Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1605-1616.doi: 10.3724/SP.J.1006.2020.04058

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed precision sowing in peanut

Jun-Hua LIU1,3(), Zheng-Feng WU2, Pu SHEN2, Tian-Yi YU2, Yong-Mei ZHENG2, Xue-Wu SUN2, Lin LI1, Dian-Xu CHEN2, Cai-Bin WANG2,*(), Shu-Bo WAN1,4,*()   

  1. 1 Hunan Agriculture University / Hunan Peanut Engineering Technology Research Center, Changsha 410128, Hunan, China
    2 Shandong Peanut Research Institute / National Peanut Engineering Technology Research Center, Qingdao 266100, Shandong, China
    3 College of Biology and Environment Engineering, Binzhou University, Binzhou 256600, Shandong, China
    4 Shandong Academy of Agricultural Sciences / Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Province, Jinan 250100, Shandong, China
  • Received:2020-03-04 Accepted:2020-06-02 Online:2020-06-30 Published:2020-06-30
  • Contact: Cai-Bin WANG,Shu-Bo WAN E-mail:liujh516@163.com;caibinw@126.com;wanshubo2016@163.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000906);Natural Science Foundation of Shandong Province(ZR2016CM07);China Agriculture Research System(CARS-13);Major Scientific and Technological Innovation Projects in Shandong Province(2019JZZY010702)

Abstract:

In order to determine the suitable nitrogen level and planting density for single seed precision sowing of peanut, field comparison experiments were conducted using Huayu 22 with three nitrogen levels at 0 (N0), 60 (N1), 120 (N2) kg hm-2 and three planting densities at 79,300 (D1), 158,600 (D2), and 237,900 (D3) plants hm-2 in 2018 and 2019. The effects of nitrogen, density and their interaction on root morphology, plant characteristics and yields of single seed precision sowing peanut were studied by the split plot design for two factors. Nitrogen fertilizer had no significant effect on root length, root surface area, root volume and root dry weight, whereas significant on density. Root length, root surface area, root volume and dry weight per plant decreased with the increase of density, D1 was significantly higher than D2 and D3, but there was no significant difference between D2 and D3 treatments. And root length, root surface area, root volume and dry weight of unit area increased with the increase of density, D1 was significantly lower than D2 and D3, and there was no significant difference between D2 and D3 treatments. The interaction of nitrogen and density had a significant effect on the root length and surface area of unit area in the harvest stage in 2019. Compared with D1, the increase range of D3 in N1 treatment was significantly higher than that of N0 and N2. As to plant characteristics, nitrogen fertilizer and the interaction of nitrogen fertilizer and density were different between years and periods, and with the increase of density, the number of leaves of main stem, the number of lateral branches and the first internode thickness of main stem decreased. The effects of nitrogen fertilizer on pod yield was not significant, whereas pod yield increased with the increase of density. Pod yields were positively correlated with root volume, root dry weight, leaves of main stem, height of main stem and length of lateral branches. In conclusion, considering the yield and benefit comprehensively, the suitable nitrogen fertilizer (N) level is 60 kg hm-2 and the planting density is 188,000 plants hm-2.

Key words: nitrogen, plant density, peanut, single seed sowing, root morphology, plant characteristic, pod yield

Table 1

Effects of the interaction of nitrogen fertilizer and density on root length in peanut"

