT
MSNP17 MG106 C/T F1: CCAATCAAGGCGGCAACATACC
F2: ACCAATCAAGGCGGCAACATACT
R: GCGTTCATGTTCATGGAAGGCCAAA
MSNP18 MG111 A/G F1: ATTCTGAATGTAAAACTTAACATGCTGCTA
F2: CTGAATGTAAAACTTAACATGCTGCTG
R: AAGTCCTTCCAACTTTCAGCATAAGCAAA
MSNP19 MG134 A/C F1: GGTTACACGACCAAATGAGTACCAT
F2: GTTACACGACCAAATGAGTACCAG
R: TAGGCAGAGCAGCCATTGACAAGTA
MSNP20 MG135 G/T F1: CGCATCCTAATAACATAATTACTCACG
F2: ACGCATCCTAATAACATAATTACTCACT
R: GCGAAACGGGGTGTTAGATAGAGTT
引物编号
Primer ID
引物名称
Primer name
等位变异
Allelic variation
引物序列
Primer sequence (5'-3')
MSNP21 MG143 G/T F1: TATCACTTGTGGATCTATATCTGTG
F2: GCTTATCACTTGTGGATCTATATCTGTT
R: TGAACCCAAAGCCTCGGTGTTCTTT
MSNP22 MG148 G/T F1: AGCTTAGCAGAGCTGCATCTG
F2: CTAGCTTAGCAGAGCTGCATCTT
R: CCCACGTCACCTAGATAAGCCAAAA
MSNP23 MG155 A/G F1: ATACAGTGAAACAGCTTGCACTGGA
F2: CAGTGAAACAGCTTGCACTGGG
R: TTAATTTTTGGAAGAGCTTGCGTTGGGAA
MSNP24 MG157 A/G F1: AGTTACCTGTCATCGATCTCTGGAT
F2: ACCTGTCATCGATCTCTGGAC
R: AAAGCCCTCTGACAATGCTCCAGTA
MSNP25 MG175 C/T F1: GATATTTCTGCAACTAAACATGGCAAG
F2: GGATATTTCTGCAACTAAACATGGCAAA
R: ATACTGGGGTTGTGGGGATAGGATT
MSNP26 MG181 A/G F1: CCTCTGTAAGCGCAGTACTGGT
F2: CTCTGTAAGCGCAGTACTGGC
R: AAATTGCTATGCAAACAGGTTCTGGAGTA
MSNP27 MG186 C/T F1: GAGCTAGTAAATATTGTTGTTGTTCCTC
F2: AGAGCTAGTAAATATTGTTGTTGTTCCTT
R: CGCCGACGGGACGACGGAT
MSNP28 MG191 A/G F1: CATAAACAGTAGGTTTATCGCTGACATAA
F2: AAACAGTAGGTTTATCGCTGACATAG
R: GTGATAACCGATGCAAAATGCTGCTTAAT
MSNP29 MG195 C/T F1: CCAAAGGATAGCACATCTTGGTG
F2: GTCCAAAGGATAGCACATCTTGGTA
R: TGTCAACCGCATCCTGGCAGATAAT
MSNP30 MG207 A/G F1: ACTTCTCCATCCTCTTCCAACATATTA
F2: CTTCTCCATCCTCTTCCAACATATTG
R: AGCTGTCCACCATCAGTACTGGAAT
MSNP31 MG215 T/C F1: AGATGGCATTGTGATCTGTGCACA
F2: GATGGCATTGTGATCTGTGCACG
R: AGCCGAAGGATTGATCCTCCTCAT
MSNP32 MG216 G/T F1: GACGACGACTCCATCGTGACC
F2: GACGACGACTCCATCGTGACA
R: TCAACCCATGGCTGCTCACATGTAA
MSNP33 MG221 G/T F1: GGCATTCTGATTTGACAGCCCAC
F2: GGCATTCTGATTTGACAGCCCAA
R: TCCTGATTCTGTACTTGATTGGACCAAA
MSNP34 MG230 C/T F1: GCAGCTGAGAAACAATTGCAAAGTG
F2: GCAGCTGAGAAACAATTGCAAAGTA
R: GTACTCTCAGATGGTTTTGTGACATCAA
MSNP35 MG236 C/T F1: GTGCTCGAACGAATCGACCAG
F2: CGTGCTCGAACGAATCGACCAA
R: CATCCATGGCGAAGCTCATGAACAA
MSNP36 MG240 G/T F1: GAAACATGAATGCCCTAAATCCTTCG
F2: AGAAACATGAATGCCCTAAATCCTTCT
R: ATTATGTTCACCAAGTATCCAGATGGCAT
MSNP37 MG262 G/T F1: GTAGCGTGTCTCTACGCTCTG
F2: ATGTAGCGTGTCTCTACGCTCTT
R: CAGCGCGTTACGACGAACTCCAA
MSNP38 MG270 A/C F1: GGTTCCATGGCTACCTGACAAGT
F2: GTTCCATGGCTACCTGACAAGG
R: TAGGAGCTAGCCAAGAGCCTACTA
