Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2638-2653.doi: 10.3724/SP.J.1006.2022.13053

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of planting methods and nitrogen application on forage crop yield, quality and water use in arid area of northwest China

WEI Zheng-Ye(), ZHANG Hai-Xing, SHI Wei, CHANG Sheng-Hua, ZHANG Cheng, JIA Qian-Min(), HOU Fu-Jiang   

  1. State Key Laboratory of Grassland Agro-ecosystems / Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Grassland Industry, Ministry of Education / College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
  • Received:2021-09-08 Accepted:2022-02-25 Online:2022-10-12 Published:2022-03-31
  • Contact: JIA Qian-Min E-mail:weizhy20@lzu.edu.cn;guqm@lzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31901389);Fundamental Research Funds for the Central Universities(lzujbky-2019-33);Scientific Research Start-up Cost of Team Construction Funds of “Double First-Rate” Guiding Project of Lanzhou University(561119204)

Abstract:

Intercropping and nitrogen application are important measures to improve the yield and quality of forage crops. However, the suitable nitrogen application rate of silage corn/legume intercropping system in the arid area of Northwest China is not clear. Three planting methods of silage corn/Dolichos lablab intercropping (SL), silage corn/fodder soybean intercropping (SF), and silage corn monoculture (S) were conducted in this experiment. Four nitrogen application levels of 0 kg hm-2 (N1), 120 kg hm-2 (N2), 240 kg hm-2 (N3), and 360 kg hm-2 (N4) were set under each planting mode. To explore the suitable jade bean intercropping combination and nitrogen application rate in the arid area of Northwest China, the effects of planting methods and nitrogen application levels on forage crop yield, quality and water use were analyzed. The results showed that compared with S treatment, the hay yield of SL treatment increased significantly by 8.94% and 8.68% in 2019 and 2020, and the water use efficiency increased significantly by 12.28% and 8.90%, respectively. Compared with monoculture, intercropping significantly increased the contents of crude protein and crude ash, and significantly reduced the contents of starch and neutral detergent fiber. Compared with no nitrogen application, nitrogen application significantly increased hay yield, crude protein, starch, and crude fat content, significantly reduced neutral and acid detergent fiber content, but there was no significant effect on crude ash content. Compared with N1, the hay yields of N2, N3, and N4 increased significantly by 30.30%, 56.19%, and 53.95% in 2019 and 22.02%, 60.54%, and 51.83% in 2020, respectively. WUE of N3 and N4 was significantly higher than that of N1 and N2, but there was no significant difference between N3 and N4. Among all treatments, SL-N3 obtained the highest two-year average hay yield (33.10 t hm-2), crude protein content (10.01%), and WUE (62.50 kg hm-2 mm-1). To sum up, SL-N3 is a management model suitable for silage corn production in arid areas of northwest China.

Key words: nitrogen application, silage corn, leguminous crops, yield, nutritional quality

Fig. 1

Schematic diagram of precipitation and temperature of Linze test station"

Table 1

Plant height, stem diameter, and relative chlorophyll content of forage crops under different treatments in 2020"

