Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1617-1627.doi: 10.3724/SP.J.1006.2020.03002


Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics

MA Zheng-Bo(), DONG Xue-Rui, TANG Hui-Hui, YAN Peng, LU Lin, WANG Qing-Yan, FANG Meng-Ying, WANG Qi, DONG Zhi-Qiang*()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2020-01-16 Accepted:2020-06-05 Online:2020-10-12 Published:2020-06-22
  • Contact: Zhi-Qiang DONG E-mail:m2942989968@163.com;dongzhiqiang@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0200608)


In this study, we explore the effect of tetramethyl glutaric acid (TGA) photosynthesis characteristics and yield in summer maize. Field experiments were conducted in Xinxiang experimental station of Chinese Academy of Agricultural Sciences in 2018 and 2019. Two widely planted maize cultivars were planted, and five TGA application gradients (0, 75, 150, 225, and 300 g hm-2) were carried out. The results showed that the appropriate TGA treatment could increase maize yield, delay functional leaf senescence rate during the whole growth stage, and enhanced net rate during the grain-filling stage, respectively. The optimal TGA dosage was 150 g hm-2, the yield of Zhongdan 909 (ZD909) and Jingnongke (JNK728) respectively increased by 8.7% and 11.7% compared to the control treatment in two experimental years under the optimal TGA treatment. Furthermore, chlorophyll content, soluble protein content and leaf area duration of ZD909 and JNK728 increased by 14.3% and 19.7%, 18.7% and 22.7%, 10.9% and 16.9%, respectively, in contrast, leaf senescence rate decreased by 55.9% and 56.5%, respectively during the experimental years. In addition, net photosynthetic increase by 44.0% and 58.4%, respectively, during the grain-filling stage. Correlation analysis indicated maize yield was significantly negatively correlated with leaf senescence rate during the whole growth period, and significantly positively correlated with net photosynthetic rate during grain-filling stage. In conclusion, suitable TGA treatment could delay leaf senescence rate by increasing leaf chlorophyll and soluble protein content, and improve ear leaf net photosynthetic rate during the reproductive growth stage, and ultimately increased maize yield.

Key words: tetramethyl glutaric acid, summer maize, photo synthetic production characteristics, leaf senescence rate, yield

Fig. 1

Daily precipitation and mean temperature (line) during maize growing season from 2018 to 2019"

Table 1

Effects of TGA treatments on two variety of maize yield components in 2018 and 2019"

