Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (9): 1311-1318.doi: 10.3724/SP.J.1006.2019.81053
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHANG Jian-Zhong1,DONG Chun-Lin1,ZHANG Zheng1,QIAO Lin-Yi2,YANG Rui1,JIANG Dan1,ZHANG Yan-Qin1,YANG Li-Li1,WU Jia-Jie3,JING Rui-Lian4,*()
[1] | Opipari A W Jr, Boguski M S, Dixit V M . The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem, 1990,265:14705-14708. |
[2] | Linnen J M, Bailey C P, Weeks D L . Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene, 1993,128:181-188. |
[3] | Beyaert R, Heyninck K, Van Huffel S . A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kB-dependent gene expression and apoptosis. Biochem Pharmacol, 2000,60:1143-1151. |
[4] | Kanneganti V, Gupta A K . Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008,66:445-462. |
[5] | Gimeno-Gilles C, Gervais M L, Planchet E, Satour P, Limami A M, Lelievre E . A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds. Plant Physiol Biochem, 2011,49:303-310. |
[6] | Kang M, Lee S, Abdelmageed H, Reichert A, Lee H K, Fokar M, Mysore K S, Allen R D . Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant Cell Environ, 2017,40:702-716. |
[7] | Dixit A, Tomar P, Vaine E, Abdullah H, Hazen S, Dhankher O P . A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant Cell Environ, 2018,41:1171-1185. |
[8] | Ghneim-Herrera T, Selvaraj M G, Meynard D, Fabre D, Pena A, Ben Romdhane W, Ben Saad R, Ogawa S, Rebolledo M C, Ishitani M, Tohme J, Al-Doss A, Guiderdoni E, Hassairi A . Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage. Front Plant Sci, 2017,8:994. |
[9] | Gruss P, Lai C J, Dhar R, Khoury G . Splicing as a requirement for biogenesis of functional 16S mRNA of simian virus 40. Proc Natl Acad Sci USA, 1979,76:4317-4321 |
[10] | Le Hir H, Nott A, Moore M J . How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 2003, 28:215-220. |
[11] | Callis J, Fromm M, Walbot V . Introns increase gene expression in cultured maize cells. Genes Dev, 1987,1:1183-1200. |
[12] | Clancy M, Hannah L C . Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol, 2002,130:918-929. |
[13] | Donath M, Mendel R, Cerff R, Martin W . Intron-dependent transient expression of the maize GapA1 gene. Plant Mol Biol, 1995,28:667-676 |
[14] | Sinibaldi R M, Mettler I J . Intron splicing and intron-mediated enhanced expression in monocots. Prog Nucl Acid Res Mol Biol, 1992,42:229-257. |
[15] | Wang Y, Lang Z, Zhang J, He K, Song F, Huang D . Ubi1 intron-mediated enhancement of the expression of Bt cry1Ah gene in transgenic maize(Zea mays L.). Chin Sci Bull, 2008,53:3185-3190. |
[16] | 陈俊, 王宗阳 . 水稻OsBP-73基因表达需要其内含子参与. 植物生理和分子生物学学报, 2004,30:81-86. |
Chen J, Wang Z Y . Expression of OsBP-73 gene requires involvement of its intron in rice. J Plant Physiol Mol Biol, 2004,30:81-86 (in Chinese with English abstract). | |
[17] | Giani S, Altana A, Campanoni P, Morello L, Breviario D . In trangenic rice, alpha- and beta-tubulin regulatory sequences control GUS amount and distribution through intron mediated enhancement and intron dependent spatial expression. Transgenic Res, 2009,18:151-162. |
[18] | Samadder P, Sivamani E, Lu J, Li X, Qu R . Transcriptional and post-transcriptional enhancement of gene expression by the 5° UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics, 2008,279:429-439. |
[19] | Akua T, Shaul O . The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5° UTR intron. J Exp Bot, 2013,64:4255-4270. |
[20] | Gallois J L, Drouaud J, Lecureuil A, Guyon-Debast A, Bonhomme S, Guerche P . Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in Arabidopsis thaliana. Gene, 2013,526:299-308. |
[21] | Mufarrege E F, Gonzalez D H, Curi G C . Functional interconnections of Arabidopsis exon junction complex proteins and genes at multiple steps of gene expression. J Exp Bot, 2011,62:5025-5036. |
