Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2654-2662.doi: 10.3724/SP.J.1006.2022.11074

• RESEARCH NOTES • Previous Articles     Next Articles

QTL mapping for salt tolerance in wheat line CH7034

ZHANG Xiao-Wen1(), LI Shi-Jiao1, ZHANG Xiao-Jun2, LI Xin2, YANG Zu-Jun3, ZHANG Shu-Wei2, CHEN Fang2, CHANG Li-Fang2, GUO Hui-Juan2, CHANG Zhi-Jian2,*(), QIAO Lin-Yi2,*()   

  1. 1College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    2College of Agriculture, Shanxi Agricultural University / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement / State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Taiyuan 030031, Shanxi, China
    3College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
  • Received:2021-08-22 Accepted:2022-01-06 Online:2022-10-12 Published:2022-02-24
  • Contact: CHANG Zhi-Jian,QIAO Lin-Yi E-mail:zxw18435139058@126.com;wrczj@126.com;qiaoly1988@126.com
  • Supported by:
    Shanxi Scholarship Council of China(2021-070);Shanxi Agricultural University Research Project for Doctor(2021BQ39);State Key Laboratory of Sustainable Dryland Agriculture (in preparation) of Shanxi Agricultural University(202002-3)

Abstract:

The identification of wheat salt-tolerant germplasm is of great significance for making full use of saline land and ensuring food security. CH7034 is a wheat salt-tolerant line bred by our laboratory. In order to clarify the genetic rules and control loci for salt tolerance, QTL analysis was conducted using a recombinant inbred lines population crossed by CH7034 and salt-sensitive variety SY95-71. Based on the SNP microarray data and salt injury index, six QTL were detected on chromosomes 2A, 2D, 4B, and 5A, including QSI.sxau_2A, QSI.sxau_2D, QSI.sxau_4B.1, QSI.sxau_4B.2, QSI.sxau_5A.1, and QSI.sxau_5A.2. Among them, QSI.sxau_5A.1 was detected in all three salt stress experiments and had the highest phenotypic variance explained (15.73%-20.18%), which was different from other salt-tolerance loci reported on chromosome 5AL. Seven SSR markers were developed and integrated in the QSI.sxau_5A.1 interval, and the peak of LOD was further determined at SSR-D1. Based on the transcriptome database, 12 high-confidence genes in response to salt stress were screened from the QSI.sxau_5A.1 section. These results lay the foundation for the fine mapping and even cloning of the salt tolerance loci of CH7034, and provide new germplasm and molecular markers for the selection and breeding of wheat salt-tolerant varieties.

Key words: wheat, salt stress, salt injury index, SNP marker, QTL mapping

Table 1

SSR molecular markers used in this study"

标记名称
Marker name
上游引物
Forward sequence (5'-3')
下游引物
Reverse sequence (5'-3')
产物长度
Product size (bp)
退火温度
Annealing
temperature (℃)
SSR-U7 GGTCATGTTGGAATGTTGATCAAG GCTTTTATGTTTCCAACTCTAGTCAA 127 58
SSR-D28 GGGAAATCCCAACGCCTG GAGTCATCATGAAAGAAAGCATAAAT 144 58
SSR-D5 GCCCACGTTTCCTCTTAATG TCATCGAACATGATGCACTATC 94 58
SSR-D1 GAGAATAAATCCACTCTCCATGC CGATATGTTCCTGTCTCCTTGT 180 58
SSR-D4 CCGTGTAGTAGAACACTGCATGT GCTCGAGCTGTAGCCCAG 193 54
SSR-U2 AAGCAGAATCATGGAAGGGAC CACTTATTCAAGTCATTAAGCATTCAAT 102 58
SSR-U5 CAGTATCCATCTTTGCCATTCAG CTCCTACCTCGACGACAC 116 58
cslinkNax2 TCTCCATCATTCAACATCAATCG TGTAGCTCGTCGGGGTGTGTTGC 170 58
Xgwm304 AGGAAACAGAAATATCGCGG AGGACTGTGGGGAATGAATG 176 58
Xbarc144 GCGTTTTAGGTGGACGACATAGATAGA GCGCCACGGGCATTTCTCATAC 191 58
Xwmc110 GCAGATGAGTTGAGTTGGATTG GTACTTGGAAACTGTGTTTGGG 127 58