Ear length
Blade length
Ear number
Kernel number (ear-1)
Kernel weight
(kg hm-2)
京农科728 CK 15.5±0.7 a 2.3±0.4 a 68889 b 340.9±37.5 a 335.1±7.4 b 9159±264 b
JNK728 TGA1 15.6±0.9 a 2.2±0.4 ab 68518 b 345.6±29.8 a 326.4±5.3 b 9173±326 b
TGA2 15.9±0.7 a 1.8±0.8 c 71481 a 352.5±40.9 a 332.7±0.8 b 9899±171 a
TGA3 16.0±1.1 a 2.4±0.6 a 68889 b 338.8±36.5 a 346.3±4.6 a 9609±354 ab
TGA4 15.8±0.8 a 2.0±0.6 bc 71111 ab 358.6±26.8 a 333.7±1.9 b 9698±168 ab
中单909 CK 17.2±0.9 ab 0.8±0.7 a 69629 a 443.6±38.6 b 278.2±8.1 a 9715±172 b
ZD909 TGA1 17.5±1.1 ab 0.5±0.5 a 69629 a 469.0±52.8 a 283.0±11.1 a 10,268±65 ab
TGA2 17.8±1.0 a 0.5±0.5 a 69259 a 468.5±24.9 a 287.7±3.7 a 10,508±541 a
TGA3 17.2±0.8 ab 0.8±0.8 a 68148 a 439.2±37.3 b 290.6±8.0 a 9969±345 ab
TGA4 17.1±0.8 b 0.8±0.5 a 68889 a 428.3±37.4 b 291.7±3.7 a 9691±133 b
京农科728 CK 17.8±1.3 b 2.6±0.7 a 67340 a 446.4±51.2 b 318.2±11.7 b 11,145±1493 b
JNK728 TGA1 17.7±1.3 b 2.4±0.8 a 68080 a 448.8±51.3 b 340.9±7.0 a 11,921±336 ab
TGA2 18.7±0.8 a 1.7±0.7 b 68450 a 481.1±46.2 a 337.5±4.8 a 12,852±193 a
TGA3 18.3±1.1 ab 2.3±0.9 a 69190 a 465.8±50.0 ab 334.4±13.4 ab 12,274±318 ab
TGA4 17.9±0.9 b 2.4±0.8 a 69930 a 445.6±46.2 b 338.5±9.2 a 11,968±404 ab
中单909 CK 18.8±0.8 ab 2.0±0.5 a 68080 a 496.9±38.3 b 314.0±0.5 c 11,434±200 b
ZD909 TGA1 18.6±1.0 b 1.7±0.6 a 65860 a 503.5±38.2 a 330.1±1.3 a 12,330±345 a
TGA2 19.2±0.7 a 1.9±0.4 a 67340 a 526.2±31.4 a 324.4±3.0 ab 12,488±187 a
TGA3 18.6±1.0 b 1.8±0.7 a 67710 a 510.5±56.1 a 320.4±9.9 bc 12,134±446 a
TGA4 19.0±0.7 ab 1.9±0.5 a 67340 a 502.5±43.2 a 318.0±2.7 bc 12,284±538 a

Fig. 2

Effects of different TGA treatment on NAR of two varieties of maize in 2019 CK: control; TGA1, TGA2, TGA3, TGA4 denote the TGA application rate of 75, 150, 225, and 300 g hm-2, respectively. Vertical bars represent the LSD0.05 value; V13, VT, R2, R4, and R6 denote the maize of trumpeting, silking stage, milk stage, dough stage, and maturity stage, respectively."

Fig. 3

Effects of different TGA treatment on LAD of two varieties of maize in 2019 Abbreviations and treatments are the same as those given in Fig. 2."

Table 2

Effects of TGA treatments on Pn of ear leaf of two varieties of maize in 2019"

Silking stage
Growing rate (%)
Dough stage
Growing rate (%)
京农科728 CK 24.9±4.7 b 12.9±2.7 b
JNK728 TGA1 28.7±5.0 ab 15.3 16.7±2.0 ab 29.5
TGA2 33.0±0.3 a 32.5 23.0±1.3 a 78.3
TGA3 31.7±0.3 ab 27.3 18.7±0.3 ab 45.0
TGA4 28.8±4.4 ab 15.6 16.8±1.4 ab 30.2
中单909 CK 23.6±5.8 b 18.6±4.3 b
ZD909 TGA1 28.6±3.4 ab 21.2 20.1±8.1 b 8.1
TGA2 30.8±4.2 a 30.5 29.3±4.0 a 57.5
TGA3 28.2±0.8 ab 19.5 22.7±3.6 ab 22.0
TGA4 22.2±1.7 b -5.9 17.0±4.0 b -8.6

Fig. 4

Effects of different TGA treatment on the concentration of chlorophyll of two varieties of maize leaves in 2019 V7: jointing stage. Abbreviations and treatments are the same as those given in Fig. 2."

Fig. 5

Effects of different TGA treatment on the concentration of soluble protein of two varieties of maize leaves in 2019 V7: jointing stage. Abbreviations and treatments are the same as those given in Fig. 2."

Fig. 6

Effects of different TGA treatment on the leaf senescence rate of two varieties of maize in 2019 Abbreviations and treatments are the same as those given in Fig. 2."