种植方式Planting mode 施氮水平
Nitrogen level
玉米株高
Plant height of corn (cm)
玉米相对
叶绿素含量
SPAD of corn
玉米茎粗
Stem diameter of corn (mm)
豆科作物株高
Plant height of legume (cm)
豆科作物
相对叶绿素含量
SPAD of legume
青贮玉米-拉巴豆间作
SL
N1 199.99 bc 36.70 d 21.96 c 145.45 bc 39.80 b
N2 226.09 ab 38.95 cd 23.01 bc 159.29 b 40.69 b
N3 206.73 bc 41.25 bc 24.01 bc 150.29 b 42.40 b
N4 237.20 a 50.10 a 23.00 bc 199.52 a 47.50 a
青贮玉米-秣食豆间作
SF
N1 191.72 c 32.75 e 24.77 abc 116.33 d 12.50 c
N2 234.42 ab 34.85 de 26.23 ab 124.67 d 13.77 c
N3 209.90 bc 43.10 bc 26.77 ab 131.67 cd 16.50 c
N4 201.59 bc 47.20 ab 23.46 bc 119.67 d 13.03 c
青贮玉米单作
S
N1 206.17 bc 31.90 e 21.47 c
N2 234.77 ab 33.55 e 22.79 bc
N3 215.87 ab 35.15 d 24.02 bc
N4 242.21 a 46.30 ab 28.06 a
平均值
Average
SL 217.50 AB 41.75 A 23.00 B 163.64 A 42.60 A
SF 209.41 B 39.48 A 25.31 A 123.08 B 13.95 B
S 224.75 A 36.73 B 24.09 AB
N1 199.29 C 33.78 C 22.73 B 87.26 B 17.43 B
N2 231.76 A 35.78 C 24.01 AB 94.65 B 18.15 AB
N3 210.83 BC 39.83 B 24.93 A 93.99 B 19.63 A
N4 227.00 AB 47.87 A 24.84 A 106.40 A 20.18 A
因素显著性Significance of ANOVA P * ** ** ** **
N ** ** ** ** **
P×N ns ns ** ** **

Fig. 2

Hay yield of forage crops under different treatments SL, SF, and S represent silage corn Dolichos lablab intercropping, silage corn hay bean intercropping, and silage corn monoculture respectively. N0, N1, N2, and N3 represent four nitrogen application levels 0, 120, 240, and 360 kg hm-2. P, N, and P × N represents the interaction between planting method, nitrogen application level and planting method and nitrogen application level. **: P < 0.01; *: P < 0.05; ns: not significant at P > 0.05. Different lowercase letters indicate significant difference between treatments at P < 0.05; different uppercase letters indicate significant difference between different levels at P < 0.05."

Table 2

Contents of crude protein, starch, and crude fat of forage crops under different treatments"

种植方式
Planting mode
施氮水平
Nitrogen
application level
粗蛋白Crude protein (%) 淀粉Starch (%) 粗脂肪Crude fat (%)
2019 2020 2019 2020 2019 2020
青贮玉米-拉巴豆间作
SL
N1 7.63±0.14 de 7.30±0.37 e 32.86±0.60 b 29.74±1.32 b 2.20±0.05 de 2.88±0.13 cd
N2 8.66±0.34 bcd 8.55±0.38 c 33.71±1.77 ab 31.20±1.46 b 2.54±0.15 abc 2.97±0.11 bc
N3 9.91±0.47 a 10.10±0.01 a 34.68±1.94 ab 32.54±0.86 b 2.76±0.15 ab 3.25±0.04 ab
N4 10.09±0.65 a 9.72±0.21 ab 34.09±2.94 ab 32.47±0.55 b 2.84±0.21 a 3.27±0.10 a
青贮玉米-秣食豆间作
SF
N1 7.43±0.41 ef 7.13±0.24 e 33.21±2.23 ab 29.74±1.34 b 2.12±0.14 de 3.03±0.14 abc
N2 8.19±0.34 cde 8.58±0.16 c 35.34±2.20 ab 30.04±1.42 b 2.37±0.12 bcd 3.02±0.08 abc
N3 9.06±0.42 abc 9.56±0.18 ab 35.96±2.07 ab 32.25±0.38 b 2.71±0.19 ab 3.14±0.08 abc
N4 9.52±0.33 ab 9.30±0.11 b 34.40±1.99 ab 32.64±1.30 b 2.87±0.17 a 3.30±0.10 a
青贮玉米单作
S
N1 6.36±0.37 f 6.06±0.13 f 36.98±3.06 ab 30.60±0.83 b 2.01±0.15 e 2.69±0.03 d
N2 7.32±0.46 ef 7.17±0.30 e 37.07±2.02 ab 31.54±1.84 b 2.49±0.18 abc 2.92±0.11 cd
N3 8.12±0.65 cde 8.06±0.20 cd 39.56±2.87 a 37.09±1.71 a 2.81±0.20 a 3.03±0.08 abc
N4 8.48±0.41 bcde 7.72±0.44 de 37.11±2.25 ab 38.34±2.45 a 2.93±0.16 a 3.09±0.16 abc
平均值
Average
SL 9.07±1.11 A 8.92±1.17 A 33.83±1.84 B 31.49±1.52 B 2.59±0.29 A 3.09±0.20 A
SF 8.55±0.90 B 8.64±1.00 B 34.72±2.11 B 31.17±1.69 B 2.52±0.33 A 3.12±0.15 A
S 7.57±0.95 C 7.25±0.83 C 37.68±2.48 A 34.40±3.84 A 2.56±0.40 A 2.93±0.18 B
N1 7.14±0.65 C 6.83±0.62 D 34.35±2.76 A 30.03±1.12 B 2.11±0.14 C 2.87±0.18 B
N2 8.06±0.68 B 8.10±0.74 C 35.37±2.27 A 30.93±1.53 B 2.47±0.15 B 2.97±0.10 B
N3 9.03±0.90 A 9.24±0.93 A 36.73±2.98 A 33.96±2.54 A 2.76±0.16 A 3.14±0.11 A
N4 9.36±0.82 A 8.91±0.95 B 35.20±2.55 A 34.49±3.22 A 2.88±0.16 A 3.22±0.15 A
因素显著性Significance of ANOVA P ** ** ** ** ns **
N ** ** ns ** ** **
P×N ns ns ns * ns ns