Fig. 1

CH7034 and SY95-71 treated with 250 mmol L-1 NaCl for seven days"

Table 2

Salt injury index of CH7034 and SY95-71 under NaCl stress"

材料
Material
总株数
Total number of plants
盐害级别及株数 Salt injury level and number of plants 盐害指数
Salt injury index (%)
0 1 2 3 4
CH7034-1 16 7 8 1 32.5
CH7034-2 16 8 6 2 32.5
CH7034-3 16 8 8 30.0
平均值 Mean 31.7
SY97-71-1 16 2 14 77.5
SY97-71-2 16 3 13 76.3
SY97-71-3 16 2 14 77.5
平均值 Mean 77.1

Fig. 2

Phenotypic distribution of salt injury index in the CH7034/SY95-71 RIL population"

Fig. 3

Genetic length of molecular map constructed by CH7034/SY95-71 RIL population"

Table 3

Mapping of salt-tolerant QTL of CH7034/SY75-71 RILs at seedling stage"

试验编号
Test number
数量性状位点
QTL
染色体
Chr.
图谱位置
Position (cM)
标记区间
Marker region
LOD值
LOD score
表型变异解释率
PVE (%)
加性效应
Add.
SI-1 QSI.sxau_2D 2D 0 992489-992489 3.57 5.60 -2.42
QSI.sxau_4B.1 4B 112 1265612-3954524 6.38 10.50 -3.31
QSI.sxau_5A.1 5A 73 1049519-4911066 6.63 15.73 -3.81
SI-2 QSI.sxau_2A 2A 9 3532866-1090021 2.96 5.24 -2.71
QSI.sxau_4B.2 4B 43 1862515-1059340 3.41 6.36 -2.96
QSI.sxau_5A.1 5A 71 1049519-1215538 10.29 20.18 -5.49
SI-3 QSI.sxau_5A.1 5A 71 1049519-1215538 10.15 17.62 -4.50
QSI.sxau_5A.2 5A 116 1125437-1228444 4.27 15.73 -3.09

Fig. 4

QSI.sxau-5A.1 section on genetic map (a), genomic map (b), and the LOD map added with SSR markers (c) Marker with asterisk (*) indicates that it is located below the LOD peak."

Fig. 5

Amplification of linkage markers of QSI.sxau-5A and reported salt-tolerance gene/QTL in CH7034, SY75-71, and their RILs a, b: linkage markers SSR-U2 and SSR-U5 of QSI.sxau-5A; c: linkage marker cslinkNax2 of TmHKT1:5-A; d: linkage marker Xbarc144 of the salt tolerance locus of Shanrong 3. M: DNA ladder marker; CH: CH7034; SY: SY95-71; T1-T6: salt-tolerant lines with QSI.sxau-5A; S1-S6: salt-sensitive lines without QSI.sxau-5A."

Table 4

Salt tolerance genes and QTLs on chromosome 5AL reported in wheat"

基因/QTL
Gene/QTL
参考文献
Reference
耐盐表型
Phenotype
来源
Source
连锁标记 Linkage marker
标记名称
Name
亲本多态性
Polymorphism
in parents
与表型连锁Linked to
phenotype
TmHKT1;5-A [6,7] 叶片K+/Na+
K+/Na+ ratio of leaf
Triticum durum cslinkNax2 + -
QTL-SR3 [9] 叶片盐害级别
Salt injury level of leaf
wheat Xgwm304 - -
QTL-SR3 [10] 叶片盐害级别
Salt injury level of leaf
wheat Xbarc144 + -
qNL5, qLL5 [8] 叶数, 叶长
Leaf number, leaf length
Triticum durum Xwmc110 - -
QHAI.5A-2 [11] 盐碱地收获指数
Harvest index in salt land
wheat wPt-3334
QG(1-5).asl-5A [12] 相对生长率
Relative growth rate (RGR) salt/RGR control
wheat TP14539

Table 5

Salt stress response genes in QSI.sxau-5A section selected based on transcriptome database"