Table 3

Effects of different TGA treatment on parameters of grain filling characteristics of two varieties of maize in 2019"

Wmax (mg)
Tmax (d)
Vmax (mg kernel-1 d-1)
D (d)
京农科728 CK 167.5 22.1 11.0 46.8
JNK728 TGA1 174.4 24.1 11.5 45.3
TGA2 176.1 24.0 12.1 43.6
TGA3 175.1 23.3 12.6 41.7
TGA4 174.2 22.8 12.8 40.7
中单909 CK 145.4 24.0 10.3 43.5
ZD909 TGA1 149.2 24.1 11.0 40.8
TGA2 154.8 25.1 10.6 43.7
TGA3 160.0 26.0 9.8 48.8
TGA4 157.3 26.3 9.4 50.0

Table 4

TGA treatment of Pearson correlation between yield and other characteristics"

Chlorophyll content
Soluble protein
Net assimilation rate
Leaf area duration
Leaf senescence rate
Grain filling rate
Chlorophyll content
0.58 1.00
Soluble protein
0.56 0.98** 1.00
0.73* 0.58 0.63* 1.00
0.62 0.93** 0.93** 0.56 1.00
Leaf senescence rate
0.91** -0.63* -0.55 -0.76* -0.59 1.00
0.79** 0.64* 0.49 0.73* 0.64 -0.91** 1.00
Grain filling rate
0.15 -0.55 -0.58 -0.12 -0.51 -0.087 0.27 1.00
[1] 张胜, 贾振业, 高炳德. 公顷产量13.7 t~15.9 t春玉米干物质生产分配规律及其指标的研究. 内蒙古农业大学学报(自然科学版), 2000, (S1):46-54.
Zhang S, Jia Z Y, Gao B D. Studies on the regularity of dry matter accumulation and distribution and its indexes of spring maize of 13.7-15.9 t ha-1 yield. J Inner Mongolia Agric Univ (Nat Sci Edn), 2000, (S1):46-51 (in Chinese with English abstract).
[2] Dordas C A, Sioulas C. Laboratory dry matter and nitrogen accumulation, partitioning, and retrains location in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res, 2009,110:35-43.
doi: 10.1016/j.fcr.2008.06.011
[3] 邵扬, 曾建兵, 郭延平, 郭青范, 王同朝, 卫丽. 高密度条件下种植方式对夏玉米叶绿素、荧光特性及其产量的影响. 干旱地区农业研究, 2016,34(5):85-90.
Shao Y, Zeng J B, Guo Y P, Guo Q F, Wang T C, Wei L. Effects of planting patterns with high density on chlorophyll, fluorescence and yield of summer maize. Agric Res Arid Areas, 2016,34(5):85-90 (in Chinese with English abstract).
[4] Tollenar M, Daynard T B. Leaf senescence in short-season maize hybrids. Can J Plant Sci, 1978,58:869-874.
doi: 10.4141/cjps78-126
[5] Wolfe D W, Henderson D W, Hsiao T C, Alvino A. Interactive water and nitrogen effects on senescence of maize: II. Photosynthetic decline and longevity of individual leaves. Agron J, 1988,80:859-864.
doi: 10.2134/agronj1988.00021962008000060004x
[6] 李涛, 刘玉军, 白红彤, 石雷, 姜闯道. 栽培密度对薄荷生长策略和光合特性的影响. 植物生理学报, 2012,48:895-900.
Li T, Liu Y J, Bai H T, Shi L, Jiang C D. Effects of planting density on growth strategies and photosynthetic characteristics of Mentha haplocalyx Briq. Plant Physiol J, 2012,48:895-900 (in Chinese with English abstract).
[7] Li T, Liu Y J, Shi L, Jiang C D. Systemic regulation of photosynthetic function in field-grown sorghum. Plant Physiol Biochem, 2015,94:86-94.
doi: 10.1016/j.plaphy.2015.05.008 pmid: 26057699
[8] 肖万欣, 刘晶, 史磊, 赵海岩, 王延波. 氮密互作对不同株型玉米形态、光合性能及产量的影响. 中国农业科学, 2017,50:3690-3701.
doi: 10.3864/j.issn.0578-1752.2017.19.006