MSNP39 MG271 A/G F1: CAGCGACCTCAAGAAGTTGAAGTAA
F2: AGCGACCTCAAGAAGTTGAAGTAG
R: GTACGACATGCAGTTTGACATCAAGTAT
MSNP40 MG277 A/G F1: GAAGCTACTATTAGCAATGATCTATATGAT
F2: AAGCTACTATTAGCAATGATCTATATGAC
R: ACAGGATTGATAAACATTACCTGCAGGAA
MSNP41 MG278 A/G F1: GATCGTTGTCTTCACAAATGAAGAATAGT
F2: CGTTGTCTTCACAAATGAAGAATAGC
R: GCGAGATATTGAAAGCTAGTGGTGCTA
引物编号
Primer ID.
引物名称
Primer name
等位变异
Allelic variation
引物序列
Primer sequence (5'-3')
MSNP42 MG279 A/G F1: AACGTATGAGATGAACTCACCAGAAA
F2: ACGTATGAGATGAACTCACCAGAAG
R: CTCCGCCGCTGGTGGAGCTA
MSNP43 MG288 A/C F1: GAACTAACTGAGTGTTAAAGGAGCTTAT
F2: AACTAACTGAGTGTTAAAGGAGCTTAG
R: CCTTGACACAACCGCTCTCCTTAAA
MSNP44 MG292 A/G F1: AACCATTCCCTTCATACTTCTTCTCT
F2: ACCATTCCCTTCATACTTCTTCTCC
R: GGGAGTATCTTTTAGGAAGATGTACAGAT
MSNP45 MG293 A/C F1: GACCTGAAATGCTTGGCGAGTCA
F2: ACCTGAAATGCTTGGCGAGTCC
R: GCAGGAGCCTTAGCGTGGCTAT
MSNP46 MG298 A/G F1: CAATCCAAAGCAGAAAGAAGTTGTTCT
F2: AATCCAAAGCAGAAAGAAGTTGTTCC
R: CCAAAACAGTGAAGTGACCGCCAT
MSNP47 MG304 C/T F1: CAAAGTGGTGTAAATGGATGGATCG
F2: CAAAGTGGTGTAAATGGATGGATCA
R: TTGGACACTCCAGGGGATCCTATA
MSNP48 MG311 C/T F1: CCTCAGATCTCATCTATGCTGCC
F2: CCTCAGATCTCATCTATGCTGCT
R: CGTTTCCACATTTTCTGAAGGTTTCACAA
MSNP49 MG328 A/G F1: GCCTCACACATCCATATACGTAGAA
F2: CCTCACACATCCATATACGTAGAG
R: CTTCCATGCATCGCCCTATGGATAT
MSNP50 MG331 C/T F1: AACACTCATGTCTGCTCCAGGG
F2: AAACACTCATGTCTGCTCCAGGA
R: TCGATGTTTTCGATCCCAAGTTCAACATT
MSNP51 MG334 G/T F1: CCACTTCTGCTCGTATGATCTTC
F2: GCCACTTCTGCTCGTATGATCTTA
R: TCCCGTAATCATCTGCTCGTCTGTA
MSNP52 MG347 A/G F1: AACACGAGCTGGTTGATGGATTAGT
F2: CACGAGCTGGTTGATGGATTAGC
R: GCCTCTGGTACGTTAGTTTGCAGTT
MSNP53 MG349 A/G F1: TACTGACCGAGCGATGCTGCT
F2: CTGACCGAGCGATGCTGCC
R: CGCTGATGGTCACAGAAACATCGTT
MSNP54 MG353 A/G F1: ATACCCTCTCCACCAGTTGTTGAT
F2: ACCCTCTCCACCAGTTGTTGAC
R: TCGCAGGGAGGCGTCGTTCAA
MSNP55 MG356 A/C F1: AAAAGTGCAGTTCCTTGCTGTTCATTT
F2: AAGTGCAGTTCCTTGCTGTTCATTG
R: CCCAATGAGCAAAAAGAATAGCACCAAA
MSNP56 MG361 C/T F1: GAAGCAATCCTTCCGGAGGAATG
F2: GAAGCAATCCTTCCGGAGGAATA
R: GAATGTGCAGATTGGATTTGAGGGATAAA
MSNP57 MG364 A/G F1: TGTTCCGAATAGCAAGTGATCTCTTT
F2: GTTCCGAATAGCAAGTGATCTCTTC
R: GGGAAACCTGCAGAATGCTGTTGAT
MSNP58 MG369 A/G F1: GGTTGACATGAGACTTGCAGAGA
F2: GGTTGACATGAGACTTGCAGAGG
R: TCGGGAAGCCATACTTCACATGCAT
MSNP59 MG371 G/T F1: CAAGTGCGCAGCAAGCCAAAAG
F2: AAACAAGTGCGCAGCAAGCCAAAAT
R: CCGTTCTTAAGCGCTCCATCCTTTT
MSNP60 MG382 C/T F1: CACGAAGCTCTCGCGCTCTTC
F2: CACGAAGCTCTCGCGCTCTTT
R: GGCATGGAGCCCCTATCCTTGAT

