Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 845-855.doi: 10.3724/SP.J.1006.2023.24092

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum

WANG Jin-Song1(), BAI Ge1, ZHANG Yan-Hui1, SHEN Tian-Yu2, DONG Er-Wei1, JIAO Xiao-Yan1,*()   

  1. 1College of Resources & Environment, Shanxi Agricultural University / State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Taiyuan 030031, Shanxi, China
    2School of Life Science, Shanxi University, Taiyuan 030031, Shanxi, China
  • Received:2022-04-13 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-19
  • Contact: JIAO Xiao-Yan E-mail:jinsong_wang@126.com;xiaoyan_jiao@126.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-06-14.5-A20);State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University(202001-8)

Abstract:

Post-anthesis delayed leaf senescence and stay-green leaf phenotype are typically associated with the increasing yield, which offers the potential to increase crop resilience to drought stress. Retarded leaf senescence is beneficial to maintain cereal yield adaptability and stability. Many different management approaches, including fertilization, can modulate leaf senescence as well. The impacts of different long-term fertilization treatments on sorghum post-anthesis leaf senescence, antioxidant enzyme activities, and the yield were explored in 2020 and 2021 in this study. There were five treatments, which included chemical fertilizers of NPK (NPK), NPK plus manure (NPKM), NPK plus manure and straw returning (NPKMS), manure plus straw returning (MS), and fertilizer withdrawn (CK). Fertilizer application enhanced green leaf area per plant, SPAD reading and specific leaf nitrogen (SLN) compared with the control. Compared with NPK, the treatments of NPKM, NPKMS along with MS delayed post-anthesis attenuation of leaf area per plant and enhanced the values of SPAD and SLN in spite of the similar N application for NPK and MS. The treatments of NPK, NPKM, NPKMS, and MS increased antioxidant activities of SOD, POD, and CAT conjugate with a decreasing MDA content compared with the control. Among those, higher antioxidant enzymes activities and lower MDA content were induced by NPKM, NPKMS, and MS than NPK. In conclusion, NPKM, NPKMS, and MS promoted sorghum grain yield due to the increased grain number per panicle. Therefore, long-term application of manure combined with straw returning can not only replace chemical fertilizer but also delay leaf senescence, which leading to high grain yield in sorghum.

Key words: sorghum, fertilization, post-anthesis, leaf senescence, antioxidant enzyme activities

Table 1

Soil chemical characteristics in 2020 and 2021"

年度
Year
处理
Treatment
全氮
Total N
(g kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有机质
Organic matter
(g kg-1)
2020 NPK 0.80 8.77 144.63 15.09
NPKM 1.12 52.93 265.20 22.63
NPKMS 1.34 55.97 288.08 25.89
MS 1.25 47.47 264.33 22.08
CK 0.69 6.33 109.18 13.45
2021 NPK 0.78 7.20 141.45 14.96
NPKM 1.17 57.00 283.73 24.42
NPKMS 1.37 57.67 292.48 29.71
MS 1.29 53.43 279.25 23.46
CK 0.62 5.57 98.21 13.01

Table 2

Input of N, P2O5, and K2O of five treatments in 2020 and 2021"

投入量
N, P2O5, and K2O input
(kg hm-2)
2020 2021
NPK NPKM NPKMS MS CK NPK NPKM NPKMS MS CK
无机肥投入
Chemical fertilizer
(kg hm-2)
N 225.00 225.00 225.00 225.00 225.00 225.00
P2O5 75.00 75.00 75.00 75.00 75.00 75.00
K2O 75.00 75.00 75.00 75.00 75.00 75.00
秸秆投入
Straw (kg hm-2)
N 45.65 47.46 29.76 25.50
P2O5 8.36 8.69 9.40 8.06
K2O 142.89 148.53 147.78 126.64
有机肥投入
Manure (kg hm-2)
N 119.53 119.53 119.53 108.76 108.76 108.76
P2O5 105.85 105.85 105.85 102.79 102.79 102.79
K2O 132.22 132.22 132.22 122.28 142.80 122.28
总投入
Total (kg hm-2)
N 225.00 344.53 390.18 166.98 225.00 333.76 363.52 134.26
P2O5 75.00 180.85 189.21 140.91 75.00 177.79 187.19 130.34
K2O 75.00 207.22 350.11 289.44 75.00 197.28 365.58 261.76