Xiao W X, Liu J, Shi L, Zhao H Y, Wang Y B. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield of maize hybrid of different types. Sci Agric Sin, 2017,50:3690-3701 (in Chinese with English abstract).
[9] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signaling. Nature, 2009,459:1071-1078.
doi: 10.1038/nature08122 pmid: 19553990
[10] 高娇, 董志强, 徐田军, 陈传晓, 焦浏, 卢霖, 董学瑞. 聚糠萘水剂对不同积温带玉米花后叶片氮同化的影响. 生态学报, 2014,34:2938-2947.
doi: 10.5846/stxb201212101773
Gao J, Dong Z Q, Xu T J, Chen C X, Jiao L, Lu L, Dong X R. Effects of PASP-KT-NAA on maize leaf nitrogen assimilation after florescence over different temperature gradients. Acta Ecol Sin, 2014,34:2938-2947 (in Chinese with English abstract).
[11] 张佳蕾, 王媛媛, 孙莲强, 魏彤彤, 顾学花, 高芳, 李向东. 多效唑对不同品质类型花生产量、品质及相关酶活性的影响. 应用生态学报, 2013,24:2850-2856.
Zhang J L, Wang Y Y, Sun L Q, Wei T T, Gu X H, Gao F, Li X D. Effects of paclobutrazol on the yield, quality, and related enzyme activities of different quality type peanut cultivars. Chin J Appl Ecol, 2013,24:2850-2856 (in Chinese with English abstract).
[12] 唐会会, 许艳丽, 王庆燕, 马正波, 李光彦, 董会, 董志强. 叶面喷施5-氨基乙酰丙酸对不同密度春玉米生长特性和产量的影响. 作物杂志, 2019, (2):136-141.
Tang H H, Xu Y L, Wang Q Y, Ma Z B, Li G Y, Dong H, Dong Z Q. Effects of foliar spraying 5-aminolevulinic acid on spring maize growth and yield under different planting densities. Crops, 2019, (2):136-141 (in Chinese with English abstract).
[13] 聂乐兴, 姜兴印, 吴淑华, 王燕, 李俊虎, 戈大庆, 张吉旺, 刘鹏. 胺鲜酯对高产玉米的调控作用研究. 玉米科学, 2010,18(6):33-37.
Nie L X, Jiang X Y, Wu S H, Wang Y, Li J H, Ge D Q, Zhang J W, Liu P. Regulation of DA-6 on new species of high yield maize. J Maize Sci, 2010,18(6):33-37 (in Chinese with English abstract).
[14] 江力, 孔小卫, 张荣铣. 6-苄基腺嘌呤和脱落酸对烟草光合功能衰退的影响. 南京农业大学学报, 2006,29(4):127-130.
Jiang L, Kong X W, Zhang R X. Effects of 6-benzyladenine and abscisic acid on the photosynthetic function decline in tobacco. J Nanjing Agric Univ, 2006,29(4):127-130 (in Chinese with English abstract).
[15] 房海珍. 植物生长调节剂对蛹虫草生长发育的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014.
Fang H Z. The Effect of Different Plant Growth Regulators on the Growth and Development of Cordyceps Militaris. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract).
[16] Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis, 1983,11:591-592.
[17] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000,pp 56-59, 125-126.
Zou Q. Plant Physiology Experiment Guide. Beijing: China Agriculture Press, 2000,pp 56-59, 125-126(in Chinese).
[18] 王方瑞. 密度对不同年代小麦品种产量的影响及其生理基础. 南京农业大学硕士学位论文, 江苏南京, 2012.
Wang F R. Effects of Seeding Rate on Yield in Wheat Cultivars from Different Ears and Its Physiological Basis. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2012 (in Chinese with English abstract).
