Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1628-1638.doi: 10.3724/SP.J.1006.2020.94166

• RESEARCH NOTES • Previous Articles     Next Articles

Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant (Camellia sinensis)

LI Na-Na1(), LIU Ying1,2, ZHANG Hao-Jie1, WANG Lu1, HAO Xin-Yuan1, ZHANG Wei-Fu1, WANG Yu-Chun1, XIONG Fei1,3, YANG Ya-Jun1,*(), WANG Xin-Chao1,*()   

  1. 1 Tea Research Institute, Chinese Academy of Agricultural Sciences / National Center for Tea Improvement / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, Zhejiang, China
    2 College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
    3 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2019-11-06 Accepted:2020-06-02 Online:2020-10-12 Published:2020-07-03
  • Contact: Ya-Jun YANG,Xin-Chao WANG E-mail:nanali@tricaas.com;yjyang@tricaas.com;xcw75@tricaas.com
  • Supported by:
    National Natural Science Foundation of China(31700615);China Postdoctoral Science Foundation(2017T100119);China Postdoctoral Science Foundation(2016M600150);Earmarked Fund for China Agriculture Research System (Tea)(CARS-19)

Abstract:

Hexokinase is a kind of dual-function protein playing a crucial role in hexose phosphorylation and sugar signaling transduction in plants. In our previous study, four hexokinase genes from tea plant were cloned, and CsHXK2 gene encoded 492 amino acid residues was classified as Type A HXKs together with AtHXK3 from Arabidopsis thaliana and LeHXK4 from tomato. 2029 bp promoter of CsHXK2 gene was obtained by RT-PCR. Further sequence analysis showed that CsHXK2 gene may be regulated by light, low temperature, pathogen, sugars and phytohormones, and specifically expressed in leaves, flowers, seeds, roots, axillary buds. CsHXK2 protein was localized in the chloroplast. Functional complementation of the hexokinase-deficient yeast mutant showed that the CsHXK2 mature protein removal of chloroplast transit peptide, had phosphorylation activity of glucose and fructose. Tissue-specific expression analysis found that CsHXK2 had the highest transcriptional levels in roots and stems, whereas the lowest in old leaves. The expression level of CsHXK2 gene was significantly down-regulated in both cold stress treatment and leaves infected treatment by Colletotrichum camelliae. However, the expression level of CsHXK2 was significantly stimulated after exogenous GA3 treatment in tea leaves. In conclusion, the results suggested that CsHXK2 played an important role in the regulation of both development and stress responses in tea plant.

Key words: tea plant, hexokinase, promoter, subcellular localization, expression regulation

Table 1

Primers information"

序列名称
Sequence name
上游引物序列
Forward primer (5'-3')
下游引物序列
Reverse primer (5'-3')
用途
Application
CsPTB ORF ACCAAGCACACTCCACACTATCG TGCCCCCTTATCATCATCCACAA 荧光定量PCR
qRT-PCR
CsHXK2 promoter
GATTTTGAGTGCATAAATTGAAAACATCGAG TTGAAACAGAGCGAGAGCGAGA 启动子扩增
Promoter amplification
CsHXK2 ORF ATTTCCGAGTGCTGAGGGTGCAA TTTCCAGCCGTTCCAGAGACTGC 荧光定量PCR
qRT-PCR
CsHXK2 ORF GGTACCATGTCCGTCACCGTAAGTCCA GGATCCAAAATTGTGTTCATACTTCGAGTTTGT 亚细胞定位
Subcellular localization
CsHXK2 ORF-cTP GGTACCATGAACGTTGTCACCGTCGCC TCTAGAAAAATTGTGTTCATACTTCGAGTT 亚细胞定位
Subcellular localization
CsHXK2 ORF ACTAGTATGTCCGTCACCGTAAGTCCA CCCGGGCTAAAAATTGTGTTCATACTT 酵母表达
Yeast expression
CsHXK2 ORF-cTP ACTAGTATGAACGTTGTCACCGTCGCC CCCGGGCTAAAAATTGTGTTCATACTT 酵母表达
Yeast expression
pDR196 CTCTTTTATACACACATTCA CTGGCGAAGAAGTCCAAAGC 菌液PCR
Colony PCR

Fig. 1

Amplification and sequence of CsHXK2 promoter in the tea plant A: electrophoresis of PCR products of CsHXK2 promoter; B: sequence of CsHXK2 promoter."