Fig. 1

Genotyping of tested primers A, B, C, and F are the genotyping of CTAB method; D and E are the genotyping of fast extraction method. A and D are primer MG279, which have clear and close genotyping effect both by CTAB method and rapid extraction method; B and E are primer MG304, which has normal genotyping by CTAB method, but abnormal genotyping by rapid extraction method; C is primer MG262, of which KASP primer genotyping effect is monomorphic; F is primer MG067, of which KASP primer genotyping effect is wide and has high missing data rate. Each point represents the result of one reaction well, of which blue and red points represent two homozygous genotype, green points represent parental complementary genotype, pink points represent unused genotype and black points represent non-template control."

Table 3

SNP core primer information for purity identification in maize hybrids"

引物编号
Primer ID
引物名称
Primer name
染色体
Chromosome
染色体位置
Chromosome position
双亲互补率
Parental complementary
rate (%)
最小等位
基因频率
MAF
多态信息
含量
PIC
MSNP01 MG002 1 8974336 51.1 0.50 0.38
MSNP06 MG049 1 289408285 58.0 0.46 0.37
MSNP09 MG064 2 109563976 55.8 0.34 0.35
MSNP12 MG072 2 186339948 53.6 0.47 0.37
MSNP14 MG092 3 27775731 62.3 0.47 0.37
MSNP16 MG101 3 118083714 65.6 0.49 0.38
MSNP20 MG135 4 20077010 51.6 0.39 0.36
MSNP22 MG148 4 128874466 46.9 0.33 0.35
MSNP25 MG175 5 13402375 53.6 0.45 0.37
MSNP30 MG207 5 204879476 53.7 0.39 0.36
MSNP31 MG215 6 39822979 62.4 0.50 0.38
MSNP36 MG240 6 141476300 51.1 0.43 0.37
MSNP38 MG270 7 126677146 47.5 0.33 0.35
MSNP42 MG279 7 155821714 50.3 0.42 0.37
MSNP45 MG293 8 20978845 51.4 0.45 0.37
MSNP48 MG311 8 118299376 56.5 0.36 0.35
MSNP52 MG347 9 104695670 60.4 0.42 0.37
MSNP53 MG349 9 127197714 61.5 0.50 0.38
MSNP56 MG361 10 39960289 57.6 0.48 0.38
MSNP58 MG369 10 109396730 53.3 0.50 0.38

Fig. 2

Statistical chart of the parental complementary genotype information of samples A is the comparison chart of parental complementary genotype rate of sample between three loci set, of which the abscissa is the parental complementary genotype rate of sample sorted from low to high according to the core primes and the ordinate is the parental complementary genotype rate of sample; B is the histogram of the parental complementary genotype rate of sample, of which the histogram shows the number of samples for each 10% rise in parental complementary."