Fig. 1

Daily precipitation during sorghum growth period in 2020 and 2021"

Table 3

Effects of different fertilizations on grain yield and yield components in sorghum"

年度
Year
处理
Treatment
产量
Yield
(kg hm-2)
千粒重
1000-grain weight (g)
穗粒重
Grain weight per panicle
(g)
穗粒数
Grains per panicle
收获指数Harvest index
2020 NPK 8489.65 c 27.35 b 76.84 b 2809.74 b 0.49 b
NPKM 9283.55 b 27.93 b 78.57 b 2814.75 b 0.50 ab
NPKMS 10,080.85 a 27.28 b 82.85 a 3036.88 a 0.50 ab
MS 9940.75 a 28.64 b 82.83 a 2895.45 ab 0.52 a
CK 5877.65 d 32.32 a 51.64 c 1595.96 c 0.48 b
2021 NPK 9018.30 c 28.43 b 76.16 b 2679.92 c 0.52 b
NPKM 10,073.00 b 28.38 b 81.91 a 2886.80 a 0.53 b
NPKMS 10,323.50 a 28.37 b 81.86 a 2886.67 a 0.52 b
MS 10,303.50 a 29.93 a 82.42 a 2785.32 b 0.54 a
CK 5322.95 d 30.31 a 44.54 c 1269.96 d 0.47 c

Fig. 2

Effects of different fertilizations on above ground biomass after anthesis in sorghum Treatments are the same as those given in Table 1. Different lowercase letters indicate that different fertilizations are significant differences among the treatments at the 0.05 probability level at the same time."

Fig. 3

Effects of different fertilizations on green leaf area per plant after anthesis Treatments are the same as those given in Table 1. Different lowercase letters indicate that different fertilizations are significant differences among the treatments at the 0.05 probability level at the same time."

Table 4

Attenuation dynamics of leaf area per plant after anthesis under different fertilization treatments"

处理
Treatment
2020年花后叶面积衰减率
Leaf area reduction rate days after anthesis in 2020 (%)
2021年花后叶面积衰减率
Leaf area reduction rate days after anthesis in 2021 (%)
5-40 d 40-60 d 5-60 d 10-20 d 20-30 d 30-40 d 40-50 d 10-50 d
NPK 24.40 42.63 56.63 17.45 15.27 17.17 17.19 52.02
NPKM 7.60 27.45 32.96 13.41 11.57 17.16 17.79 47.85
NPKMS 17.64 23.58 37.06 12.19 6.42 21.27 16.10 45.72
MS 22.60 10.37 30.62 16.94 12.15 17.93 16.04 49.72
CK 21.65 43.54 55.76 19.10 15.60 17.05 36.54 64.06

Fig. 4

Effects of different fertilizations on leaf SPAD values at different positions after anthesis in sorghum Treatments are the same as those given in Table 1."

Table 5

Effects of different fertilizations on leaf SLN at different positions after anthesis in sorghum (g m-2)"

叶片部位
Leaves position
2020 2021
花后天数
Days after anthesis
NPK NPKM NPKMS MS CK 花后天数
Days after anthesis
NPK NPKM NPKMS MS CK
上部
Upper
5 d 8.72 c 12.96 a 12.09 ab 10.63 b 4.08 d 10 d 10.10 b 11.38 ab 11.43 ab 11.53 a 6.01 c
40 d 3.84 ab 5.31 a 6.06 a 4.70 a 1.88 b 40 d 5.75 b 6.66 ab 7.62 a 6.76 ab 2.94 c
60 d 4.76 b 6.05 ab 7.05 a 7.08 a 2.76 c 50 d 7.54 a 8.19 a 7.69 b 8.44 a 3.00 c
中部
Middle
5 d 9.85 c 14.71 ab 15.50 a 12.55 b 5.14 d 10 d 10.21 b 11.04 a 11.87 a 12.12 a 5.76 c
40 d 5.07 b 5.67 ab 6.37 a 5.37 ab 2.34 c 40 d 3.57 b 5.57 a 6.41 a 6.52 a 2.23 c
60 d 6.61 b 10.73 a 10.04 a 10.83 a 3.21 c 50 d 5.42 b 7.99 a 7.91 b 8.83 a 2.17 c
下部
Lower
5 d 7.66 b 10.36 a 11.01 a 10.24 a 4.57 c 10 d 7.71 b 8.92 b 8.19 ab 9.72 a 4.26 c
40 d 4.98 a 3.87 a 4.91 a 4.13 a 2.87 a 40 d 3.27 c 4.35 b 5.55 a 3.42 c
60 d 50 d