[22] | Bartlett Joanne G, Snape J W, Harwood W A . Intron-mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnol J, 2009,7:856-866. |
[23] | Jin Y, Wang M, Fu J, Xuan N, Zhu Y, Lian Y, Jia Z, Zheng J, Wang G . Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics, 2007,90:265-275. |
[24] | Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A . Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “ AlSAP ” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol, 2010,72:171-190. |
[25] | Sreedharan S, Shekhawat U K, Ganapathi T R . MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol, 2012,80:503-517. |
[26] | 王彩香 . 小麦抗逆相关基因 TaABC1和TaSAP1/2 的分离及功能分析. 中国农业科学院博士学位论文, 北京, 2011. |
Wang C X . Isolation and Functional Analysis of Stress-response Genes TaABC1 and TaSAP1/2 from Wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy of Argicultural Sciences, Beijing, China, 2011 (in Chinese with English abstract). | |
[27] | Chang J, Zhang J, Mao X, Li A, Jia J, Jing R . Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat. Planta, 2013,237:1495-1508. |
[28] | Bragg J N, Wu J, Gordon S P, Guttman M E, Thilmony R, Lazo G R, Gu Y Q, Vogel J P . Generation and characterization of the western regional research center Brachypodium T-DNA insertional mutant collection. PLoS One, 2012,7:e41916. |
[29] | Jefferson R A . Assaying chimeric genes in plants: the gus gene fusion system. Plant Mol Biol Rep, 1987,1987:387-405. |
[30] | 雷建峰, 伍娟, 陈晓俊, 於添平, 倪志勇, 李月, 张巨松, 刘晓东 . 棉花花粉中高效转录U6启动子的克隆及功能分析. 中国农业科学, 2015,48:3794-3802. |
Lei J F, Wu J, Chen X J, Yu T P, Ni Z Y, Li Y, Zhang J S, Liu X D . Cloning and functional analysis of cotton U6 promoter with high transcription activity in cotton pollen. Sci Agric Sin, 2015,48:3794-3802 (in Chinese with English abstract). | |
[31] | 扆珩, 李昂, 刘惠民, 景蕊莲 . 小麦蛋白磷酸酶2A基因TaPP2AbB”-α启动子的克隆及表达分析. 作物学报, 2016,42:1282-1290. |
Yi H, Li A, Liu H M, Jing R L . Cloning and expression analysis of protein phosphatase 2A gene TaPP2AbB”-α promoter in wheat. Acta Agron Sin, 2016,42:1282-1290 (in Chinese with English abstract). | |
[32] | Cenik C, Derti A, Mellor J C, Berriz G F, Roth F P . Genome-wide functional analysis of human 5° untranslated region introns. Genome Biol, 2010,11:R29. |
[33] | 谢先芝, 吴乃虎 . 番茄蛋白酶抑制剂Ⅱ基因的分离及其内含子功能. 科学通报, 2001,46:934-938. |
Xie X Z, Wu N H . Isolation and functional analysis of proteinase inhibitor gene in tomato. Chin Sci Bull, 2001,46:934-938 (in Chinese). | |
[34] | 焦博, 柏峰, 李艳艳, 路佳, 张肖, 曹艺茹, 葛荣朝, 赵宝存 . 耐盐小麦中TaSC基因启动子的克隆及调控功能分析. 作物学报, 2018,44:620-626. |
Jiao B, Baifeng, Li Y Y, Lu J, Zhang X, Cao Y R, Ge R C, Zhao B C . Cloning and regulation function analysis of TaSC promoter fromsalt tolerant wheat. Acta Agron Sin, 2018,44:620-626 (in Chinese with English abstract). | |
[35] | Schledzewski K, Mendel R R . Quantitative transient gene expression: comparison of the promoters for maize polyubiquitin1, rice actin1, maize-derived Emu and CaMV35S in cells of barley, maize and tobacco. Transgenic Res, 1994,3:249-255. |
[36] | 叶兴国 . 新模式植物短柄草模式特性研究进展. 作物学报, 2008: 34:919-925. |
Ye X G . Research outline on some related characteristics of Brachypodium distachyon as a new model plant species. Acta Agron Sin, 2008,34:919-925 (in Chinese with English abstract). |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[4] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[5] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[6] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[7] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[8] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[9] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[10] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[11] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[12] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[13] | MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75. |
[14] | WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47. |
[15] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
|