Fig. 3

Genotyping of purity identification of Jingke 968 (fast extraction method, primer MG072) Each point represents the result of single seed, of which blue and red points represent two homozygous genotype, green points represent parental complementary genotype, black points represent non-template control and triangle points represent parental inbred lines samples."

[1] 李少昆, 王崇桃. 中国玉米生产技术的演变与发展. 中国农业科学, 2009,42:1941-1951.
Li S K, Wang C T. Evolution and development of maize production techniques in China. Sci Agric Sin, 2009,42:1941-1951 (in Chinese with English abstract).
[2] 李阳, 范梦伟, 季晓坤, 贾相初, 吴彬, 赵自仙, 王德海. 利用SSR技术鉴定玉米杂交种“家佳荣2号”的种子纯度. 西南农业学报, 2018,31:1349-1354.
Li Y, Fan M W, Ji X K, Jia X C, Wu B, Zhao Z X, Wang D H. Seed purity identification for maize hybrid ‘Jiajiarong No.2’ by SSR marker technique. Southwest China J Agric Sci, 2018,31:1349-1354 (in Chinese with English abstract).
[3] 盖树鹏. 玉米品种纯度SSR鉴定与田间鉴定的相关性. 华北农学报, 2010,25(增刊1):28-31.
Gai S P. The relativity between SSR method and field test in the hybrids purity identification of maize. Acta Agric Boreali-Sin, 2010,25(S1):28-31 (in Chinese with English abstract).
[4] 王波, 彭宏, 罗绪标, 郭玲. 盐溶蛋白电泳和SSR标记鉴定苏玉20种子纯度的比较研究. 江苏农业科学, 2016,44(3):72-74.
Wang B, Peng H, Luo X B, Guo L. Comparative study on identification of Suyu 20 seed purity by salt-soluble protein electrophoresis and SSR markers. Jiangsu Agric Sci, 2016,44(3):72-74 (in Chinese).
[5] 王凤格, 赵久然, 王璐, 易红梅, 郭景伦, 戴景瑞, 原亚萍, 卢柏山, 杨国航. 适于玉米杂交种纯度鉴定的SSR核心引物的确定. 农业生物技术学报, 2007,15:964-969.
Wang F G, Zhao J R, Wang L, Yi H M, Guo J L, Dai J R, Yuan Y P, Lu B S, Yang G H. Determination of SSR core primers for maize hybrid purity identification. J Agric Biotechnol, 2007,15:964-969 (in Chinese with English abstract).
[6] 王凤格, 赵久然, 郭景伦, 佘花娣, 陈刚. 比较三种DNA指纹分析方法在玉米品种纯度及真伪鉴定中的应用. 分子植物育种, 2003,1:655-661.
Wang F G, Zhao J R, Guo J L, She H D, Chen G. Comparison of three DNA fingerprint analyzing methods for maize cultivars’ identification. Mol Plant Breed, 2003,1:655-661 (in Chinese with English abstract).
[7] 王凤格, 易红梅, 赵久然. 玉米纯度分子鉴定标准研制相关问题的探讨. 玉米科学, 2015,23(4):48-53.
Wang F G, Yi H M, Zhao J R. Discussion about the purity of maize standard molecular identification development. J Maize Sci, 2015,23(4):48-53 (in Chinese with English abstract).
[8] 吴金凤, 宋伟, 王蕊, 田红丽, 李雪, 王凤格, 赵久然, 蔚荣海. 利用SNP标记对51份玉米自交系进行类群划分. 玉米科学, 2014,22(5):29-34.
Wu J F, Song W, Wang R, Tian H L, Li X, Wang F G, Zhao J R, Wei R H. Heterotic grouping of 51 maize inbred lines by SNP markers. J Maize Sci, 2014,22(5):29-34 (in Chinese with English abstract).
[9] Tian H L, Wang F G, Zhao J R, Yi H M, Wang L, Wang R, Yang Y, Song W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015,35:136.
[10] Sun Q, Wang P, Li W L, Li W C, Lu S P, Yu Y L, Zhao M, Meng Z D. Genomic selection on shelling percentage and other traits for maize. Breed Sci, 2019,69:266-271.
[11] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
[12] De La Vega F A, Lazaruk K D, Rhodes M D, Wenz M H. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP genotyping assays and the SNPlex genotyping system. Mutat Res, 2005,573:111-135.
[13] Cheng X, Ren Y H, Jian Y Q, Guo Z F, Zhang Y, Xie C X, Fu J J, Wang H W, Wang G Y, Xu Y B, Li P, Zou C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Mol Breed, 2017,37:20.
[14] Yang G L, Chen S P, Chen L K, Sun K, Huang C H, Zhou D H, Huang Y T, Wang J F, Liu Y Z, Wang H, Chen Z Q, Guo T. Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice, 2019,12:21.