Table 2

Key cis-acting elements in the CsHXK2 promoter of the tea plant"

位点名称
Site name
序列
Sequence
功能
Function
-10PEHVPSBD TATTCT 叶绿体基因表达; 生理节律; 光调节。
Chloroplast gene expression; circadian rhythms; light regulation.
ARFAT TGTCTC ARF (生长素响应因子)结合位点; 生长素信号。
ARF (auxin response factor) binding site; auxin signaling.
ARR1AT NGATT ARR1结合元件; 细胞分裂素响应元件。
ARR1-binding element; cytokinin-responsive element.
BOXLCOREDCPAL ACCWWCC MYB结合位点; 苯丙氨酸解氨酶基因; 激发处理; UV-B辐射; 稀释效应。
MYB binding site; phenylalanine ammonia-lyase gene; elicitor treatment; UV-B irradiation; dilution effect.
CACTFTPPCA1 YACT 叶肉特异性基因表达。
Mesophyll-specific gene expression.
CANBNNAPA CNAACAC 胚和胚乳特异转录元件; 种子; 贮藏蛋白。
Element required for embryo and endosperm-specific transcription; seed; storage protein.
CARGATCONSENSUS CCWWWWWWGG 开花时间。
Flowering time.
CCAATBOX1 CCAAT 热激元件。
Heat shock element.
CURECORECR GTAC 铜响应元件; 氧响应元件。
Copper-responsive element; oxygen-response element.
DOFCOREZM AAAG Dof蛋白核心结合位点; 碳代谢调控。
Core site required for binding of Dof proteins; regulating the carbon metabolism.
ELRECOREPCRP1 TTGACC 激发响应元件; WRKY结合位点; 水杨酸/病菌/创伤诱导信号。
Elicitor responsive element; WRKY protein binding site; salicylic acid/pathogen/wound- induced signaling.
ERELEE4 AWTTCAAA 乙烯响应元件; 衰老。
Ethylene responsive element; senescence.
GARE1OSREP1 TAACAGA 赤霉素响应元件; 种子。
Gibberellin-responsive element; seed.
GATABOX GATA 光响应元件。
Light-responsive element.
GT1CONSENSUS GRWAAW 光响应元件。
Light-responsive element.
LTRE1HVBLT49 CCGAAA 低温响应元件。
Low-temperature-responsive element.
MYB1AT WAACCA MYB识别位点; 干旱/ABA响应元件。
MYB recognition site; dehydration/ABA-responsive element.
MYBCORE CNGTTR MYB结合位点; 干旱/水响应元件; 黄酮类生物合成。
MYB binding site; dehydration/water-responsive element; flavonoid biosynthesis.
MYBGAHV TAACAAA 赤霉素响应元件; MYB结合位点; α-淀粉酶。
Gibberellin response element; MYB binding site; α-amylase.
MYCCONSENSUSAT CANNTG MYC识别位点; 低温/干旱/ABA响应元件。
MYC recognition site; cold/dehydration/ABA-responsive element.
NTBBF1ARROLB ACTTTA 组织特异性表达与生长素诱导。
Tissue-specific expression and auxin induction.
POLLEN1LELAT52 AGAAA 花粉特异性表达。
Pollen specific expression.
RAV1AAT CAACA RAV1结合位点; 莲座叶和根。
RAV1 binding site; rosette leaves and roots.
RHERPATEXPA7 KCACGW 根毛特异性元件; 根; 毛。
Root hair-specific cis-element; root; hair.
位点名称
Site name
序列
Sequence
功能
Function
SREATMSD TTATCC 糖抑制元件; 腋芽生长。
Sugar-repressive element; axillary bud outgrowth.
SURE1STPAT21 AATAGAAAA 蔗糖响应元件。
Sucrose responsive element.
TAAAGSTKST1 TAAAG 保卫细胞特异性基因表达。
Guard cell-specific gene expression.
WBBOXPCWRKY1 TTTGACY WRKY结合位点。
WRKY binding site.
WBOXHVISO1 TGACT 糖响应元件; 糖信号; WRKY结合位点。
Sugar-responsive element; sugar signaling; WRKY binding site.