氮肥水平
Nitrogen level
单位面积根长 Root length of unit area (cm pot-1) 单株根长 Root length per plant (cm plant-1)
种植密度
Plant
density
2018 2019 2018 2019
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
NO D1 3836.5 b 3992.0 abc 5570.8 a 7138.1 be 9868.4 a 5652.8 be 3836.5 abc 3992.0 a 5570.8 a 7138.1 a 9868.4 ab 5652.8 a
D2 5450.9 ab 7812.2 a 5665.0 a 12581.2 a 13505.4 a 5744.3 be 2725.5 be 3906.1 ab 2832.5 be 6290.6 ab 6752.7 ab 2872.2 be
D3 7219.2 a 6562.6 ab 5576.5 a 12081.9 a 16025.5 a 7891.4 ab 2406.4 be 2187.5 ab 1858.8 c 4027.3 be 5341.8 b 2630.5 be
N1 D1 4062.2 b 2503.4 c 4200.8 a 6372.5 be 14427.9 a 3657.3 c 4062.2 ab 2503.4 ab 4200.8 ab 6372.5 ab 14427.9 a 3657.3 abc
D2 6106.2 ab 4918.5 abc 4855.0 a 14010.9 a 13476.2 a 5805.5 be 3053.1 be 2459.2 ab 2427.5 be 7005.4 a 6738.1 ab 2902.8 be
D3 6304.3 ab 5111.1 abc 3652.7 a 12969.6 a 14895.5 a 8559.1 ab 2101.4 c 1703.7 b 1443.3 c 4323.2 be 4965.2 b 2853.0 be
N2 D1 5665.7 ab 3474.5 be 5725.8 a 4652.8 c 7260.8 a 5480.4 be 5665.7 a 3474.5 ab 5725.8 a 4652.8 abc 7260.8 ab 5480.4 a
D2 5186.6 ab 4026.9 abc 4877.7 a 10869.7 ab 11249.2 a 9457.4 a 2593.3 be 2013.5 ab 2438.9 be 5434.8 abc 5624.6 b 4728.7 ab
D3 7871.3 a 5422.0 abc 5916.2 a 10593.1 ab 10846.1 a 6144.8 abc 2623.8 be 1807.3 ab 1972.1 c 3531.0 c 3615.4 b 2048.3 c
氮肥 Nitrogen (N) ns ns ns ns ns ns ns ns ns ns ns ns
密度 Density (D) ** ** ns ** ns ** ** ** ** ** ** **
氮肥x密度NxD ns ns ns ns ns * ns ns ns ns ns ns

Table 2

Effects of the interaction of nitrogen fertilizer and density on root surface area in peanut"

氮肥水平
Nitrogen level
单位面积根表面积 Root surface area of unit area (cm2 pot-1) 单株根表面积 Root surface area per plant (cm2 plant-1)
种植密度
Plant
density
2018 2019 2018 2019
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
NO D1 491.2 c 666.8 be 734.2 a 1008.4 bed 1227.3 a 739.7 be 491.2 abc 666.8 a 734.2 a 1008.4 a 1227.3 ab 739.7 a
D2 733.9 abc 1288.6 a 787.5 a 1671.6 ab 1861.8 a 783.3 be 366.9 be 644.3 a 393.8 b 835.8 abc 930.9 b 391.7 be
D3 1008.4 a 1062.2 ab 818.2 a 1691.9 ab 2183.7 a 1001.2 ab 336.1 be 354.1 ab 272.7 b 564.0 c 727.9 b 333.7 c
N1 D1 558.2 be 476.3 c 607.5 a 946.5 cd 1960.0 a 524.6 c 558.2 ab 476.3 ab 607.5 a 946.5 ab 1960.0 a 524.6 abc
D2 835.4 ab 839.2 abc 741.0 a 2043.9 a 1888.9 a 786.5 be 417.7 abc 419.6 ab 370.5 b 1021.9 a 944.5 b 393.3 be
D3 844.0 ab 838.2 abc 629.9 a 1793.9 a 2069.3 a 1180.4 a 281.3 c 279.4 b 248.0 b 598.0 be 689.8 b 393.5 be
N2 D1 631.1 be 581.4 be 776.9 a 729.9 d 1103.4 a 759.5 be 631.1 a 581.4 ab 776.9 a 729.9 abc 1103.4 ab 759.5 a
D2 634.8 be 656.6 be 772.1 a 1517.0 abc 1597.7 a 1185.6 a 317.4 c 328.3 ab 386.1 b 758.5 abc 798.9 b 592.8 ab
D3 996.9 a 857.1 abc 911.0a 1512.6 abc 1584.3 a 882.1 abc 332.3 be 285.7 b 303.7 b 504.2 c 528.1 b 294.0 c
氮肥 Nitrogen (N) ns ns ns ns ns ns ns ns ns ns ns ns
密度 Density (D) ** ** ns ** ns ** ** ** ** ** ** **
氮肥x密度NxD ns ns ns ns ns * ns ns ns ns ns ns