Table 6

Effects of different fertilizations on antioxidant enzymes activities of leaves at different positions"

处理
Treatment
SOD (U g-1 FW) POD (U g-1 FW min-1) CAT (U g-1 FW min-1) MDA (nmol g-1 FW)
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
NPK 429.94 b 318.29 a 230.69 a 855.50 bc 84.85 bc 1695.83 bc 83.89 c 84.33 bc 73.56 b 68.02 b 69.32 ab 36.49 a
NPKM 490.06 ab 399.26 a 305.52 a 1063.67 a 112.42 a 1966.50 a 118.00 b 84.33 bc 136.56 a 62.67 b 53.30 bc 13.57 b
NPKMS 553.93 a 426.63 a 327.27 a 972.17 ab 92.22 b 1828.83 b 181.67 a 119.89 a 95.04 ab 58.43 b 42.07 c 4.72 c
MS 562.38 a 359.91 a 175.70 a 935.17 abc 104.45 ab 1349.67 c 121.78 b 95.89 ab 88.00 ab 62.50 b 42.38 c 3.37 c
CK 337.19 c 262.89 a 149.70 a 758.22 c 65.67 c 783.78 d 53.22 d 55.56 c 65.93 b 121.61 a 79.03 a 34.00 a
[1] 王永军, 杨今胜, 袁翠平, 柳京国, 李登海, 董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性. 作物学报, 2013, 39: 2183-2191.
doi: 10.3724/SP.J.1006.2013.02183
Wang Y J, Yang J S, Yuan C P, Liu J G, Li D H, Dong S T. Characteristics of senescence and antioxidant enzyme activities in leaves at different plant parts of summer maize with the super-high yielding potential after anthesis. Acta Agron Sin, 2013, 39: 2183-2191. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02183
[2] 李东亚, 王祎, 汤继华, 许恒, 谭金芳, 韩燕来. 高氮和低氮条件下玉米穗位叶持绿性状的QTL定位. 植物营养与肥料学报, 2019, 25: 115-122.
Li D Y, Wang Y, Tang J H, Xu H, Tan J F, Han Y L. QTL mapping for ear leaf stay-green in maize under high and low N conditions. J Plant Nutr Fert, 2019, 25: 115-122. (in Chinese with English abstract)
[3] Thomas H, Smart C M. Crops that stay green. Ann Appl Biol, 1993, 123: 193-219.
doi: 10.1111/j.1744-7348.1993.tb04086.x
[4] Kamal N M, Gorafi Y, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int J Mol Sci, 2019, 20: 5837.
doi: 10.3390/ijms20235837
[5] Christopher M, Chenu K, Jennings R, Fletcher S, Butler D, Borrell A, Christopher J. QTL for stay-green traits in wheat in well-watered and water-limited environment. Field Crops Res, 2018, 217: 32-44.
doi: 10.1016/j.fcr.2017.11.003
[6] 郑洪建. 玉米叶片保绿性遗传分析和QTL定位. 上海交通大学博士学位论文, 上海, 2008.
Zheng H J. Genetic Analysis and QTL Mapping of Stay-green Traits in Maize (Zea mays L.). PhD Dissertation of Shanghai Jiaotong University, Shanghai, China, 2008. (in Chinese with English abstract)
[7] Habiba, Xu J, Gad A G, Luo Y, Zheng X. Five OsS40 family members are identified as senescence-related genes in rice by reverse genetics approach. Front Plant Sci, 2021, 12: 701529.
doi: 10.3389/fpls.2021.701529
[8] Harris-Shultz K R, Subudhi P K, Borrell A, Jordan D R, Rosenow D, Nguyen H, Klein P, Klein R R. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot, 2007, 58: 327-338.
doi: 10.1093/jxb/erl225 pmid: 17175550
[9] Chiluwal A, Perumal R, Poudel H P, Muleta K, Ostmeyer T, Fedenia L, Pokharel M, Bean S R, Sebela D, Bheemanahalli R, Oumarou H, Klein P, Rooney W L, Jagadish S V K. Genetic control of source-sink relationships in grain sorghum. Planta, 2022, 255: 40.
doi: 10.1007/s00425-022-03822-5 pmid: 35038036