Table 3

Contents of crude ash, neutral detergent fiber, and acid detergent fiber of forage crops under different treatments"

种植方式
Planting
mode
施氮水平
Nitrogen application level
粗灰分
Crude ash (%)
中性洗涤纤维
Neutral detergent fiber (%)
酸性洗涤纤维
Acid detergent fiber (%)
2019 2020 2019 2020 2019 2020
青贮玉米-拉巴豆间作
SL
N1 4.54±0.12 ab 5.02±0.42 a 41.27±1.87 ab 43.76±4.13 ab 26.21±1.05 a 28.15±2.92 a
N2 4.58±0.24 ab 4.98±0.34 a 39.70±2.37 ab 41.89±2.27 abc 26.05±1.69 a 25.62±1.61 abc
N3 4.74±0.30 a 5.04±0.04 a 36.77±1.59 ab 38.50±1.05 bc 23.66±1.37 ab 22.57±0.59 cd
N4 4.55±0.35 ab 4.86±0.25 a 36.01±1.63 b 36.86±0.46 c 22.93±1.01 ab 21.51±0.39 d
青贮玉米-秣食豆间作
SF
N1 4.28±0.28 abc 5.00±0.26 a 41.97±3.44 ab 43.24±3.66 ab 26.67±1.95 a 27.59±2.36 ab
N2 4.57±0.22 ab 4.89±0.11 a 40.33±2.72 ab 41.12±1.86 abc 26.61±1.52 a 25.48±1.17 abc
N3 4.55±0.27 ab 5.03±0.18 a 37.83±2.31 ab 39.85±1.21 bc 24.46±1.69 ab 23.49±0.74 cd
N4 4.59±0.27 ab 4.72±0.09 a 37.35±1.36 ab 38.68±0.18 bc 23.38±1.14 ab 22.04±0.01 cd
青贮玉米单作S N1 3.70±0.19 c 4.53±0.08 a 43.27±3.35 a 46.06±1.33 a 26.20±1.55 a 27.07±0.83 ab
N2 3.86±0.23 bc 4.59±0.14 a 41.74±2.27 ab 44.23±1.05 ab 25.53±1.48 ab 24.61±0.47 abcd
N3 4.13±0.30 abc 4.61±0.01 a 39.83±2.29 ab 42.20±1.36 abc 23.19±1.45 ab 24.22±0.26 bcd
N4 4.06±0.20 abc 4.50±0.19 a 37.64±1.27 ab 39.58±1.62 bc 21.92±0.93 b 21.97±0.54 cd
平均值
Average
SL 4.60±0.24 A 4.97±0.26 A 38.44±2.76 A 40.25±3.51 B 24.71±1.87 A 24.46±3.09 A
SF 4.49±0.26 A 4.91±0.20 A 39.37±2.94 A 40.72±2.54 B 25.28±2.01 A 24.65±2.48 A
M 3.94±0.27 B 4.56±0.11 B 40.62±3.01 A 43.02±2.77 A 24.21±2.15 A 24.47±1.95 A
N1 4.17±0.42 A 4.85±0.35 A 42.17±2.72 A 44.35±3.12 A 26.36±1.37 A 27.60±1.98 A
N2 4.34±0.41 A 4.82±0.26 A 40.59±2.31 AB 42.41±2.10 AB 26.06±1.43 A 25.24±1.13 B
N3 4.47±0.37 A 4.89±0.23 A 38.14±2.26 BC 40.18±1.93 BC 23.77±1.42 B 23.43±0.87 C
N4 4.40±0.35 A 4.69±0.22 A 37.00±1.45 C 38.37±1.47 C 22.75±1.10 B 21.84±0.42 D
因素显著性Significance of ANOVA P ** ** ns ** ns ns
N ns ns ** ** ** **
P×N ns ns ns ns ns ns