Table 3

Effects of the interaction of nitrogen and density on root volume in peanut"

氮肥水平 Nitrogen level 种植密度
Plant density
单位面积根体积Root volume of unit area (cm3 pot-1) 单株根体积Root volume per plant (cm3 plant-1)
2018 2019 2018 2019
花针期
FS
结荚期
PS
收获期HS 花针期
FS
结荚期
PS
收获期HS 花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
N0 D1 12.3 c 30.6 b 36.5 ab 23.3 b 24.8 b 17.6 cd 12.3 ab 30.6 a 36.5 a 23.3 ab 24.8 bc 17.6 a
D2 25.6 b 54.9 a 37.4 ab 34.4 ab 45.0 ab 20.7 bcd 12.8 ab 27.4 ab 18.7 c 17.2 ab 22.5 bc 10.4 c
D3 38.3 a 55.6 a 42.0 ab 37.0 ab 50.9 a 23.8 abc 12.8 ab 18.5 abc 14.0 c 12.3 b 17.0 bc 7.9 c
N1 D1 17.4 bc 26.5 b 28.4 b 20.9 b 40.9 ab 15.4 d 17.4 a 26.5 ab 28.4 b 20.9 ab 40.9 a 15.4 ab
D2 26.4 b 44.1 ab 41.3 ab 52.8 a 44.7 ab 21.2 bcd 13.2 ab 22.0 abc 20.6 c 26.4 a 22.3 bc 10.6 c
D3 26.3 b 38.5 ab 34.9 ab 40.5 ab 47.2 ab 28.6 a 8.8 b 12.8 c 14.0 c 13.5 b 15.7 c 9.5 c
N2 D1 10.1 c 31.1 b 35.5 ab 19.2 b 30.6 ab 17.8 cd 10.1 b 31.1 a 35.5 ab 19.2 ab 30.6 ab 17.8 a
D2 19.0 bc 33.5 b 38.4 ab 33.2 ab 40.0 ab 27.5 ab 9.5 b 16.7 bc 19.2 c 16.6 ab 20.0 bc 13.8 b
D3 28.6 ab 44.9 ab 42.2 a 37.1 ab 41.8 ab 24.1 abc 9.5 b 15.0 bc 14.1 c 12.4 b 13.9 c 8.0 c
氮肥
Nitrogen (N)
ns ns ns ns ns ns ns ns ns ns ns *
密度
Density (D)
** ** ns ** ns ** ns ** ** ** ** **
氮肥×密度
N×D
ns * ns ns ns ns ns ns ns ns ns ns

Table 4

Effects of the interaction of nitrogen and density on root dry weight in peanut"