[10] Tollenaar M, Daynard T B. Leaf senescence in short season maize hybrids. Can J Plant Sci, 1978, 58: 869-874.
doi: 10.4141/cjps78-126
[11] Valentinuz O R, Tollenaar M. Vertical profile of leaf senescence during the grain filling period in older and newer maize hybrids. Crop Sci, 2004, 44: 827-834.
[12] Rodrigues V A, Crusciol C A C, Bossolani J W, Portugal J R, Lollato R P. Foliar nitrogen as stimulant fertilization alters carbon metabolism, reactive oxygen species scavenging, and enhances grain yield in a soybean-maize rotation. Crop Sci, 2021, 61: 3687-3701.
doi: 10.1002/csc2.20587
[13] Hou X, Xue Q, Jessup K E, Zhang Y, Blaser B, Stewart B A, Baltensperger D D. Effect of nitrogen supply on stay-green sorghum in differing post-flowering water regimes. Planta, 2021, 254: 63-74.
doi: 10.1007/s00425-021-03712-2 pmid: 34477992
[14] Sylvester A, Niedziela J C E, Reddy M R. Effect of nitrogen fertilization on stay-green and senescent sorghum hybrids in sand culture. J Plant Nutr, 2010, 33: 185-199.
doi: 10.1080/01904160903434253
[15] 路亚, 李晓亮, 于天一, 周静, 孙学武, 郑永美, 沈浦, 吴正锋, 李林, 王才斌. 持绿和早衰花生品种根系形态、叶片生理及产量对叶面喷施磷肥的响应. 植物营养与肥料学报, 2020, 26: 532-540.
Lu Y, Li X L, Yu T Y, Zhou J, Sun X W, Zheng Y M, Shen P, Wu Z F, Li L, Wang C B. Response of root morphology, leaf physiology and yield of stay-green and presenility types of peanut to foliar phosphorus application. J Plant Nutr Fert, 2020, 26: 532-540. (in Chinese with English abstract)
[16] 赵隽, 董树亭, 刘鹏, 张吉旺, 赵斌. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015, 26: 2362-2370.
pmid: 26685599
Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat. Chin J Appl Ecol, 2015, 26: 2362-2370. (in Chinese with English abstract)
pmid: 26685599
[17] 侯红乾, 林洪鑫, 刘秀梅, 冀建华, 刘益仁, 蓝贤瑾, 吕真真, 周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响. 作物学报, 2020, 46: 280-289.
doi: 10.3724/SP.J.1006.2020.82060
Hou H Q, Lin H X, Liu X M, Ji J H, Liu Y R, Lan X J, Lyu Z Z, Zhou W J. Influence of long term fertilizer application on chlorophyll fluorescence characteristics and grain yield of double cropping late rice. Acta Agron Sin, 2020, 46: 280-289. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.82060
[18] 王建国, 杜桂娟. 玉米持绿性评价方法的探讨. 辽宁农业科学, 2003, (5): 1-4.
Wang J G, Du G J. Evaluation method of stay-green trait in maize. Liaoning Agric Sci, 2003, (5): 1-4 (in Chinese with English abstract).
[19] Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410.
doi: 10.1093/jxb/erf090 pmid: 12432032
[20] Srivalli S, Khanna-Chopra R. Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem, 2009, 47: 663-670.
doi: 10.1016/j.plaphy.2009.03.015
[21] Hodges D M, Andrews C J, Johnson D A, Hamilton R I. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant, 1996, 98: 685-692.
doi: 10.1111/j.1399-3054.1996.tb06672.x
[22] Amini H, Arzani A, Bahrami F. Seed yield and some physiological traits of safflower as affected by water deficit stress. Int J Plant Prod, 2013, 7: 597-614.
[23] 万鹏, 杜锦, 曹高燚, 苏东伟, 牛巧龙, 向春阳. 施钾量对玉米产量及叶片部分酶活性的影响. 玉米科学, 2016, 24(6): 149-154.