Fig. 3

Relative feeding value of forage crops under different treatments Treatment are the same as those given in Fig. 2. **: P < 0.01; *: P < 0.05; ns: not significant at P > 0.05. Different lowercase letters indicate significant difference between treatments at P < 0.05; different uppercase letters indicate significant difference at P < 0.05."

Table 4

Soil water storage under different treatments"

种植方式Intercropping mode 施氮水平
Nitrogen application level
播种前Before sowing (mm) 收获期Harvest period (mm)
2019 2020 2019 2020
青贮玉米-拉巴豆
间作
SL
N1 367.57±16.38 a 354.10±11.18 a 352.78±17.80 a 382.34±9.08 a
N2 361.47±19.73 a 339.31±15.40 a 328.73±16.25 ab 362.52±6.08 a
N3 359.90±24.87 a 329.57±18.22 a 308.90±16.48 ab 369.97±7.00 a
N4 358.82±26.26 a 334.92±20.61 a 307.20±16.60 ab 386.20±9.80 a
青贮玉米-秣食豆
间作
SF
N1 368.92±19.33 a 353.30±22.41 a 353.97±23.82 a 371.20±23.81 a
N2 369.82±21.82 a 347.79±23.72 a 346.40±20.51 ab 361.32±4.94 a
N3 367.30±22.04 a 330.05±24.09 a 312.45±17.41 ab 358.18±1.98 a
N4 373.57±25.27 a 348.62±25.50 a 310.74±16.13 ab 378.09±1.99 a
青贮玉米单作
S
N1 368.92±25.34 a 349.18±17.45 a 341.23±18.90 ab 381.20±20.65 a
N2 369.82±28.09 a 341.51±25.56 a 319.66±17.34 ab 375.59±3.60 a
N3 368.98±28.62 a 327.55±20.67 a 303.18±20.26 ab 368.61±4.48 a
N4 372.05±19.39 a 343.58±20.40 a 296.25±19.47 b 376.65±9.51 a
平均值
Average
SL 361.94±19.23 A 339.47±17.15 A 324.40±24.00 A 375.26±12.09 A
SF 369.90±19.10 A 344.94±22.42 A 330.89±26.39 A 367.20±13.32 A
S 369.94±21.89 A 340.45±19.92 A 315.08±24.31 A 375.51±11.05 A
N1 368.47±17.93 A 352.19±15.43 A 349.33±18.64 A 378.25±17.24 AB
N2 367.03±20.76 A 342.87±19.44 A 331.60±19.62 A 366.48±8.10 B
N3 365.40±22.32 A 329.06±18.34 A 308.18±16.21 B 365.59±7.03 B
N4 368.15±21.81 A 342.37±20.22 A 304.73±16.48 B 380.31±8.22 A
因素显著性Significance of ANOVA P ns ns ns ns
N ns ns ** **
P×N ns ns ns ns