Fig. 2

Subcellular localization of CsHXK2 protein in the tea plant A-C and H-K: 35S::sGFP; D-G: 35S::CsHXK2::sGFP; L-O: 35S::CsHXK2-cTP::sGFP. A, D, H, L: GFP green fluorescent signal; E: chlorophyll autofluorescence; I, M: RFP red fluorescent signal of nucleus; B, F, J, N: bright field; C, G, K, O: merged signal."

Fig. 3

Complementation of the hexokinase-deficient yeast triple mutant with CsHXK2 protein A: ddH2O; B: 2% galactose; C: 2% glucose; D: 2% fructose; E: electrophoretic detection of the transformed fragments in yeast."

Fig. 4

Tissue-specific expression patterns of CsHXK2 in the tea plant A: different tissues of ‘Longjing 43’ in spring; B: different tissues of ‘Longjing 43’ in autumn; C: different tissues of ‘Shuchazao’. Different letters on the column indicate significant difference between the data (P < 0.05)."

Fig. 5

Expression analysis of CsHXK2 under different treatments in the tea plant A: natural cold acclimation; B: 4℃ cold and 25℃ recovery; C: inoculation with Colletotrichum; D: 50 μmol L-1 exogenous GA3. Different letters on the column indicate significant difference between the data (P < 0.05). * indicates significant at the 0.05 probability level; *** indicates significant at the 0.001 probability level."