Wan P, Du J, Cao G Y, Su D W, Niu Q L, Xiang C Y. Effects of potassium fertilizer on enzyme efficiency of leaves and yield in spring maize. J Maize Sci, 2016, 24(6):149-154. (in Chinese with English abstract)
[24] 卢庆善. 高粱学. 北京: 中国农业出版社, 1997. p 120.
Lu Q S. Sorghum Science. Beijing: China Agriculture Press, 1997. p 120. (in Chinese)
[25] Johnson S M, Cummins I, Lim F L, Slabas A R, Knight M R. Transcriptomic analysis comparing stay-green and senescent sorghum bicolor lines identifies a role for proline biosynthesis in the stay-green trait. J Exp Bot, 2015, 66: 7061-7073.
doi: 10.1093/jxb/erv405 pmid: 26320239
[26] 曹寒冰, 谢钧宇, 王楚涵, 强久次仁, 尼玛曲珍, 张杰, 孟会生, 洪坚平, 李廷亮. 不同施肥措施对旱地采煤塌陷区复垦土壤结构及玉米品质的影响. 水土保持学报, 2021, 35(2): 251-257.
Cao H B, Xie J Y, Wang C H, Qiangjiuciren, Nimaquzhen, Zhang J, Meng H S, Hong J P, Li T L. Effects of different fertilization regimes on reclaimed soil structure and maize quality in dryland. J Soil Water Conserv, 2021, 35(2): 251-257. (in Chinese with English abstract)
[27] 董二伟, 王成, 丁玉川, 王劲松, 武爱莲, 王立革, 焦晓燕. 高粱生长及其土壤环境对不同培肥措施的响应. 华北农学报, 2017, 32(2): 217-225.
doi: 10.7668/hbnxb.2017.02.032
Dong E W, Wang C, Ding Y C, Wang J S, Wu A L, Wang L G, Jiao X Y. Response of different fertilizing on growth and soil environment of sorghum. Acta Agric Boreali-Sin, 2017, 32(2): 217-225. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2017.02.032
[28] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 265-268.
Lu R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 265-268. (in Chinese with English abstract)
[29] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[30] Hernandez J A, Jimenez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ, 2000, 23: 853-862.
doi: 10.1046/j.1365-3040.2000.00602.x
[31] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 165-167.
Li H S. Principles and Techniques of Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 165-167. (in Chinese)
[32] Heath R L, Packer L. Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acids peroxidation. Arch Biochem Biophys, 1968, 125: 189-198.
doi: 10.1016/0003-9861(68)90654-1 pmid: 5655425
[33] 董宛麟, 于洋, 张立祯, 潘志华, 苟芳, 邸万通, 赵沛义, 潘学标. 向日葵和马铃薯间作条件下氮素的吸收和利用. 农业工程学报, 2013, 29(7): 98-108.
Dong W L, Yu Y, Zhang L Z, Pan Z H, Gou F, Di W T, Zhao P Y, Pan X B. Nitrogen uptake and utilization in sunflower and potato intercropping. Trans CSAE, 2013, 29(7): 98-108. (in Chinese with English abstract)
[34] Brogea N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ, 2002, 81: 45-57.
doi: 10.1016/S0034-4257(01)00332-7
[35] 周宇飞, 王德权, 陆樟镳, 王娜, 王艺陶, 李丰先, 许文娟, 黄瑞冬. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响. 中国农业科学, 2014, 47: 655-663.
Zhou Y F, Wang D Q, Lu Z B, Wang N, Wang Y T, Li F X, Xu W J, Huang R D. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum. Sci Agric Sin, 2014, 47: 655-663. (in Chinese with English abstract)
[36] Thomas H, Ougham H J. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017
[37] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响. 作物学报, 2021, 47: 2511-2521.