Table 5

Soil evapotranspiration (ET) and water use efficiency (WUE) under different treatments"

种植方式Intercropping mode 施氮水平
Nitrogen application level
土壤蒸散量ET (mm) 水分利用效率WUE (kg hm-2 mm-1)
2019 2020 2019 2020
青贮玉米-拉巴豆
间作
SL
N1 553.89±17.45 a 496.10±11.95 a 40.28±1.62 cd 40.16±1.07 de
N2 571.83±37.35 a 494.18±25.51 a 49.97±3.09 ab 48.59±2.40 cd
N3 590.10±28.06 a 477.00±25.21 a 57.82±4.05 a 67.23±4.12 a
N4 590.71±38.14 a 466.12±34.60 a 55.99±3.19 a 65.81±4.75 a
青贮玉米-秣食豆
间作
SF
N1 554.06±24.36 a 499.50±33.93 a 37.13±2.16 cd 38.35±2.10 e
N2 562.51±28.71 a 503.87±18.42 a 49.36±2.51 ab 46.52±2.81 de
N3 593.96±36.26 a 489.28±34.42 a 56.25±3.29 a 64.54±4.62 ab
N4 601.93±43.02 a 487.93±37.69 a 55.11±3.57 a 61.15±3.89 ab
青贮玉米单作
S
N1 566.79±28.15 a 485.38±11.30 a 35.79±2.11 d 38.56±2.58 e
N2 589.26±38.78 a 483.32±29.86 a 44.07±3.24 bc 47.72±3.57 cd
N3 604.90±47.31 a 476.33±32.07 a 51.48±3.81 ab 61.17±4.03 ab
N4 614.90±39.55 a 484.34±30.80 a 50.42±3.30 ab 56.23±3.01 bc
种植方式Intercropping mode 施氮水平
Nitrogen application level
土壤蒸散量ET (mm) 水分利用效率WUE (kg hm-2 mm-1)
2019 2020 2019 2020
平均值
Average
SL 576.64±31.10 A 483.35±25.41 A 51.02±7.62 A 55.45±12.34 A
SF 578.12±35.79 A 495.14±28.18 A 49.46±8.31 A 52.64±11.54 AB
S 593.96±38.32 A 482.34±23.63 A 45.44±7.07 B 50.92±9.43 B
N1 558.25±21.53 B 493.66±19.90 A 37.73±2.63 C 39.02±1.95 C
N2 574.54±32.70 AB 493.79±23.44 A 47.80±3.81 B 47.61±2.72 B
N3 596.32±33.60 AB 480.87±27.42 A 55.18±4.31 A 64.31±4.53 A
N4 602.52±36.43 A 479.46±31.53 A 53.84±3.90 A 61.06±5.38 A
因素显著性
Significance of ANOVA
P ns ns ** *
N * ns ** **
P×N ns ns ns ns

Fig. 4

Relationship between hay yield and nitrogen application rat Treatment are the same as those given in Fig. 2."

Fig. 5

Relationship between crude protein content and nitrogen application rate Treatment are the same as those given in Fig. 2."

Fig. 6

Relationship between water use efficiency and nitrogen application rate Treatment are the same as those given in Fig. 2."