[1] Xiao W Y, Sheen J, Jang J C. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol, 2000,44:451-461.
doi: 10.1023/A:1026501430422
[2] Rolland F, Sheen J. Sugar sensing and signalling networks in plants. Biochem Soc Trans, 2005,33:269-271.
doi: 10.1042/BST0330269 pmid: 15667323
[3] Baena González E, Sheen J. Convergent energy and stress signaling. Trends Plant Sci, 2008,13:474-482.
doi: 10.1016/j.tplants.2008.06.006 pmid: 18701338
[4] Dai N, Schaffer A A, Petreikov M, Granot D. Arabidopsis thaliana hexokinase cDNA isolated by complementation of yeast cells. Plant Physiol, 1995,108:879-880.
doi: 10.1104/pp.108.2.879 pmid: 7610198
[5] Aguilera Alvarado G P, Sánchez Nieto S. Plant hexokinases are multifaceted proteins. Plant Cell Physiol, 2017,58:1151-1160.
doi: 10.1093/pcp/pcx062 pmid: 28449056
[6] Geng M T, Yao Y, Wang Y L, Wu X H, Sun C, Li R M, Fu S P, Duan R J, Liu J, Hu X W, Guo J C. Structure, expression, and functional analysis of the hexokinase gene family in Cassava. Int J Mol Sci, 2017,18:1041.
doi: 10.3390/ijms18051041
[7] Wang J X, Wang X M, Geng S Y, Singh S K, Wang Y H, Pattanaik S, Yuan L. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. Planta, 2018,248:171-182.
doi: 10.1007/s00425-018-2888-8 pmid: 29644447
[8] Zhao B Y, Qi K J, Yi X R, Chen G D, Liu X, Qi X X, Zhang S L. Identification of hexokinase family members in pear (Pyrus × bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth. Gene, 2019,711:143932.
doi: 10.1016/j.gene.2019.06.022 pmid: 31202905
[9] Wang H B, Xin H, Guo J Y, Gao Y, Liu C, Dai D Q, Tang L Z. Genome-wide screening of hexokinase gene family and functional elucidation of HXK2 response to cold stress in Jatropha curcas. Mol Biol Rep, 2019,46:1649-1660.
doi: 10.1007/s11033-019-04613-0 pmid: 30756333
[10] Karve A, Rauh B L, Xia X X, Kandasamy M, Meagher R B, Sheen J, Moore B D. Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta, 2008,228:411-425.
doi: 10.1007/s00425-008-0746-9
[11] Kim Y M, Heinzel N, Giese J O, Koeber J, Melzer M, Rutten T, Von Wirén N, Sonnewald U, Hajirezaei M R. A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. Plant Cell Environ, 2013,36:1311-1327.
doi: 10.1111/pce.12060 pmid: 23305564
[12] Cho J I, Ryoo N, Ko S, Lee S K, Lee J, Jung K H, Lee Y H, Bhoo S H, Winderickx J, An G, Hahn T R, Jeon J S. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta, 2006,224:598-611.
doi: 10.1007/s00425-006-0251-y
[13] Olsson T, Thelander M, Ronne H. A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem, 2003,278:44439-44447.
doi: 10.1074/jbc.M306265200 pmid: 12941966
[14] Claeyssen É, Rivoal J. Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry, 2007,68:709-731.
doi: 10.1016/j.phytochem.2006.12.001 pmid: 17234224
[15] Jang J C, León P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997,9:5-19.
doi: 10.1105/tpc.9.1.5 pmid: 9014361
[16] Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D. Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell, 1999,11:1253-1266.
doi: 10.1105/tpc.11.7.1253 pmid: 10402427
[17] Moore B, Zhou L, Rolland F, Hall Q, Cheng W H, Liu Y X, Hwang I, Jones T, Sheen J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 2003,300:332-336.
doi: 10.1126/science.1080585 pmid: 12690200
[18] Sarowar S, Lee J Y, Ahn E R, Pai H S. A role of hexokinases in plant resistance to oxidative stress and pathogen infection. J Plant Biol, 2008,51:341-346.
doi: 10.1007/BF03036136
[19] Li N N, Qian W J, Wang L, Cao H L, Hao X Y, Yang Y J, Wang X C. Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). J Plant Physiol, 2017,209:95-104.
doi: 10.1016/j.jplph.2016.11.007 pmid: 28013175
[20] Xia E H, Zhang H B, Sheng J, Li K, Zhang Q J, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang J J, Mao S Y, Jiao J Y, Zhang D, Zhao Y, Zhao Y J, Zhang L P, Liu Y L, Liu B Y, Yu Y, Shao S F, Ni D J, Eichler E E, Gao L Z. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant, 2017,10:866-877.
doi: 10.1016/j.molp.2017.04.002 pmid: 28473262
[21] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res, 1999,27:297-300.
doi: 10.1093/nar/27.1.297 pmid: 9847208
[22] De Winde J H, Crauwels M, Hohmann S, Thevelein J M, Winderickx J. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem, 1996,241:633-643.
doi: 10.1111/j.1432-1033.1996.00633.x pmid: 8917466
[23] Hao X Y, Horvath D P, Chao W S, Yang Y J, Wang X C, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci, 2014,15:22155-22172.
doi: 10.3390/ijms151222155 pmid: 25474086