氮肥水平
Nitrogen level
种植密度
Plant density
单位面积根干重Root dry weight of unit area (g pot-1) 单株根干重Root dry weight per plant (g plant-1)
2018 2019 2018 2019
花针期
FS
结荚期
PS
收获期HS 花针期
FS
结荚期
PS
收获期HS 花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
N0 D1 2.09 c 6.03 ab 5.69 a 4.17 c 3.62 b 3.45 bc 2.09 ab 6.03 a 5.69 a 4.17 a 3.62 bc 3.45 a
D2 3.24 abc 8.63 ab 5.88 a 5.92 b 6.78 ab 4.39 abc 1.62 bc 4.32 ab 2.94 b 2.96 bcd 3.39 bc 2.19 bc
D3 4.54 a 8.71 ab 6.19 a 6.81 ab 7.33 a 4.59 ab 1.51 bc 2.90 b 2.06 b 2.27 d 2.44 c 1.53 c
N1 D1 2.50 bc 5.60 ab 6.26 a 3.54 c 5.88 ab 2.72 c 2.50 a 5.60 a 6.26 a 3.54 ab 5.88 a 2.72 ab
D2 3.40 abc 8.95 a 5.83 a 6.62 ab 6.96 a 4.39 abc 1.70 bc 4.48 ab 2.92 b 3.31 bc 3.48 bc 2.20 bc
D3 3.50 ab 8.12 ab 5.11 a 7.73 a 7.32 a 5.89 a 1.17 c 2.71 b 1.70 b 2.58 cd 2.44 c 1.96 bc
N2 D1 2.57 bc 4.99 b 6.29 a 3.43 c 5.06 ab 3.08 bc 2.57 a 4.99 ab 6.29 a 3.43 ab 5.06 ab 3.08 ab
D2 2.52 bc 6.71 ab 6.25 a 5.96 b 6.56 ab 5.38 a 1.26 c 3.35 ab 3.13 b 2.98 bcd 3.28 bc 2.69 ab
D3 3.55 ab 8.70 ab 6.96 a 6.94 ab 6.35 ab 4.47 abc 1.18 c 2.90 b 2.32 b 2.31 d 2.12 c 1.49 c
氮肥
Nitrogen (N)
ns ns ns ns ns ns ns ns ns ns ns ns
密度
Density (D)
** ** ns ** * ** ** ** ** ** ** **
氮肥×密度
N×D
ns ns ns ns ns ns ns ns ns ns ns ns

Table 5

Effects of the interatcion of nitrogen fertilizer and density on plant characteristics in peanut"

年份
Year
氮肥水平
Nitrogen
level
种植密度 Plant
density
主茎叶片数
Leaves of main stem
侧枝数
Number of lateral branches
主莲尚
Main stem height (cm)
侧枝长
Lateral branch length (cm)
第一节间粗
First internode thickness (mm)
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
2018 NO D1 12.0 a 25.0 ab 26.3 be 21.7 a 42.5 a 35.3 a 19.3 abc 43.5 a 53.6 a 21.9b 53.1 b 57.9 ab 7.8 a 13.7 a
D2 11.3 a 24.3 ab 23.7 c 15.7 b 22.3 cd 19.0 cd 18.6 be 54.5 a 52.6 a 20.2 b 67.6 a 54.1 ab 7.0 abc 9.9 b
D3 11.0a 22.0 b 26.3 be 9.8 c 18.3 cd 18.7 cd 23.0 a 48.3 a 51.1 a 24.6 a 50.1 b 57.1 a 5.9 be 8.8 b