[1] 任继周, 李发弟, 曹建民, 李秉龙, 胥刚, 唐增. 我国牛羊肉产业的发展现状、挑战与出路. 中国工程科学, 2019, 21(5): 67-73.
Ren J Z, Li F D, Cao J M, Li B L, Xu G, Tang Z. Development status, challenges and solutions of China’s beef and mutton industry. Strat Stud CAE, 2019, 21(5): 67-73. (in Chinese with English abstract)
[2] 孙雪丽, 李秋凤, 刘英财, 曹玉凤, 王增林, 李艺, 赵洋洋, 葛瀚聪, 刘桃桃, 赵立新. 全株青贮玉米对西门塔尔杂交牛生产性能、表观消化率及血液生化指标的影响. 草业学报, 2018, 27(9): 201-209.
Sun X L, Li Q F, Liu Y C, Cao Y F, Wang Z L, Li Y, Zhao Y Y, Ge h C, Liu T T, Zhao L X. Effects of whole plant silage corn on production performance, digestibility and blood biochemical parameters in Simmental crossbred bulls. Acta Pratac Sin, 2018, 27(9): 201-209. (in Chinese with English abstract)
[3] 牛巧龙, 曹高燚, 杜锦, 苏东伟, 万鹏, 田秀平. 施氮量对玉米产量及叶片部分酶活性的影响. 华北农学报, 2017, 32(1): 187-192.
Niu Q L, Cao G Y, Du J, Su D W, Wan P, Tian X P. Effects of nitrogen application rate on maize yield and leaf enzyme activity. Acta Agric Boreali-Sin, 2017, 32(1): 187-192. (in Chinese with English abstract)
[4] Hu F L, Tan, Y, Yu A Z, Zhao C, Fan Z L, Yin W, Chai Q, Coulter J A, Cao W D. Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas. Eur J Agron, 2020, 119: 126117.
[5] 连彩云, 马忠明. 北方平原区春玉米化学氮肥投入阈值. 西北农业学报, 2016, 25: 9-15.
Lian C Y, Ma Z M. Input threshold of chemical nitrogen fertilizer for spring maize in northern plain. Acta Agric Boreali-Occident Sin, 2016, 25: 9-15. (in Chinese with English abstract)
[6] 李强, 马晓君, 豆攀, 程秋博, 余东海, 袁继超, 孔凡磊. 不同生态条件下氮肥对玉米氮素吸收利用及产量的影响. 华北农学报, 2017, 32(1): 156-164.
Li Q, Ma X J, Dou P, Cheng Q B, Yu D H, Yuan J C, Kong F L. Effects of nitrogen fertilizer on nitrogen absorption, utilization and yield of Maize under different ecological conditions. Acta Agric Boreali-Sin, 2017, 32(1): 156-164. (in Chinese with English abstract)
[7] 李婧, 李玲玲, 张立健, 陈亮亮, 谢军红. 氮肥用量对粮饲兼用玉米产量和饲用品质形成的影响. 草业科学, 2015, 32: 442-449.
Li J, Li L L, Zhang L J, Chen L L, Xie J H. Effects of nitrogen application on yield and forage quality of grain and forage maize. Pratac Sci, 2015, 32: 442-449. (in Chinese with English abstract)
[8] 闵迪, 王增红, 李援农, 张舵. 不同灌水和施氮水平对河西春玉米水氮利用效率和经济效益的影响. 干旱地区农业研究, 2020, 38(5): 153-160.
Min D, Wang Z H, Li Y N, Zhang D. Effects of different irrigation and nitrogen application levels on the yield and water and nitrogen use efficiency of spring maize. Agric Res Arid Areas, 2020, 38(5): 153-160. (in Chinese with English abstract)
[9] Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Li S K. How to increase maize production without extra nitrogen input. Resour Conserv Recycl, 2020, 160: 104913.
[10] Dal Molin S J, Ernani P R, Gerber J M. Soil acidification and nitrogen release following application of nitrogen fertilizers. Commun Soil Sci Plant Anal, 2020, 51: 2551-2558.
doi: 10.1080/00103624.2020.1845347
[11] 杜金丽. 氮肥施用对地下水污染的影响与治理策略研究. 环境科学与管理, 2019, 44(8): 22-27.