差异表达基因
DEGs
基因组位置
Genomic location
差异倍数
log2 (Fold Change)
响应类别
Response type
编码蛋白注释
Protein-encoding annotation
TraesCS5A01G382800 580799964-580801653 1.71 上调
Upregulate
钙调素相关钙感应蛋白
Calmodulin-related calcium sensor protein
TraesCS5A01G382900 580803022-580805966 -1.44 下调
Downregulate
ATP硫酸化酶
ATP sulfurylase
TraesCS5A01G386500 584049719-584058870 -1.08 下调
Downregulate
肌球蛋白
Myosin protein
TraesCS5A01G388300 585018687-585021441 1.26 上调
Upregulate
β-葡萄糖苷酶前体
β-glucosidase precursor
TraesCS5A01G389000 585232865-585236702 1.26 上调
Upregulate
β-葡萄糖苷酶前体
β-glucosidase precursor
TraesCS5A01G390200 585488957-585491921 1.01 上调
Upregulate
胡豆苷合酶
Strictosidine synthase
TraesCS5A01G392100 588416260-588416877 4.68 上调
Upregulate

None
TraesCS5A01G393900 589311576-589313132 2.25 上调
Upregulate
UDP-葡萄糖基转移酶
UDP-glucosyl transferase
TraesCS5A01G394500 589584058-589585518 1.38 上调
Upregulate
UDP-葡萄糖基转移酶
UDP-glucosyl transferase
TraesCS5A01G394900 590540043-590541485 1.38 上调
Upregulate
UDP-葡萄糖6-磷酸脱氢酶
UDP-glucose 6-phosphatedehydrogenase
TraesCS5A01G397600 591976101-591977663 -1.85 下调
Downregulate
脂肪酶3类家族蛋白
Lipase class 3 family protein
TraesCS5A01G402600 595371952-595372493 -1.01 下调
Downregulate
细胞色素6f复合亚基
Cytochrome b6f complex subunit
[1] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. p 650.
The National Soil Survey Office. Soils of China. Beijing: China Agriculture Press, 1998. p 650. (in Chinese)
[2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[3] Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007
[4] Gorham J, Hardy C, Jones R, Joppa L R, Law C N. Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet, 1987, 74: 584-588.
doi: 10.1007/BF00288856 pmid: 24240213
[5] Dubcovsky J, María G S, Epstein E, Luo M C, Dvořák J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet, 1996, 92: 448-454.
doi: 10.1007/BF00223692 pmid: 24166270
[6] James R A, Davenport R J, Munns R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 142: 1537-1547.
doi: 10.1104/pp.106.086538
[7] Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene. Nat Biotechnol, 2012, 30: 360-364.
doi: 10.1038/nbt.2120 pmid: 22407351
[8] Turki N, Shehzad T, Harrabi M, Okuno K. Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 2015, 201: 29-41.
doi: 10.1007/s10681-014-1164-7
[9] 单雷, 赵双宜, 陈芳, 夏光敏. 小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位. 中国农业科学, 2006, 39: 225-230.
Shan L, Zhao S Y, Chen F, Xia G M. Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No. 3. Sci Agric Sin, 2006, 39: 225-230. (in Chinese with English abstract)
[10] 车婧. 山融3号小麦BC2代群体耐盐主效QTL相关分子标记的筛选定位. 山东农业大学硕士学位论文, 山东泰安, 2010. pp 39-41.
Che J. The Major Salt-Relative QTL Located by Molecular Markers in Salt-Tolerance Introgression BC2 Population of SR3 with Jinan 177. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2010. pp 39-41 (in Chinese with English abstract)
[11] Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg L H. Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica, 2019, 215: 103.
[12] Asif M A, Garcia M, Tilbrook J, Brien C, Pearson A S. Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol, 2021, 48: 131-140.
doi: 10.1071/FP20167
[13] Ge R C, Chen G P, Zhao B C, Shen Y Z, Huang Z J. Cloning and functional characterization of a wheat serine/threonine kinase gene (TaSTK) related to salt-resistance. Plant Sci, 2007, 173: 55-60.
doi: 10.1016/j.plantsci.2007.04.005
[14] Liu S, Liu S, Wang M, Wei T, Meng C, Wang M, Xia G. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell, 2014, 26: 164-180
doi: 10.1105/tpc.113.118687
[15] 吕伟东, 徐鹏彬, 蒲训. 偃麦草属种质资源在普通小麦育种中的应用现状简介. 草业学报, 2007, 16(6): 136-140.