N1 D1 11.7a 25.3 ab 30.0 a 24.7 a 25.3 cd 26.0 abc 18.3 c 46.1 a 50.7 a 19.9 b 54.9 ab 69.0 a 7.9 a 13.4 a
D2 11.2a 25.3 ab 24.7 c 16.8 b 39.0 ab 23.3 bed 20.5 abc 48.8 a 56.0 a 21.4 b 55.2 ab 59.4 ab 6.5 abc 9.1 b
D3 10.7 a 22.3 b 23.0 c 14.3 b 16.7 d 20.0 bed 17.7 c 47.0 a 50.6 a 19.3 b 51.2 b 53.3 ab 5.6 c 8.0 b
N2 D1 10.5 a 27.0 a 29.3 ab 17.5 b 29.0 be 31.0 ab 22.5 ab 45.6 a 54.0 a 21.6 b 58.4 ab 60.7 a 7.4 ab 14.8 a
D2 11.2a 24.0 ab 25.3 c 15.2 b 19.7 cd 24.0 abed 18.7 be 42.1 a 52.1 a 19.3 b 49.4 b 57.9 ab 5.7 c 8.4 b
D3 10.8 a 22.7 ab 23.0 c 13.2 be 23.3 cd 12.7 d 20.4 abc 50.3 a 45.9 a 21.8b 59.9 ab 47.8 b 7.3 ab 8.4 b
氮肥 Nitrogen (N) ns ns ns ** ns ns ns ns ns ns ns ns ns ns
密度 Density (D) ns * ** ** ** ** ns ns ns ns ns ns ns **
氮肥X密度NxD ns ns * ns ** ns ** ns ns ns ** ns ns ns
2019 NO D1 15.0 a 19.0 a 21.7 ab 18.3 ab 18.0 bed 19.3 ab 21.3 a 33.5 ab 39.6 a 26.7 a 34.8 be 42.8 a 7.3 a 6.6 cd 6.8 ab
D2 13.7 a 19.0 a 19.0 b 11.7b 14.0 cd 16.3 ab 22.5 a 34.1 ab 31.7 be 23.7 ab 36.4 b 34.4 c 6.5 ab 7.1 abed 6.5 abc
D3 12.3 a 16.7 b 20.0 ab 10.3 b 11.3 d 13.3 b 19.6 a 31.0b 38.0 ab 22.1 b 32.3 c 40.0 ab 5.5 b 6.0 d 5.8 c
N1 D1 14.0 a 18.5 ab 22.7 a 21.0 a 28.5 a 26.0 a 21.4 a 35.1 ab 36.3 abc 23.2 ab 37.5 b 41.1 ab 6.4 ab 8.0 ab 6.5 abc
D2 13.7 a 18.7 ab 19.7 ab 16.7 ab 21.0 abc 18.7 ab 23.1 a 35.1 ab 35.5 abc 26.2 a 37.4 b 36.3 be 7.2 a 7.0 abed 6.5 abc
D3 13.0 a 17.3 ab 19.7 ab 16.3 ab 12.7 cd 14.7 b 20.7 a 34.5 ab 32.8 be 21.5 b 37.5 b 36.5 be 7.2 a 6.8 cd 6.5 abc
N2 D1 14.7 a 19.5 a 20.0 ab 22.7 a 24.5 ab 22.7 ab 21.8 a 33.6 ab 30.7 c 24.0 ab 41.3 a 34.6 c 6.4 ab 8.2 a 7.3 a
D2 13.7 a 19.3 a 20.0 ab 20.0 a 19.0 bed 18.7 ab 22.0 a 38.1 a 37.0 abc 23.1 ab 40.7 a 42.0 a 6.7 ab 7.3 abc 6.4 abc
D3 14.7 a 19.5 a 19.3 b 11.7b 17.5 bed 14.7 b 21.0 a 36.6 ab 37.4 ab 24.1 ab 41.1 a 39.5 abc 6.6 ab 6.8 bed 6.2 be
氮肥 Nitrogen (N) ns ns ns ns ns ns ns * ns ns ** ns * * ns
密度 Density (D) ns ns ns ** ** * ns ns ns * ns ns ns * ns
氮肥X密度NxD ns ns ns ns ns ns ns ns * * ns * ns ns ns