Du J L. Effects of nitrogen fertilizer application on groundwater pollution and analysis of control strategies. Environ Sci Manage, 2019, 44(8): 22-27. (in Chinese with English abstract)
[12] Zhang J T, Tian H Q, Shi H, Zhang J F, Wang X K, Pan S F, Yang J. Increased greenhouse gas emission intensity of major croplands in China: implications for food security and climate change mitigation. Global Change Biol, 2020, 26: 6116-6133.
doi: 10.1111/gcb.15290
[13] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415. (in Chinese with English abstract)
[14] Jamont M, Piva G, Fustec J. Sharing N resources in the early growth of rapeseed intercropped with faba bean: does N transfer matter? Plant Soil, 2013, 371: 641-653.
doi: 10.1007/s11104-013-1712-2
[15] Xu Z, Li C J, Zhang C C, Yu Y, van der Werf W, Zhang F S. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Res, 2020, 246: 107661.
[16] Du Q, Zhou L, Chen P, Liu X M, Song C, Yang F, Wang X C, Liu W G, Sun X, Du J B, Liu J, Shu K, Yang W Y, Yong T W. Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. Crop J, 2020, 8: 140-152.
doi: 10.1016/j.cj.2019.06.010
[17] 朱元刚, 赵健皓, 肖岩岩, 刘慧, 戴忠民. 玉米-大豆间作条件下氮素高效利用的研究进展. 安徽农学通报, 2020, 26(22): 95-97.
Zhu Y G, Zhao J H, Xiao Y Y, Liu H, Dai Z M. Research progress of high nitrogen utilization efficiency under corn and soybean intercropping. Anhui Agric Sci Bull, 2020, 26(22): 95-97. (in Chinese with English abstract)
[18] Fischer J, Bohm H, Hess J. Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. Eur J Agron, 2020, 112: 125947.
[19] 瓮巧云, 黄新军, 许翰林, 刘瑶, 袁晓峰, 马海莲, 袁进成, 刘颖慧. 玉米/大豆间作方式对青贮玉米产量、品质及土壤营养、根际微生物的影响. 核农学报, 2021, 35: 462-470.
doi: 10.11869/j.issn.100-8551.2021.02.0462
Weng Q Y, Huang X J, Xu H L, Liu Y, Yuan X F, Ma H L, Yuan J C, Liu Y H. Effects of corn/soybean intercropping on silage corn yield, quality, soil nutrition and rhizosphere microorganisms. J Nucl Agric, 2021, 35: 462-470 (in Chinese with English abstract).
[20] 田应学, 马培杰, 李亚娇, 吴佳海, 牟琼, 熊文康, 张忠贵, 韩永芬. 青贮玉米与拉巴豆套种对青贮玉米品质及产量的影响. 草业科学, 2019, 36: 1457-1465.
Tian Y X, Ma P J, Li Y J, Wu J H, Mou Q, Xiong W K, Zhang Z G, Han Y F. Effects of Interplanting silage corn and Dolichos lablab on the quality and yield of silage corn. Pratac Sci, 2019, 36: 1457-1465. (in Chinese with English abstract)
[21] 朱淑娟, 孙涛, 王方琳, 马剑平, 严子柱. 甘肃河西地区发展戈壁农业的现实依据和实现途径. 安徽农业科学, 2021, 49: 240-243.
Zhu S J, Sun T, Wang F L, Ma J P, Yan Z Z. The realistic basis and way of developing gobi agriculture in Hexi area of Gansu province. Anhui Agric Sci, 2021, 49: 240-243. (in Chinese with English abstract)
[22] 安颖蔚, 史书强, 冯良山, 张鹏. 玉米/大豆间作提高农田生产力和水分利用效率研究. 园艺与种苗, 2016, (9): 80-83.
An Y W, Shi S Q, Feng L S, Zhang P. Productivity enhancement a water use efficiency of maize-soybean intercropping. Hortic Seed, 2016, (9): 80-83 (in Chinese with English abstract)