[15] 蒋培基, 王德良, 徐东东, 黄承雪, 郭刚刚, 栾春光, 蒲彪. 基于竞争性等位基因特异性PCR技术的麦芽品种纯度定性和定量检测. 食品科学, 2018,39:322-326.
Jiang P J, Wang D L, Xu D D, Huang C X, Guo G G, Luan C G, Pu B. Kompetitive allele specific PCR (KASP) for the qualification and quantification of malt varieties. Food Sci, 2018,39:322-326 (in Chinese with English abstract).
[16] 匡猛, 王延琴, 周大云, 马磊, 方丹, 徐双娇, 杨伟华, 魏守军, 马峙英. 基于单拷贝SNP标记的棉花杂交种纯度高通量检测技术. 棉花学报, 2016,28:227-233.
Kuang M, Wang Y Q, Zhou D Y, Ma L, Fang D, Xu S J, Yang W H, Wei S J, Ma Z Y. High-throughput detection technology for purity of cotton hybrids based on single copy SNP markers. Cotton Sci, 2016,28:227-233 (in Chinese with English abstract).
[17] 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maize SNP 384标记筛选与玉米杂交种DNA指纹图谱构建. 作物学报, 2020,46:1006-1015.
Tian H L, Yang Y, Wang L, Wang R, Yi H M, Xu L W, Zhang Y L, Ge J R, Wang F G, Zhao J R. Screening of compatible maize SNP384 markers and the construction of DNA fingerprints of maize varieties. Acta Agron Sin, 2020,46:1006-1015 (in Chinese with English abstract).
[18] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Susanne D, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016,129:1843-1860.
[19] Collard B C Y, Das A, Virk P S, Mackill D J. Evaluation of ‘quick and dirty’ DNA extraction methods for marker-assisted selection in rice ( Oryza sativa L.). Plant Breed, 2007,126:47-50.
[20] Xalxo S M, Saxena R R, Pali V, Kurrey L N, Verulkar S B. A rapid and low cost method of DNA isolation for marker assisted selection in rice. Agric Res, 2014,3:83-86.
[21] Liang H B, Deng Y, Wang C T, Xu X. A high-throughput DNA extraction method from rice seeds. Biotechnol Biotechnol Equip, 2016,30:32-35.
[22] Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla S. Development of versatile gene-based SNP assays in maize ( Zea mays L.). Mol Breed, 2012,29:779-790.
[23] Jiao J, Jia X R, Liu P, Zhang Q M, Liu F, Ma C D, Xi P Z, Liang Z S. Species identification of polygonati rhizoma in China by both morphological and molecular marker methods. C R Biol, 2018,341:102-110.
[24] 刘欢, 张新全, 马啸, 张瑞珍, 何光武, 潘玲, 金梦雅. 基于荧光检测技术的多花黑麦草EST-SSR指纹图谱的构建. 中国农业科学, 2017,50:437-450.
Liu H, Zhang X Q, Ma X, Zhang R Z, He G W, Pan L, Jin M Y. Construction of EST-SSR fingerprint based on fluorescence detection technology for Italian ryegrass. Sci Agric Sin, 2017,50:437-450 (in Chinese with English abstract).
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[5] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[6] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[7] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[8] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[9] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[10] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[11] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[12] LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044.
[13] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[14] TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996.
[15] TIAN Hong-Li, YANG Yang, WANG Lu, WANG Rui, YI Hong-Mei, XU Li-Wen, ZHANG Yun-Long, GE Jian-Rong, WANG Feng-Ge, ZHAO Jiu-Ran. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties [J]. Acta Agronomica Sinica, 2020, 46(7): 1006-1015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!