Fig. 1

Effects of the interaction of nitrogen fertilizer and density on pod yield in peanut Different lowercase letters indicate significantly different at the 5% probability level. Treatments are the same as those given in Table 1."

Fig. 2

Effects of the interaction of nitrogen fertilizer and density on relative pod yield in peanut ** indicate significant correlation at the 1% probability level."

Fig. 3

Correlation coefficient between pod yield and root traits and plant characteristics Circle and triangle mean the relationship between root, traits, plant characteristics of overground and pod yield, respectively. *, ** indicate significant correlation at the 5% and 1% probability levels, respectively."

[1] 万书波, 张佳蕾. 中国花生产业降本增效新途径探讨. 中国油料作物学报, 2019,41:657-662.
Wan S B, Zhang J L. Discussion on new ways to reduce cost and increase efficiency of peanut industry in China. Chin J Oil Crop Sci, 2019,41:657-662 (in Chinese with English abstract).
[2] 邵长亮. 花生单粒精播节种高产理论与技术研究. 莱阳农学院硕士学位论文, 山东烟台, 2005.
Shao C L. Study on Theory and Technology of Single-seed Precision Sowing for Saving Seed and High Yield in Peanut. MS Thesis of Laiyang Agricultural College, Yantai, Shandong, China, 2005 (in Chinese with English abstract).
[3] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015,48:3757-3766.
doi: 10.3864/j.issn.0578-1752.2015.18.019
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015,48:3757-3766 (in Chinese with English abstract).
[4] Xu C L, Huang S B, Tian B J, Ren J H, Meng Q F, Wang P. Manipulating planting density and nitrogen fertilizer application to improve yield and reduce environmental impact in Chinese maize production. Front Plant Sci, 2017,8:1234.
doi: 10.3389/fpls.2017.01234 pmid: 28747925
[5] Pasley H R, Camberato J J, Cairns J E, Zaman Allah M, Das B, Vyn T J. Nitrogen rate impacts on tropical maize nitrogen use efficiency and soil nitrogen depletion in eastern and southern Africa. Nutr Cycl Agroecosyst, 2020,116:397-408.
doi: 10.1007/s10705-020-10049-x pmid: 32765186
[6] Ciampitti I A, Vyn T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: a review. Field Crops Res, 2012,133:48-67.
doi: 10.1016/j.fcr.2012.03.008
[7] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X U, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J Integr Agric, 2016,15:432-439.
doi: 10.1016/S2095-3119(15)61079-6
[8] 吴正锋. 花生高产高效氮素养分调控研究. 中国农业大学博士学位论文, 北京, 2014.
Wu Z F. Nitrogen Management for High Yield and High Efficiency of Peanut. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[9] Ju X T, Kou C L, Zhang F S, Christie P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ Pollut, 2006,143:117-125.
doi: 10.1016/j.envpol.2005.11.005 pmid: 16364521
[10] Hecht V L, Temperton V M, Nagel K A, Rascher U, Pude R, Postma J A. Plant density modifies root system architecture in spring barley (Hordeum vulgare L.) through a change in nodal root number. Plant Soil, 2019,439:179-200.
doi: 10.1007/s11104-018-3764-9
[11] Farshbaf Jafari S, Pirzad A, Tajbakhsh M, Ghassemi Golezani K. Effects of water supply and plant density on leaf characteristics of Amaranth (Amaranthus caudatus L.). 2nd International Conference on Sustainable Environment and Agriculture IPCBEE. Singapore: LACSIT Press, 2014. pp 17-20.
[12] 赵长星, 邵长亮, 王月福, 宋传雪, 王铭伦. 单粒精播模式下种植密度对花生群体生态特征及产量的影响. 农学学报, 2013,3(2):1-5.
Zhao C X, Shao C L, Wang Y F, Song C X, Wang M L. Effects of different planting densities on population ecological characteristic and yield of peanut under the mode of single-seed precision sowing. J Agric, 2013,3(2):1-5 (in Chinese with English abstract).
[13] 张俊, 王铭伦, 于旸, 王月福, 赵长星. 不同种植密度对花生群体透光率的影响. 山东农业科学, 2010, (10):52-54.
Zhang J, Wang M L, Yu Y, Wang Y F, Zhao C X. Effect of different planting density on light transmittance of peanut population. Shandong Agric Sci, 2010, (10):52-54 (in Chinese with English abstract).