doi: 10.3724/SP.J.1006.2021.04279
Lu H Q, Tang W, Luo Z, Kong X Q, Li Z H, Xu S Z, Xin C S. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton. Acta Agron Sin, 2021, 47: 2511-2521. (in Chinese with English abstract)
[38] 罗洋, 郑金玉, 郑洪兵, 李瑞平, 李伟堂, 刘武仁, 董英山. 有机无机肥料配合施用对玉米生长发育及产量的影响. 玉米科学, 2014, 22(5): 132-136.
Luo Y, Zheng J Y, Zheng H B, Li R P, Li W T, Liu W R, Dong Y S. Effects of manure and fertilizer application on growth and yield of maize. J Maize Sci, 2014, 22(5): 132-136. (in Chinese with English abstract)
[39] Tolk J A, Howell T A, Miller F R. Yield component analysis of grain sorghum grown under water stress. Field Crops Res, 2013, 145: 44-51.
doi: 10.1016/j.fcr.2013.02.006
[40] Jordan D R, Hunt C H, Cruickshank A W, Borrell A K, Henzellet R G. The relationship between the stay green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci, 2012, 52: 1153-1161.
doi: 10.2135/cropsci2011.06.0326
[41] Christopher J T, Veyradier M, Borrell A K, Harvey G, Fletcher S, Chenu K. Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics. Funct Plant Biol, 2014, 41: 1035-1048.
doi: 10.1071/FP14052 pmid: 32481056
[42] George-Jaeggli B, Mortlock M Y, Borrell A K. Bigger is not always better: reducing leaf area helps stay-green sorghum use soil water more slowly. Environ Exp Bot, 2017, 138: 119-129.
doi: 10.1016/j.envexpbot.2017.03.002
[43] Nazir M, Pandey R, Siddiqi T O, Ibrahim M M, Qureshi M I, Abraham G, Vengavasi K, Ahmad A. Nitrogen-deficiency stress induces protein expression differentially in low-N tolerant and low-N sensitive maize genotypes. Front Plant Sci, 2016, 7: 298.
doi: 10.3389/fpls.2016.00298 pmid: 27047497
[44] Erley G S, Begum N, Worku M, Bänziger M, Horst W J. Leaf senescence induced by nitrogen deficiency as indicator of genotypic differences in nitrogen efficiency in tropical maize. J Plant Nutr Soil Sci, 2007, 170: 106-114.
doi: 10.1002/jpln.200625147
[45] Crafts-Brandner S J, Below F E, Wittenbach V A, Harper J E, Hageman R H. Differential senescence of maize hybrids following ear removal. Plant Physiol, 1984, 74: 368-373.
doi: 10.1104/pp.74.2.368 pmid: 16663424
[46] Rajcana I, Dwyerb L M, Tollenaara M. Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence. Field Crops Res, 1999, 63: 13-17.
doi: 10.1016/S0378-4290(99)00023-4
[47] 张国伟, 李凯, 李思嘉, 王晓靖, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响. 作物学报, 2022, 48: 529-537.
doi: 10.3724/SP.J.1006.2022.14024
Zhang G W, Li K, Li S J, Wang X J, Yang C Q, Liu R X. Effects of sink-limiting treatments on leaf carbon metabolism in soybean. Acta Agron Sin, 2022, 48: 529-537 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14024
[48] Zhou Y, Wang D, Na W, Yu J, Huang R. Involvement of endogenous abscisic acid and cytokinin in photosynthetic performance of different stay green inbred lines of maize under drought. Int J Agric Biol, 2016, 18: 1067-1074.
[49] 黄瑞冬, 孙璐, 肖木辑, 许文娟, 周宇飞. 持绿型高粱 B35灌浆期对干旱的生理生化响应. 作物学报, 2009, 35: 560-565.