[19] Gao Z, Liang X G, Zhang L, Lin S, Zhao X, Zhou L L, Shen S, Zhou S L. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Res, 2017,211:1-9.
doi: 10.1016/j.fcr.2017.05.027
[20] 鱼海跃, 韩紫璇, 张钰石, 段留生, 张明才, 李召虎. 冠菌素对玉米籽粒灌浆特性与淀粉合成的调控效应. 作物学报, 2019,45:1535-1543.
doi: 10.3724/SP.J.1006.2019.93007
Yu H Y, Han Z X, Zhang Y S, Duan L S, Zhang M C, Li Z H. Regulation of coronatine on the grain filling characteristics and starch synthesis in maize kernels. Acta Agron Sin, 2019,45:1535-1543 (in Chinese with English abstract).
[21] 姜颖, 赵越, 孙全军, 李振伟. 植物生长调节剂在植物生长发育中的应用. 黑龙江科学, 2018,9(24):4-7.
Jiang Y, Zhao Y, Sun Q J, Li Z W. Application of plant growth regulators on plant growth and development. Heilongjiang Sci, 2018,9(24):4-7 (in Chinese with English abstract).
[22] 谢桂先. 新型植物生长调节剂对玉米氮代谢和光合特性的影响. 湖南农业大学硕士学位论文, 湖南长沙, 2003.
Xie G X. Effects of New Plant Growth Regulators on Nitrogen Metabolism and Photosynthesis Characters of Maize. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2003 (in Chinese with English abstract).
[23] 于方明. 新型植物生长调节剂不同配方与浓度对玉米光合特性及氮代谢的影响研究. 湖南农业大学硕士学位论文, 湖南长沙, 2004.
Yu F M. Effects of Various Formulas and Concentrations of New Plant Regulators on Nitrogen Metabolism and Photosynthesis Character of Maize. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2004 (in Chinese with English abstract).
[24] 蒋迁, 李磊, 吴瑞娟, 张凤路. 植物生长调节剂对夏玉米茎秆冗余调控及产量形成的影响. 华北农学报, 2016,31(S1):276-281.
Jiang Q, Li L, Wu R J, Zhang F L. Effects of plant growth regulators on stalk redundancy and yield formation of summer maize. Acta Agric Boreali-Sin, 2016,31(S1):276-281 (in Chinese with English abstract).
[25] 王广明. 植物生长调节剂对不同密度下玉米生长发育及产量的影响. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2016.
Wang G M. Effects of Plant Growth Regulators on Maize Growth and Development and Yield under Different Densities. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2016 (in Chinese with English abstract).
[26] 王洪悦. 喷施组合型生长调节剂对苗期小麦和玉米生理代谢及生长的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2015.
Wang H Y. Effects of Spraying Combined Plant Growth Regulator on Wheat and Maize. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract).
[27] 解振兴, 董志强, 薛金涛. 聚糠萘合剂对玉米叶片衰老及产量的影响. 玉米科学, 2010,18(1):82-86.
Xie Z X, Dong Z Q, Xue J T. Effects of PASP-KT-NAA on maize leaf senescence and yield. J Maize Sci, 2010,18(1):82-86 (in Chinese with English abstract).
[28] 刘永红, 杨勤, 何文铸, 柯国华. 花期干旱和灌溉条件下植物生长调节剂对玉米茎流和光合生理的影响. 西南农业学报, 2009,22:1305-1309.
Liu Y H, Yang Q, He W Z, Ke G H. Effect of plant growth regulators on maize stem sap and photosynthesis under drought stress and irrigation at flowering stage. Southwest China J Agric Sci, 2009,22:1305-1309 (in Chinese with English abstract).
[29] Ai L, Li Z H, Xie Z X, Tian X L, Eneji A E, Duan L S. Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. J Agron Crop Sci, 2008,194:360-368.