[14] Leskovsek R, Datta A, Simoncic A, Knezevic S Z. Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). J Pest Sci, 2012,85:527-539.
doi: 10.1007/s10340-012-0433-2
[15] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020,46:395-407.
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020,46:395-407 (in Chinese with English abstract).
[16] 张含笑, 林参, 左青松, 杨光, 冯倩南, 冯云艳, 冷锁虎. 种植密度和施肥量对油菜毯状苗生长的影响. 作物学报, 2019,45:1691-1698.
doi: 10.3724/SP.J.1006.2019.94029
Zhang H X, Lin S, Zuo Q S, Yang G, Feng Q N, Feng Y Y, Leng S H. Effects of plant density and N fertilizer spraying concentration on growth of rapeseed blanket seedlings. Acta Agron Sin, 2019,45:1691-1698 (in Chinese with English abstract).
[17] 左青松, 蒯婕, 杨士芬, 曹石, 杨阳, 吴莲蓉, 孙盈盈, 周广生, 吴江生. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响. 作物学报, 2015,41:758-765.
doi: 10.3724/SP.J.1006.2015.00758
Zuo Q S, Kuai J, Yang S F, Cao S, Yang Y, Wu L R, Sun Y Y, Zhou G S, Wu J S. Effects of nitrogen fertilizer and planting density on canopy structure and population characteristic of rapeseed with direct seeding treatment. Acta Agron Sin, 2015,41:758-765 (in Chinese with English abstract).
[18] Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013,112:347-357.
doi: 10.1093/aob/mcs293 pmid: 23328767
[19] White P J, George T S, Gregory P J, Bengough A G, Hallett P D, McKenzie B M. Matching roots to their environment. Ann Bot, 2013,112:207-222.
doi: 10.1093/aob/mct123 pmid: 23821619
[20] Kanbar A, Toorchi M, Shashidhar H E. Relationship between root and yield morphological characters in rainfed low land rice (Oryza sativa L.). Cereal Res Commun, 2009,37:261-268.
doi: 10.1556/CRC.37.2009.2.14
[21] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011,44:36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011,44:36-46 (in Chinese with English abstract).
[22] Chen X C, Zhang J, Chen Y L, Li Q, Chen F J, Yuan L X, Mi G H. Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. Plant Soil, 2014,374:121-130.
doi: 10.1007/s11104-013-1872-0
[23] Hill J O, Simpson R J, Moore1 A D, Chapman D F. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil, 2006,286:7-19.
doi: 10.1007/s11104-006-0014-3
[24] 郑亚萍, 王春晓, 郑祖林, 王鹏, 冯昊, 郑永美, 于天一, 王才斌. 磷对花生根系形态特征的影响. 中国油料作物学报, 2019,41:622-628.
Zheng Y P, Wang C X, Zheng Z L, Wang P, Feng H, Zheng Y M, Yu T Y, Wang C B. Effect of phosphorus (P) on root morphology characteristics of peanut. Chin J Oil Crop Sci, 2019,41:622-628 (in Chinese with English abstract).
[25] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017,31:2418-2425.
Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nucl Agric Sci, 2017,31:2418-2425 (in Chinese with English abstract).
[26] Elazab A, Serret M D, Araus J L. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes. Planta, 2016,244:125-144.
doi: 10.1007/s00425-016-2500-z pmid: 26992389
[27] 丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015,48:872-881.
doi: 10.3864/j.issn.0578-1752.2015.05.05
Ding H, Zhang Z M, Dai L X, Yang J S, Ci D W, Qin F F, Song W W, Wan S B. Effects of water and nitrogen interaction on peanut root growth and yield. Sci Agric Sin, 2015,48:872-881 (in Chinese with English abstract).
[28] 冯烨, 郭峰, 李宝龙, 孟静静, 李新国, 万书波. 单粒精播对花生根系生长、根冠比和产量的影响. 作物学报, 2013,39:2228-2237.
doi: 10.3724/SP.J.1006.2013.02228
Feng Y, Guo F, Li B L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing on root growth, root-shoot ratio, and yield in peanut (Arachis hypogaca L.). Acta Agron Sin, 2013,39:2228-2237 (in Chinese with English abstract).
[29] Li H B, Wang X, Brooker R W, Rengel Z, Zhang F S, Davies W J, Shen J B. Root competition resulting from spatial variation in nutrient distribution elicits decreasing maize yield at high planting density. Plant Soil, 2019,439:219-232.
doi: 10.1007/s11104-018-3812-5