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] Xia E H, Li F D, Tong W, Li P H, Wu Q, Zhao H J, Ge R H, Li R P, Li Y Y, Zhang Z Z, Wei C L, Wan X C. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnol J, 2019,17:1938-1953.
doi: 10.1111/pbi.13111 pmid: 30913342
[26] Wang L, Yao L N, Hao X Y, Li N N, Wang Y C, Ding C Q, Lei L, Qian W J, Zeng J M, Yang Y J, Wang X C. Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environ Exp Bot, 2019,160:45-58.
doi: 10.1016/j.envexpbot.2018.11.011
[27] Granot D, David Schwartz R, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci, 2013,4:1-17.
doi: 10.3389/fpls.2013.00001 pmid: 23346092
[28] Giese J O, Herbers K, Hoffmann M, Klösgen R B, Sonnewald U. Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum. FEBS Lett, 2005,579:827-831.
doi: 10.1016/j.febslet.2004.12.071 pmid: 15670855
[29] Kandel Kfir M, Damari Weissler H, German M A, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N, Granot D. Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. Planta, 2006,224:1341-1352.
doi: 10.1007/s00425-006-0318-9
[30] Yue C, Cao H L, Wang L, Zhou Y H, Huang Y T, Hao X Y, Wang Y C, Wang B, Yang Y J, Wang X C. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol Biol, 2015,88:591-608.
doi: 10.1007/s11103-015-0345-7 pmid: 26216393
[31] 田野, 王梦馨, 王金和, 韩宝瑜. 茶鲜叶可溶性糖和氨基酸含量与低温的相关性. 茶叶科学, 2015,35:567-573.
Tian Y, Wang M X, Wang J H, Han B Y. Correlation of low temperature with soluble sugar and amino acid content in fresh tea leaves. J Tea Sci, 2015,35:567-573 (in Chinese with English abstract).
[32] Lobato A K S, Gonçalves Vidigal M C, Vidigal P S, Costa R C L, Cruz F J R, Santos D G C, Silva C R, Silva L I, Sousa L L. Changes in photosynthetic pigment and carbohydrate content in common bean cultivars infected by Colletotrichum lindemuthianum. Plant Soil Environ, 2009,55:58-61.
doi: 10.17221/PSE
[33] Engelsdorf T, Horst R J, Pröls R, Pröschel M, Dietz F, Hückelhoven R, Voll L M. Reduced carbohydrate availability enhances the susceptibility of Arabidopsis toward Colletotrichum higginsianum. Plant Physiol, 2013,162:225-238.
doi: 10.1104/pp.112.209676
[34] Ma Y Y, Zhang Y L, Lu J, Shao H B. Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol, 2009,8:2004-2010.
[35] Neta Sharir I, Shoseyov O, Weiss D. Sugars enhance the expression of gibberellin-induced genes in developing petunia flowers. Physiol Plant, 2000,109:196-202.
doi: 10.1034/j.1399-3054.2000.100212.x
[36] Fukumoto T, Kano A, Ohtani K, Yamasaki Kokudo Y, Kim B G, Hosotani K, Saito M, Shirakawa C, Tajima S, Izumori K, Ohara T, Shigematsu Y, Tanaka K, Ishida Y, Nishizawa Y, Tada Y, Ichimura K, Gomi K, Akimitsu K. Rare sugar D-allose suppresses gibberellin signaling through hexokinase-dependent pathway in Oryza sativa L. Planta, 2011,234:1083-1095.
doi: 10.1007/s00425-011-1463-3
[1] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[2] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[3] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[4] WANG Xiao-Chun, WANG Lu-Lu, ZHANG Zhi-Yong, QIN Bu-Tan, YU Mei-Qin, WEI Yi-Hao, MA Xin-Ming. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters [J]. Acta Agronomica Sinica, 2021, 47(4): 761-769.
[5] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[6] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
[7] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[8] WANG Dan-Dan, LIU Hong-Juan, WANG Hong-Xia, ZHANG Peng, SHI Chun-Yu. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3 [J]. Acta Agronomica Sinica, 2020, 46(7): 1120-1127.
[9] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[10] Mao-Ni CHAO,Hai-Yan HU,Run-Hao WANG,Yu CHEN,Li-Na FU,Qing-Qing LIU,Qing-Lian WANG. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 40-51.
[11] CHANG Jian-Zhong,DONG Chun-Lin,ZHANG Zheng,QIAO Lin-Yi,YANG Rui,JIANG Dan,ZHANG Yan-Qin,YANG Li-Li,WU Jia-Jie,JING Rui-Lian. Function analysis of 5′ untranslated region introns in drought-resistance gene TaSAP1 [J]. Acta Agronomica Sinica, 2019, 45(9): 1311-1318.
[12] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[13] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
[14] Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009.
[15] Bo JIAO, Feng BAI, Yan-Yan LI, Jia LU, Xiao ZHANG, Yi-Ru CAO, Rong-Chao GE, Bao-Cun ZHAO. Cloning and Regulation Function Analysis of TaSC Promoter from Salt Tolerant Wheat [J]. Acta Agronomica Sinica, 2018, 44(04): 620-626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!