doi: 10.1111/jac.2008.194.issue-5
[30] 张莉, 赵雪, 曲令华, 王佳慧, 吕新月, 林珊, 周顺利. 外源ABA处理对离体玉米子粒灌浆特性的影响. 玉米科学, 2017,25(4):67-74.
Zhang L, Zhao X, Qu L H, Wang J H, Lyu X Y, Lin S, Zhou S L. Effects of ABA application on maize grain-filling properties in vitro culture. J Maize Sci, 2017,25(4):67-74 (in Chinese with English abstract).
[31] 马冲, 邹仁峰, 苏波, 张健, 陈举林. 不同熟期玉米籽粒灌浆特性的研究. 作物研究, 2000, (4):17-19.
Ma C, Zou R F, Su B, Zhang J, Chen J L. Studies on grain filling characteristics of hybrid corn with different growth durations. Crop Res, 2000, (4):17-19 (in Chinese with English abstract).
[32] 杨青华, 黄勇, 马二培, 刘媛媛, 李潮海. 不同质地土壤对高油玉米子粒灌浆特性及产量的影响. 玉米科学, 2007,15(3):71-74.
Yang Q H, Huang Y, Ma E P, Liu Y Y, Li C H. Effects of different soil texture on characteristics of grain filling and yield of high-oil corn. J Maize Sci, 2007,15(3):71-74 (in Chinese with English abstract).
[33] Sheehy J E, Dionora M J A, Mitchel P L. Spikelet numbers, sink size and potential yield in rice. Field Crops Res, 2001,71:77-85.
doi: 10.1016/S0378-4290(01)00145-9
[34] 张鹏. 黄瓜叶片衰老过程中内肽酶变化及其生化特性的研究. 南京农业大学博士学位论文, 江苏南京, 2006.
Zhang P. Endopeptidase and Biochemistry Characters of Cucumis Sativus during Leaf Senescence. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2006 (in Chinese with English abstract).
[35] Noodén L D, Guiamét J, John I. Senescence mechanisms. Plant Physiol, 1997,101:746-753.
doi: 10.1111/ppl.1997.101.issue-4
[36] Sheehy J E, Peng S, Dobermann A, Mitchell P L, Ferrer A, Yang J C, Zou Y B, Zhong X H, Huang J L. Fantastic yields in the system of rice intensification: fact or fallacy? Field Crops Res, 2004,88:1-8.
doi: 10.1016/j.fcr.2003.12.006
[37] Matthieu B, Matthieu J, Vincent A, Pierre M, Marie R P, Catherine R, Emmanuel H, Simon O, John S, Simon G, Oorbessy G, John F, Jacques L G. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J Exp Bot, 2011,62:3621-3636.
doi: 10.1093/jxb/err061
[38] 沈秀瑛, 戴俊英, 胡安畅, 顾慰连, 郑波. 玉米群体冠层特征与光截获及产量关系的研究. 作物学报, 1993,19:246-252.
Shen X Y, Dai J Y, Hu A C, Gu W L, Zheng B. Study on the relationship between canopy characteristics, light interception and yield of maize population. Acta Agron Sin, 1993,19:246-252 (in Chinese with English abstract).
[39] 郭天财, 彭文博, 王向阳, 赵会杰, 陈长海, 崔金梅, 朱云集. 小麦灌浆后期青枯骤死原因分析及控制. 作物学报, 1997,23:474-481.
Guo T C, Peng W B, Wang X Y, Zhao H J, Chen C H, Cui J M, Zhu Y J. Analysis and control of sudden death of wheat blight during late grain filling. Acta Agron Sin, 1997,23:474-481 (in Chinese with English abstract).
[40] 张晓艳, 杜吉到, 郑殿峰, 宋春艳, 陆旺, 宋丽萍. 密度对大豆群体叶面积指数及干物质积累分配的影响. 大豆科学, 2011,30:96-100.
Zhang X Y, Du J D, Zheng D F, Song C Y, Lu W, Song L P. Effect of density on leaf area index, dry matter accumulation and distribution in soybean population. Soybean Sci, 2011,30:96-100 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!