[30] Wu Q P, Chen F J, Chen Y L, Yuan L X, Zhang F S, Mi G H. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009. Sci China Life Sci, 2011,54:642-650.
doi: 10.1007/s11427-011-4186-6 pmid: 21748587
[31] 张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019,52:34-44.
doi: 10.3864/j.issn.0578-1752.2019.01.004
Zhang X Y, Wang Y, Chen J, Chen A J, Wang L Y, Guo X Y, Niu Y L, Zhang X Y, Chen L D, Gao Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Sci Agric Sin, 2019,52:34-44 (in Chinese with English abstract).
[32] 杨明, 陈历儒, 王继玥, 宋海星, 欧中甜. 氮素对油菜根系生长和产量形成的影响. 西北农业学报, 2010,19(4):66-69.
Yang M, Chen L R, Wang J Y, Song H X, Ou Z T. Effect of nitrogen on root growth and yield formation of rape. Acta Agric Boreali-Occident Sin, 2010,19(4):66-69 (in Chinese with English abstract).
[33] 林国林, 赵坤, 蒋春姬, 韩晓日, 金兰淑. 种植密度和施氮水平对花生根系生长及产量的影响. 土壤通报, 2012,43:1183-1186.
Lin G L, Zhao K, Jiang C J, Han X R, Jin L S. Effect of densities and nitrogen application levels on root growth and yield of peanut. Chin J Soil Sci, 2012,43:1183-1186 (in Chinese with English abstract).
[34] 杨振宇, 张富仓, 邹志荣. 不同生育期水分亏缺和施氮量对茄子根系生长、产量及水分利用效率的影响. 西北农林科技大学学报(自然科学版), 2010,38(7):141-148.
Yang Z Y, Zhang F C, Zou Z R. Coupling effects of deficit irrigation in different growth stages and different nitrogen applications on the root growth, yield, WUE of eggplant. J Nor A&F Univ, 2010,38(7):141-148 (in Chinese with English abstract).
[35] 石德杨, 李艳红, 夏德军, 张吉旺, 刘鹏, 赵斌, 董树亭. 种植密度对夏玉米根系特性及氮肥吸收的影响. 中国农业科学, 2017,50:2006-2017.
doi: 10.3864/j.issn.0578-1752.2017.11.006
Shi D Y, Li Y H, Xia D J, Zhang J W, Liu P, Zhao B, Dong S T. Effects of planting density on root characteristics and nitrogen uptake in summer maize. Sci Agric Sin, 2017,50:2006-2017 (in Chinese with English abstract).
[36] 梁慧敏, 曹致中. 密度对根蘖型苜蓿根系的影响. 草业学报, 1996,5(4):30-34.
Liang H M, Cao Z Z. Effects of plant density on root system of creeping-rooted alfalfa. Acta Pratac Sin, 1996,5(4):30-34 (in Chinese with English abstract).
[37] 洪彦彬, 周桂元, 李少雄, 刘海燕, 陈小平, 温世杰, 梁炫强. 花生根部特征与地上部分性状的相关性分析. 热带作物学报, 2009,30:657-660.
Hong Y B, Zhou G Y, Li S X, Liu H Y, Chen X P, Wen S J, Liang X Q. Correlation analysis of root and aboveground traits in peanut (Arachis hypogaea L.). Chin J Trop Crops, 2009,30:657-660 (in Chinese with English abstract).
[38] Soleymani A, Shahrajabian M H, Naranjani L. Determination of the suitable planting date and plant density for different cultivars of barley (Hordeum vulgare L.) in Fars. Afr J Plant Sci, 2011,5:284-286.
[39] Moosavi S G, Seghatoleslami M J, Moazeni A. Effect of planting date and plant density on morphological traits, LAI and forage corn (Sc. 370) yield in second cultivation. Intl Res J Appl Basic Sci, 2012,3:57-63.
[40] 修俊杰. 不同密度单粒精播对花生农艺性状光合特性及荚果产量的影响. 农业与技术, 2018,38(9):4-7.
Xiu J J. Effects of different density on agronomic characters, photosynthetic characteristics and pod yield of peanut under single seed precision sowing. Agric Technol, 2018,38(9):4-7 (in Chinese).
[41] 王才斌, 成波, 迟玉成, 孙秀山, 张吉民, 苗丰柞, 宇仁娥. 高产花生单粒植群体密度研究. 花生科技, 1996, (3):17-19.
Wang C B, Cheng B, Chi Y C, Sun X S, Zhang J M, Miao F Z, Yu R E. Study on population density of high yield peanut under single seed planting. Peanut Sci Technol, 1996, (3):17-19 (in Chinese).
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[3] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[4] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[7] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[8] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[9] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[10] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[11] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[12] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[13] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[14] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[15] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!