Lyu W D, Xu P B, Pu X. Summary of situation for applying genetic resources from Elytrigia in Triticum aestivum breeding. Acta Pratac Sin, 2007, 16(6): 136-140. (in Chinese with English abstract)
[16] 畅志坚, 赵怀生, 李生海. 小麦与天蓝偃麦草远缘杂交中结实性的研究. 山西农业科学, 1992, 20(2): 7-10.
Chang Z J, Zhao H S, Li S H. Study on the fruitfulness of a distant cross between winter wheat and Agropyron glaucum. Shanxi Agric Sci, 1992, 20(2): 7-10. (in Chinese with English abstract)
[17] 畅志坚. 几个小麦-偃麦草新种质的创制及分子细胞遗传学分析. 四川农业大学博士论文, 四川雅安, 1999. pp 23-26.
Chang Z J. Creation and Creation and Molecular Cytogenetics Analysis of Several New Wheat-Thinopyrum Germplasm. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 1999. pp 23-26. (in Chinese with English abstract)
[18] Chang Z J, Zhang X J, Yang Z J, Zhan H X, Li X, Liu C, Zhang C Z. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Heredita, 2010, 147: 304-312.
doi: 10.1111/j.1601-5223.2010.02156.x
[19] 乔麟轶, 张潇文, 李世姣, 陈芳, 李欣, 郭慧娟, 张树伟, 常利芳, 张晓军, 畅志坚. 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69-73.
Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat- Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69-73. (in Chinese with English abstract)
[20] 张蕾, 侯雅静, 张晓军, 李欣, 乔麟轶, 畅志坚. 小偃麦渗入系耐盐性鉴定及其在F2群体中的遗传分析. 山西农业科学, 2016, 44: 281-283.
Zhang L, Hou Y J, Zhang X J, Li X, Qiao L Y, Chang Z J. Identification and genetic analysis for salt-tolerance of wheat-Thinopyrum intermedium introgression line and its F2 population. Shanxi Agric Sci, 2016, 44: 281-283. (in Chinese with English abstract)
[21] 舒焕麟, 杨足君, 李光蓉. 创新诱发材料SY95-71选育和利用价值研究. 四川农业大学学报, 1999, 17: 249-253.
Shu H L, Yang Z J, Li G R. Selection and evaluation of a wheat line SY95-71 as new yellow rust spreader. J Sichuan Agric Univ, 1999, 17: 249-253. (in Chinese with English abstract)
[22] Amirbakhtiar N, Ismaili A, Ghaffari M, Mansuri R M, Sanjari S, Shobbar Z. Transcriptome analysis of bread wheat leaves in response to salt stress. PLoS One, 2021, 16: e0254189.
[23] 乔麟轶. 小麦材料CH7034中抗白粉病和抗条锈病QTL定位. 山西大学博士学位论文, 山西太原, 2018. pp 31-32.
Qiao L Y. Mapping of Resistance Loci to Powdery Mildew and Stripe Rust in Wheat Cultivar CH7034. PhD Dissertation of Shanxi University, Taiyuan, Shanxi, China, 2018. pp 31-32. (in Chinese with English abstract)
[24] Chinpongpanich A, Limruengroj K, Phean-O-Pas S, Limpaseni T, Buaboocha T. Expression analysis of calmodulin and calmodulin- like genes from rice, Oryza sativa L. BMC Res Notes, 2012, 5: 625.
[25] Kim B G, Waadt R, Yong H C, Pandey G K, Sheng L. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52: 473-484.
doi: 10.1111/j.1365-313X.2007.03249.x
[26] Tang R J, Liu H, Yang Y, Yang L, Gao X S, Garcia V J, Luan S, Zhang H X. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res, 2012, 22: 1650-1665.
doi: 10.1038/cr.2012.161
[27] Li P, Li Y J, Zhang F J, Zhang G Z, Jiang X Y, Yu H M, Hou B K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J, 2017, 89: 85-103.
doi: 10.1111/tpj.13324
[28] Zhao C Z, Wang X M, Wang X Y, Wu K L, Li P, Chang N, Wang J F, Wang F, Li J L, Bi Y R. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation. J Plant Physiol, 2015, 181: 83-95.
doi: 10.1016/j.jplph.2015.03.016
[29] Bhatia Y, Mishra S, Bisaria V S. Microbial-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol, 2002, 22: 375-407.
pmid: 12487426
[30] Lee J M, Kim Y R, Kim J K, Jeong G T, Ha J C, Kong I S. Characterization of salt-tolerant β-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood. Bioprocess Biosyst Eng, 2015, 38: 1335-1346.
doi: 10.1007/s00449-015-1375-x
[31] Cai L N, Xu S N, Lu T, Lin D Q, Yao S J. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol, 2019, 292: 12-22.
doi: S0168-1656(19)30004-5 pmid: 30664896