Huang R D, Sun L, Xiao M J, Xu W J, Zhou Y F. Physiological and biochemical responses to drought during filling stage in stay green sorghum B35. Acta Agron Sin, 2009, 35: 560-565. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00560
[1] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[2] CHEN Bing-Ru, YU Miao, GE Zhan-Yu, LI Hong-Kui, HUANG Yan, LI Hai-Qing, SHI Gui-Shan, XIE Li, XU Ning, YAN Feng, GAO Shi-Jie, ZHOU Zi-Yang, WANG Nai. Analysis of heterotic groups and heterosis patterns of sorghum in early- maturing area [J]. Acta Agronomica Sinica, 2023, 49(2): 343-353.
[3] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[4] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[5] WANG Qian, LIU Shao-Xiong, CHAI Xiao-Jiao, LI Hai, ZHANG Fen, LU Ping, WANG Rui-Yun, LIU Min-Xuan. Content diversity of phenolic compounds of waxy sorghum grains in different provinces, cities, and autonomous regions of China [J]. Acta Agronomica Sinica, 2022, 48(10): 2505-2516.
[6] SUN Qi-Qi, ZHENG Yong-Mei, YU Tian-Yi, WU Yue, YANG Ji-Shun, WU Zheng-Feng, WU Ju-Xiang, LI Shang-Xia. Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization [J]. Acta Agronomica Sinica, 2022, 48(10): 2575-2587.
[7] FANG Yan-Jie, ZHANG Xu-Cheng, HOU Hui-Zhi, YU Xian-Feng, WANG Hong-Li, MA Yi-Fan, ZHANG Guo-Ping, LEI Kang-Ning. Effects of whole soil-plastic mulching system and fertilization rates on water consumption characteristics and yield of tartary buckwheat in arid land [J]. Acta Agronomica Sinica, 2021, 47(6): 1149-1161.
[8] LIU Yan-Lan, GUO Xian-Shi, ZHANG Xu-Cheng, MA Ming-Sheng, WANG Hong-Kang. Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato [J]. Acta Agronomica Sinica, 2021, 47(2): 320-331.
[9] WANG Yuan, WANG Jin-Song, DONG Er-Wei, WU Ai-Lian, JIAO Xiao-Yan. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution [J]. Acta Agronomica Sinica, 2021, 47(2): 342-350.
[10] DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470.
[11] HUANG Heng, JIANG Heng-Xin, LIU Guang-Ming, YUAN Jia-Qi, WANG Yuan, ZHAO Can, WANG Wei-Ling, HUO Zhong-Yang, XU Ke, DAI Qi-Gen, ZHANG Hong-Cheng, LI De-Jian, LIU Guo-Lin. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2021, 47(11): 2232-2249.
[12] ZHANG Rui-Dong,XIAO Meng-Ying,XU Xiao-Xue,JIANG Bing,XING Yi-Fan,CHEN Xiao-Fei,LI Bang,AI Xue-Ying,ZHOU Yu-Fei,HUANG Rui-Dong. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance [J]. Acta Agronomica Sinica, 2020, 46(6): 889-901.
[13] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[14] MA Zheng-Bo, DONG Xue-Rui, TANG Hui-Hui, YAN Peng, LU Lin, WANG Qing-Yan, FANG Meng-Ying, WANG Qi, DONG Zhi-Qiang. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics [J]. Acta Agronomica Sinica, 2020, 46(10): 1617-1627.
[15] HOU Hong-Qian,LIN Hong-Xin,LIU Xiu-Mei,JI Jian-Hua,LIU Yi-Ren,LAN Xian-Jin,LYU Zhen-Zhen,ZHOH Wei-Jun. Influence of long-term fertilizer application on chlorophyll fluorescence characteristics and grain yield of double cropping late rice [J]. Acta Agronomica Sinica, 2020, 46(02): 280-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .