Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 320-331.doi: 10.3724/SP.J.1006.2021.04100


Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato

LIU Yan-Lan1(), GUO Xian-Shi1,*(), ZHANG Xu-Cheng1,*(), MA Ming-Sheng1, WANG Hong-Kang2   

  1. 1Institute of Drylang Farming, Gansu Academy of Agricultural Sciences / Gansu Province Key Laboratory of Effective Utilization of Water Resource on Dryland, Lanzhou 730070, Gansu, China
    2Gansu Seed General Station, Lanzhou 730000, Gansu, China
  • Received:2020-05-01 Accepted:2020-08-19 Online:2021-02-12 Published:2020-09-02
  • Contact: GUO Xian-Shi,ZHANG Xu-Cheng E-mail:liuyanlan868@163.com;guoxsh@21cn.com;gszhangxuch@163.com
  • Supported by:
    Key Research and Development Program of Gansu Academy of Agricultural Sciences(2019GAAS25);National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD22B01-05)


It is important to increase potato production and the natural resource utilization efficiency in dryland farming system. A field experiment was conducted using Longshu 10 with three planting modes from 2017 to 2019, including farmer mode (CK), the mode with high yield and efficiency (YE), and higher yield mode (HY). The leaf area index (LAI), SPAD, photosynthetic rate, accumulation and remobilization of dry matter, water use efficiency (WUE) and fertilizer use efficiency (FUE) was investigated. The results showed that LAI and SPAD were increased in YE and HY compared to CK, and it was more significant in 2017 when there was less rainfall. Meanwhile, less reduction in LAI and SPAD after tubers enlargement resulted in an increase of canopy photosynthetic rate by 29.9%, 34.7% (in 2018 and 2019), and 40.2%, 50.5% (in 2018 and 2019) during the expanding stage and starch accumulation stage, respectively. Average aboveground dry matter in YE and HY was higher than CK by 123.1% and 118.5% in the enlargement stage due to higher LAI and photosynthetic rate. The contribution rate of assimilation after potato tuber enlargement in YE and HE was higher than CK by 22.56% and 19.29%, resulting in an average potato production increase of 47.93% and 47.78%, and average water use efficiency increased by 77.59% and 75.85%, respectively. YE and HY advantaged in tuber production and income improvement. Compared with CK, the net income increased by 7330.3 Yuan hm-2 and 6024.6 Yuan hm-2 in 2017 to 2019, respectively. The accumulation of N, P, and K was significantly enhanced due to large population canopy and high plant biomass accumulation. Compared to CK, N and P use efficiency, and the harvest index of N and P was increased under YE mode by 15.21%, 17.20% and 3.85%, 7.79%, respectively, and the N use efficiency was increased by 12.37% under HY mode. WUE, N, and P use efficiency of YE mode was higher than HY by 2.05%, 2.53%, and 23.41%, respectively, and the net income increased by 1305.7 Yuan hm-2. Therefore, replacement of slow-release urea with organic manure by 40% and improvement of planting density with 60,000 plants hm-2 in YE mode potentially increased in water use efficiency, nutrient use efficiency, high canopy photosynthetic rate maintenances, and remobilization of dry matter from stem and leaf to tubers. In conclusion, YE as a high tuber production and resource use efficiency planting mode, is recommended in semi-arid areas with black-film mulched potato cultivation regime.

Key words: potato, cultivation pattern, canopy photosynthetic capacity, dry matter accumulation and transportation, yield, water-fertilization use efficiency

Fig. 1

Schematic diagram of potato planting in ridges and furrows with plastic mulching"

Table 1

Plant density and fertilizer application under different cultivation and management patterns"

Cultivation pattern
Coverage style
(plant hm-2)
Fertilizer type and dosage (kg hm-2)
N P2O5 K2O 羊粪
Sheep manure
Farmer mode
CK 露地平作
Flat planting without plastic mulching
45,000 120 75 0 0
High yield and
efficiency cultivation
YE 全膜覆盖垄沟种植
Ridge-furrow planting with plastic mulching
60,000 150 90 120 45,000
Higher yield
HY 全膜覆盖垄沟种植
Ridge-furrow planting with plastic mulching
67,500 210 120 150 45,000

Fig. 2

Changes of precipitation(P) and average air temperature(T) in experimental area from 2017 to 2019"

Table 2

Leaf area index (LAI) of potato under different cultivation models"

Squaring stage
Flowering stage
Tuber expanding stage
Starching accumulation stage
2017 CK 1.27±0.09 c 1.53±0.18 b 3.07±0.16 b 2.45±0.10 c
YE 1.80±0.20 b 2.41±0.16 a 3.73±0.16 a 3.32±0.17 a
HY 2.03±0.17 a 2.56±0.17 a 3.68±0.13 a 3.21±0.15 b
2018 CK 1.83±0.18 b 2.83±0.18 b 3.32±0.16 b 2.71±0.21 b
YE 2.49±0.21 a 3.68±0.25 a 4.14±0.12 a 3.75±0.16 a
HY 2.65±0.29 a 3.73±0.18 a 4.28±0.14 a 3.88±0.16 a
2019 CK 2.22±0.16 b 2.37±0.13 b 3.38±0.17 b 2.82±0.31 b
YE 2.73±0.13 a 3.11±0.16 a 4.27±0.20 a 3.82±0.28 a
HY 2.83±0.24 a 3.23±0.17 a 4.32±0.16 a 3.95±0.22 a

Table 3

SPAD of potato under different cultivation models"

Seedling stage
Squaring stage
Flowering stage
Tuber expanding stage
Starching accumulation stage
2017 CK 50.73±0.43 a 58.27±0.86 b 60.58±0.91 b 62.49±0.69 b 53.87±1.06 b
YE 52.90±0.96 a 61.73±0.57 a 64.68±0.80 a 66.67±0.87 a 60.36±0.75 a
HY 51.29±0.86 a 62.80±0.76 a 65.48±0.52 a 66.13±0.57 a 58.67±0.78 a
2018 CK 45.07±0.75 a 50.23±0.57 b 52.66±0.34 b 56.60±1.07 b 47.19±2.16 b
YE 46.58±0.31 a 54.76±0.54 a 55.86±1.19 a 61.15±0.44 a 55.16±0.31 a
HY 45.88±0.62 a 55.26±0.25 a 56.92±0.91 a 61.02±0.20 a 54.56±0.33 a
2019 CK 42.03±0.99 b 48.15±1.03 b 53.43±1.06 b 58.62±1.04 b 48.58±0.93 b
YE 45.29±0.76 a 55.82±0.85 a 58.82±0.42 a 62.37±0.63 a 53.40±0.74 a
HY 46.62±0.54 a 56.14±0.25 a 57.58±0.78 a 63.22±0.29 a 52.73±0.28 a

Table 4

Net photosynthetic rate and canopy photosynthesis ability of potato under different cultivation models"

块茎膨大期Tuber expanding stage 淀粉积累期Starching accumulation stage
Net photosynthetic rate (μmol m-2 s-1)
Canopy photosynthesis ability (Pn×LAI)
Net photosynthetic rate (μmol m-2 s-1)
Canopy photosynthesis ability (Pn×LAI)
2018 CK 18.92 a 62.72 b 14.69 a 39.81 b
YE 19.47 a 80.52 a 14.92 a 55.96 a
HY 19.55 a 83.69 a 15.59 a 60.41 a
2019 CK 19.45 a 65.74 b 15.83 a 44.64 b
YE 20.22 a 86.34 a 16.36 a 62.41 a
HY 20.68 a 89.34 a 16.88 a 66.59 a

Fig. 3

Change of different models cultivation on aboveground dry matter in potato Treatments are the same as those given in Table 1."

Table 5

Dry matter distribution and accumulation before and after potato tuber expansion under different cultivation modes"

转运量DMT (kg hm-2)
转运率DMTE (%)
块茎量PEA (kg hm-2)
贡献率CPAT (%)
2017 CK 2800 b 47.07 a 2406 c 46.22 c
YE 2879 b 25.66 b 5046 a 63.67 a
HY 3207 a 29.57 b 4765 b 59.78 b
2018 CK 2124 b 70.03 a 2747 b 56.39 c
YE 2427 a 36.38 b 4662 a 65.76 a
HY 2401 a 35.74 c 4606 a 65.73 a
2019 CK 2107 b 68.75 a 3111 b 59.61 b
YE 2236 a 34.11 b 4654 a 67.55 a
HY 2298 a 33.68 b 4612 a 66.74 a

Fig. 4

Yield level, evapotranspiration, and water use efficiency of potato under different cultivation models Treatments are the same as those given in Table 1. Different small letters in the same year mean significant difference among different treatments at the 0.05 probability level."

Table 6

Fertilizer accumulation and utilization of potato under different cultivation models in 2019"

指标Item CK YE HY
N 氮素总积累量NTA (kg hm-2) 330.04±5.29 b 389.05±11.32 a 397.54±7.14 a
氮素利用效率NUE (kg kg-1) 81.58±0.26 b 93.99±1.65 a 91.67±2.55 a
氮素收获指数NHI 0.78±0.001 b 0.81±0.001 a 0.79±0.015 b
P 磷素总积累量PTA (kg hm-2) 24.59±1.18 c 28.45±1.01 b 34.98±0.03 a
磷素利用效率PUE (kg kg-1) 1096.72±66.52 b 1285.33±14.38 a 1041.50±11.11 b
磷素收获指数PHI 0.81±0.015 a 0.81±0.034 a 0.82±0.001 a
K 钾素总积累量KTA (kg hm-2) 115.34±1.25 b 165.56±6.54 a 164.43±8.44 a
钾素利用效率KUE (kg kg-1) 233.43±0.47 a 220.89±1.57 b 221.81±9.21 b
钾素收获指数KHI 0.77±0.022 b 0.83±0.079 a 0.88±0.024 a

Table 7

Effects on profit of different cultivation models in potato"

rate (%)
Commodity yield
(kg hm-2)
非商品产量Non-commodity yield
(kg hm-2)
(Yuan hm-2)
materials input
(Yuan hm-2)
劳力投入Labor input
(Yuan hm-2)
Fuel input
(Yuan hm-2)
(Yuan hm-2)
2017 CK 49.76 c 12,887 b 13,011 b 23,271 b 4809 6720 750 10,992 c
YE 62.53 b 27,828 a 16,679 a 43,401 a 9837 9600 750 23,214 a
HY 71.50 a 29,199 a 11,636 b 42,020 a 11,305 10,000 750 19,965 b
2018 CK 64.14 c 16,047 b 8972 a 24,639 b 4809 6720 750 12,360 b
YE 79.90 a 28,066 a 7060 a 37,916 a 9837 9600 750 17,729 a
HY 75.27 b 28,518 a 9371 a 39,845 a 11,305 10,000 750 17,790 a
2019 CK 49.00 b 13,589 b 14,144 a 24,793 b 4809 6720 750 12,514 b
YE 68.43 a 25,123 a 11,590 b 37,102 a 9837 9600 750 16,915 a
HY 69.94 a 26,230 a 11,274 b 38,240 a 11,305 10,000 750 16,185 a
[1] 农业部. 2017年全国各地蔬菜、瓜果(西瓜、甜瓜、草莓等)、马铃薯播种面积和产量. 中国蔬菜, 2019, (11):22.
Ministry of Agriculture. The nationwide plant area and yield of vegetable, watermelon, melon, strawberry, potato in 2017. China Veget, 2019, (11):22 (in Chinese with English abstract).
[2] 侯慧芝, 王娟, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡. 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报, 2015,41:1582-1590.
Hou H Z, Wang J, Zhang X C, Fang Y J, Yu X F, Wang H L, Ma Y F. Effects of mini-ditch planting with plastic mulching in ridges on soil water content, temperature and potato yield in rain-fed Semiarid Region. Acta Agron Sin, 2015,41:1582-1590 (in Chinese with English abstract).
[3] 王晓明, 陈士宾, 牛俊义. 陇中半干旱地区马铃薯经济产量及效益模式探讨. 干旱地区农业研究, 1991,6(2):175-179.
Wang X M, Chen S B, Niu J Y. Discussion on the economical yield and benefit model of potatoes in Semiarid Area in the middle part of Gansu province. Agric Res Arid Areas, 1991,6(2):175-179 (in Chinese with English abstract).
[4] 方彦杰, 张绪成, 侯慧芝, 于显枫, 王红丽, 马一凡. 近20年来甘肃省黄土高原区粮食产量的影响因素及未来粮食需求分析. 中国农业科技导报, 2015,17(4):165-175.
Fang Y J, Zhang X C, Hou H Z, Yu X F, Wang H L, Ma Y F. Influence factors of grain yield in the Loess Plateau of Gansu Province during the latest 20 years and analysis on its future grain requirement. J Agric Sci Technol, 2015,17(4):165-175 (in Chinese with English abstract).
[5] 王红丽, 张绪成, 于显枫, 马一凡, 侯慧芝. 黑色地膜覆盖的土壤水热效应及其对马铃薯产量的影响. 生态学报, 2016,36:5215-5226.
Wang H L, Zhang X C, Yu X F, Ma Y F, Hou H Z. Effect of using black plastic film as mulch on soil temperature and moisture and potato yield. Acta Ecol Sin, 2016,36:5215-5226 (in Chinese with English abstract).
[6] 曹倩, 贺明荣, 代兴龙, 门洪文, 王成雨. 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养与肥料学报, 2011,17:815-822.
Cao Q, He M R, Dai X L, Men H W, Wang C Y. Effect of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat. Plant Nutr Fert Sci, 2011,17:815-822 (in Chinese with English abstract).
[7] 段民孝. 从农大108和郑单958中得到的玉米育种启示. 玉米科学, 2005,13(4):49-52.
Duan M X. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. J Maize Sci, 2005,13(4):49-52 (in Chinese with English abstract).
[8] 曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012,18:1343-1353.
Cao S B, Zhang J W, Dong S T, Liu P, Zhao B, Yang J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutr Fert Sci, 2012,18:1343-1353 (in Chinese with English abstract).
[9] 吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响. 作物学报, 2008,34:718-723.
Lyu L H, Tao H B, Wang P, Liu M, Zhao M, Wang R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agron Sin, 2008,34:718-723 (in Chinese with English abstract).
[10] Zhou B Y, Sun X F, Ding Z S, Ma W, Zhao M. Multisplit nitrogen application via drip irrigation improves maize grain yield and nitrogen use efficiency. Crop Sci, 2017,57:1687-1703.
[11] 赵风华, 马军花, 欧阳竹. 过量施氮对冬小麦生产力的影响. 植物生态学报, 2012,36:1075-1081.
Zhao F H, Ma J H, Ou-yang Z. Effects of excessive nitrogen supply on productivity of winter wheat. Chin J Plant Ecol, 2012,36:1075-1081 (in Chinese with English abstract).
[12] 宁运旺, 马洪波, 张辉, 汪吉东, 许仙菊, 张永春. 甘薯源库关系建立、发展和平衡对氮肥用量的响应. 作物学报, 2015,41:432-439.
Ning Y W, Ma H B, Zhang H, Wang J D, Xu X J, Zhang Y C. Response of sweetpotato in source-sink relationship establishment, expanding, and balance to nitrogen application rates. Acta Agron Sin, 2015,41:432-439 (in Chinese with English abstract).
[13] 郭恒, 陈占全, 张亚丽, 高玉亭, 李月梅. 全膜覆盖条件下缓释氮肥对马铃薯干物质及产量的影响. 河南农业科学, 2013,42(6):37-41.
Guo H, Chen Z Q, Zhang Y L, Gao Y T, Li Y M. Effects of slow-released urea on dry matter and yield of potato under plastic film mulching condition. J Henan Agric Sci, 2013,42(6):37-41 (in Chinese with English abstract).
[14] 王永军, 孙其专, 杨今胜, 王空军, 董树亭, 袁翠平, 王立春. 不同地力水平下控释尿素对玉米物质生产及光合特性的影响. 作物学报, 2011,37:2233-2240.
Wang Y J, Sun Q Z, Yang J S, Wang K J, Dong S T, Yuan C P, Wang L C. Effects of controlled-release urea on yield and photosynthesis characteristics of maize (Zea mays L.) under different soil fertility conditions. Acta Agron Sin, 2011,37:2233-2240 (in Chinese with English abstract).
[15] 席旭东, 李效文, 姬丽君. 缓控释肥不同施用量和施用方式对旱作区全膜马铃薯生长及产量的影响. 干旱地区农业研究, 2016,34(5):193-197.
Xi X D, Li X W, Ji L J. Effects of different fertilization methods and amounts slow/controlled releasing fertilizer on growth and yield of all-film potato in dry farming areas. Agric Res Arid Areas, 2016,34(5):193-197 (in Chinese with English abstract).
[16] 刘兆辉, 吴小宾, 谭德水, 李彦, 江丽华. 一次性施肥在我国主要粮食作物中的应用与环境效应. 中国农业科学, 2018,51:3827-3839.
Liu Z H, Wu X B, Tan D S, Li Y, Jiang L H. Application and environmental effects of one-off fertilization technique in major cereal crops in china. Sci Agric Sin, 2018,51:3827-3839 (in Chinese with English abstract).
[17] 王月超, 李传兴, 代兴龙, 周晓燕, 张宇, 李华英, 贺明荣. 栽培模式对冬小麦光能利用和产量的影响. 应用生态学报, 2015,26:2707-2713.
Wang Y C, Li C X, Dai X L, Zhou X Y, Zhang Y, Li H Y, He M R. Effects of cultivation patterns on the radiation use and grain yield of winter wheat. J Appl Ecol, 2015,26:2707-2713 (in Chinese with English abstract).
[18] 张仁和, 胡富亮, 杨晓钦, 高杰, 郝引川, 张兴华, 薛吉全. 不同栽培模式对旱地春玉米光合特性和水分利用率的影响. 作物学报, 2013,39:1619-1672.
Zhang R H, Hu F L, Yang X Q, Gao J, Hao Y C, Zhang X H, Xue J Q. Effects of different cultivation patterns on photosynthetic characteristics and water use efficiency in dryland spring maize. Acta Agron Sin, 2013,39:1619-1627 (in Chinese with English abstract).
[19] 王洪章, 刘鹏, 贾绪存, 李静, 任昊, 董树亭, 张吉旺, 赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析. 作物学报, 2019,45:1544-1553.
Wang H Z, Liu P, Jia X C, Li J, Ren H, Dong S T, Zhang J W, Zhao B. Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements. Acta Agron Sin, 2019,45:1544-1553 (in Chinese with English abstract).
[20] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011,44:4367-4376.
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Yang S H. Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci Agric Sin, 2011,44:4367-4376 (in Chinese with English abstract).
[21] 王立为, 潘志华, 高西宁, 陈东东, 张璐阳, 程路, 周蒙蒙, 李超, 赵沛义. 不同施肥水平对旱地马铃薯水分利用效率的影响. 中国农业大学学报, 2012,17(2):54-58.
Wang L W, Pan Z H, Gao X N, Chen D D, Zhang L Y, Cheng L, Zhou M M, Li C, Zhao P Y. Influence of different fertilizer levels water use efficiency of the potato in the dry land. J China Agric Univ, 2012,17(2):54-58 (in Chinese with English abstract).
[22] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 408-421.
Bao S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 408-421(in Chinese).
[23] 王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017,50:1031-1046.
Wang Y H, Huang Y, Xin M H, Yuan S S, Kang G Z, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Sci Agric Sin, 2017,50:1031-1046 (in Chinese with English abstract).
[24] 刘星, 张书乐, 刘国锋, 邱慧珍, 王蒂, 张俊莲, 沈其荣. 连作对甘肃中部沿黄灌区马铃薯干物质积累和分配的影响. 作物学报, 2014,40:1274-1285.
Liu X, Zhang S L, Liu G F, Qiu H Z, Wang D, Zhang J L, Shen Q R. Effect of continuous cropping on dry matter accumulation and distribution of potato plants in the yellow river irrigation areas of middle Gansu province. Acta Agron Sin, 2014,40:1274-1285 (in Chinese with English abstract).
[25] 李少昆, 王崇桃. 作物株型和冠层结构信息获取与表述的方法. 石河子大学学报(自然科学版), 1997,1:250-256.
Li S K, Wang C T. The methods of obtaining and expressing information of crop plant shape and population structure. J Shihezi Univ (Nat Sci), 1997,1:250-256 (in Chinese with English abstract).
[26] 陈雨海, 余松烈, 于振文. 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003,29:730-734.
Chen Y H, Yu S L, Yu Z W. Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron Sin, 2003,29:730-734 (in Chinese with English abstract).
[27] 高海涛, 王育红, 孟战赢, 吴少辉, 张园. 超高产小麦产量及旗叶生理特性的研究. 麦类作物学报, 2010,30:1080-1084.
Gao H T, Wang Y H, Meng Z Y, Wu S H, Zhang Y. Study on grain yield and physiological characteristics of flag leaves in super high yield winter wheat. J Triticeae Crops, 2010,30:1080-1084 (in Chinese with English abstract).
[28] 董树亭, 高荣岐, 胡昌浩, 王群瑛, 王空军. 玉米花粒期群体光合性能与高产潜力的研究. 作物学报, 1997,23:318-325.
Dong S T, Gao R Q, Hu C H, Wang Q Y, Wang K J. Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin, 1997,23:318-325 (in Chinese with English abstract).
[29] Fletcher A L, Johnstone P R, Chakwizira E, Brown H E. Radiation capture and radiation use efficiency in response to N supply for crop species with contrasting canopies. Field Crops Res, 2013,150:126-134.
[30] 孙旭生, 林琪, 李玲燕, 姜雯, 翟延举. 氮素对超高产小麦生育后期光合特性及产量的影响. 植物营养与肥料学报, 2008,14:840-844.
Sun X S, Lin Q, Li L Y, Jiang W, Zhai Y J. Effect of nitrogen supply on photosynthetic characteristics at later developing stages and yield in super high-yield winter wheat. Plant Nutr Fert Sci, 2008,14:840-844 (in Chinese with English abstract).
[31] 高聚林, 刘克礼, 张永平, 杨永梅, 宋瑞华, 薛凤成, 于金刚, 卞宏淳, 李秀芬, 王洪军. 不同栽培措施对旱作春小麦叶面积和光合势的影响. 麦类作物学报, 2003,23:66-70.
Gao J L, Liu K L, Zhang Y P, Yang Y M, Song R H, Xue F C, Yu J G, Bian H C, Li X F, Wang H J. Effect of different cultivation measures on LAD and LAI of spring wheat in dryland. J Triticeae Crops, 2003,23:66-70 (in Chinese with English abstract).
[32] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017,50:2238-2246.
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Sci Agric Sin, 2017,50:2238-2246 (in Chinese with English abstract).
[33] 高聚林, 刘克礼, 张宝林, 任有志. 马铃薯干物质积累与分配规律的研究. 中国马铃薯, 2003,17(4):209-212.
Gao J L, Liu K L, Zhang B L, Ren Y Z. Accumulation and distribution of dry matter in potato. Chin Potato J, 2003,17(4):209-212 (in Chinese with English abstract).
[34] 张宝林, 高聚林, 刘克礼, 盛晋华. 旱作马铃薯氮素的吸收、积累和分配规律. 中国马铃薯, 2003,17(4):193-198.
Zhang B L, Gao J L, Liu K L, Sheng J H. Nitrogen absorption, accumulation and distribution of potato under farming. Chin Potato J, 2003,17(4):193-198 (in Chinese with English abstract).
[35] Sainz H R, Echeverria H E, Barbie A. Nitrogen balance as affected by application time and nitrogen fertilizer rate in irrigated no-tillage maize. Agron J, 2004,96:1622-1631.
[36] He P, Li S T, Jin J Y, Wang H T, Li C J, Wang Y L, Cui R Z. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-central China. Agron J, 2009,101:1489-1496.
[37] 杜永, 刘辉, 杨成, 王志琴, 杨建昌. 超高产栽培迟熟中粳稻养分吸收特点的研究. 作物学报, 2007,33:208-215.
Du Y, Liu H, Yang C, Wang Z Q, Yang J C. Characteristics of nutrient absorption in super-high-yielding mid-season and late-maturity japonica rice. Acta Agron Sin, 2007,33:208-215 (in Chinese with English abstract).
[38] 杨恒山, 高聚林, 张玉芹, 毕文波, 张瑞富, 范秀艳, 高强. 超高产春玉米氮磷钾养分吸收与利用的研究. 干旱地区农业研究, 2011,29(2):15-20.
Yang H S, Gao J L, Zhang Y Q, Bi W B, Zhang R F, Fan X Y, Gao Q. Studies on absorption and use of N, P and K by spring maize under super-yield cultivation. Agric Res Arid Areas, 2011,29(2):15-20 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[12] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[13] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
Full text



No Suggested Reading articles found!