[32] Dutta A, Sen J, Deswal R. New evidences about strictosidine synthase (Str) regulation by salinity, cold stress and nitric oxide in Catharanthus roseus. J Plant Biochem Biotechnol, 2013, 22: 124-131.
doi: 10.1007/s13562-012-0118-1
[33] Khan N A, Nazar R, Anjum N A. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic, 2009, 122: 455-460.
doi: 10.1016/j.scienta.2009.05.020
[34] Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 2012, 35: 1156-1170.
doi: 10.1111/j.1365-3040.2012.02480.x
[35] Wang X T, Zeng J, Li Y, Rong X L, Sun J T, Sun T, Li M, Wang L Z, Feng Y, Chai R H, Chen M J, Chang J L, Li K X, Yang G X, He G Y. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci, 2015, 6: 615.
[36] Li X, Tang Y, Zhou C, Zhang L, Lyu J. A wheat WRKY transcription factor TaWRKY46 enhances tolerance to osmotic stress in transgenic Arabidopsis plants. Int J Mol Sci, 2020, 21: 1321.
[37] Ye H, Qiao L Y, Guo H Y, Guo L P, Ren F, Bai J F, Wang Y K. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances. Front Plant Sci, 2021, 12: 663118.
[1] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[2] TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254.
[3] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[4] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[5] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
[6] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[7] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[8] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[9] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[10] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[11] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[12] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[13] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[14] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[15] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[2] CHEN Guang-Yao;WANG Guo-Huai;LUO Feng;NIE Ming-Jian. Effects of Endogenous Hormones on Pre-harvest Sprouting in Siliqua of Rapeseed (Brassica napus L.)[J]. Acta Agron Sin, 2007, 33(08): 1324 -1328 .
[3] WANG Run-Qi;GAO Jun-Hua;GUAN Zhong-Bo;MAO Li-Ping. Chromosome Location and Linkage Analysis of a Few Agronomical Important Traits in Foxtail Millet[J]. Acta Agron Sin, 2007, 33(01): 9 -14 .
[4] YE Jun;WU Jian-Guo;DU Jing;ZHENG Xi;SHI Chun-Hai. The Screening of Mutants and Construction of Mutant Population for Cultivar “9311” in Rice (Oryza sativa L.)[J]. Acta Agron Sin, 2006, 32(10): 1525 -1529 .
[5] Liu Jianwei;Wu Xiangrung. THE HYDROCYAMIC ACID POTENTIAL(HCN)MEASUREMENTS OF MAIN SORGHUM VARIETIES IN CHINA[J]. Acta Agron Sin, 1986, 12(02): 143 -144 .
[6] Liu Zhongqi; Li Youchun. Studies on Grain Weight Heterosis of Hybrid Wheats with T.timopheevi Cytoplasm[J]. Acta Agron Sin, 1995, 21(01): 57 -63 .
[7] LIU Huai-Pan ;JI Xiu-E;SHI Liu-Gong;LI Chao-Hai. Effect of Osmotic Stress on the Contents of Different form Polyamines in Leaves of Maize Seedlings[J]. Acta Agron Sin, 2006, 32(10): 1430 -1436 .
[8] ZHAO Xiao-Yan;WANG Xiao-Ming;WANG Shu-Min. Identification of Anthracnose Resistant Genes Based on SCAR Markers in Common Bean (Phaseolus vulgaris L.)[J]. Acta Agron Sin, 2007, 33(11): 1815 -1821 .
[9] YUE Hong-Wei;TAN Wei-Na;JIANG Dong;DAI Ting-Bo;JING Qi;CAO Wei-Xing. Effects of Post Anthesis Drought and Waterlogging on Contents of High Molecular Weight Glutenin Subunits and Glutenin Macropolymer in Wheat Grain[J]. Acta Agron Sin, 2007, 33(11): 1845 -1849 .
[10] FAN Yu-Ding;LI Si-Shen;SUN Hai-Yan;LI Rui-Jun. Relationship between HMW-GS and Making Quality of Northern Style Hand-made Steamed Bread[J]. Acta Agron Sin, 2005, 31(01): 97 -101 .