[23] 张向前, 黄国勤, 卞新民, 江学海, 赵其国. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响. 生态学报, 2012, 32: 7082-7090.
Zhang X Q, Huang G Q, Bian X M, Jiang X H, Zhao Q G. Effects of intercropping on maize quality, yield, soil microbial quantity and enzyme activity. Acta Ecol Sin, 2012, 32: 7082-7090. (in Chinese with English abstract)
[24] 王雪蓉, 张润芝, 李淑敏, 许宁, 牟尧, 张春怡. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟. 中国生态农业学报, 2019, 27: 1354-1363.
Wang X R, Zhang R Z, Li S M, Xu N, Mou Y, Zhang C Y. Simulation of dry matter accumulation and nitrogen absorption in a maize/soybean intercropping system supplied with different nitrogen levels. Chin J Eco-Agric, 2019, 27: 1354-1363. (in Chinese with English abstract)
[25] 李晶, 李伟忠, 吉彪, 陈龙涛, 魏湜, 冯淑华. 混播方式对青贮玉米产量和饲用品质的影响. 作物杂志, 2010, (3): 100-103.
Li J, Li W Z, Ji B, Chen L T, Wei S, Feng S H. Effect of mixed-planting mode on silage maize yield and forage quality. Crops, 2010, (3): 100-103. (in Chinese with English abstract)
[26] 赵海明, 游永亮, 武瑞鑫, 翟兰菊, 宋凤格, 李源. 种植密度和间作豆科牧草对青贮玉米生产性能的影响. 草学, 2020, (5): 25-31.
Zhao H M, You Y L, Wu R X, Zhai L J, Song F G, Li Y. Effects of planting density and intercropping leguminous forages on the production performance of silage corn. J Grassland Forage Sci, 2020, (5): 25-31. (in Chinese with English abstract)
[27] 李亚娇, 马培杰, 吴佳海, 牟琼, 覃涛英, 王晓强, 马宁, 张蓉, 李德芳, 朗永祥, 吴有松, 田应学, 韩永芬. 不同品种青贮玉米与拉巴豆套种对青贮玉米农艺性状及产量的影响. 草业学报, 2019, 28(9): 209-216.
Li Y J, Ma P J, Wu J H, Mou Q, Qin T Y, Wang X Q, Ma N, Zhang R, Li D F, Lang Y X, Wu Y S, Tian Y X, Han Y F. Effects of interplanting different varieties of silage corn and dolichos lablab on agronomic characters and yield of silage corn. Acta Pratac Sin, 2019, 28(9): 209-216 (in Chinese with English abstract).
[28] Wu Y, Jia Z K, Ren X L, Zhang Y, Chen X, Bing H Y, Zhang P. Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China. Agric Water Manage, 2015, 158: 1-9.
doi: 10.1016/j.agwat.2015.03.021
[29] Huang Y L, Chen L D, Fu B J, Huang Z L, Gong J. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agric Water Manage, 2004, 72: 209-222.
doi: 10.1016/j.agwat.2004.09.012
[30] 刘景辉, 曾昭海, 焦立新, 胡跃高, 王莹, 李海. 不同青贮玉米品种与紫花苜蓿的间作效应. 作物学报, 2006, 32: 125-130.
Liu J H, Zeng Z H, Jiao L X, Hu Y G, Wang Y, Li H. Intercropping Effects of different silage maize varieties and alfalfa. Acta Agron Sin, 2006, 32: 125-130. (in Chinese with English abstract)
[31] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析. 作物学报, 2021, 47: 1978-1987.
doi: 10.3724/SP.J.1006.2021.04226
Ren Y Y, Zhang L, Yu Y C, Zhang Y J, Zhang S Q. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems. Acta Agron Sin, 2021, 47: 1978-1987. (in Chinese with English abstract)
[32] 连露, 胡国富, 李冰, 崔国文, 冀国旭, 阎南南. 青贮玉米种植密度及与秣食豆混播比例对青贮品质的影响. 草地学报, 2017, 25: 178-183.
Lian L, Hu G F, Li B, Cui G W, Ji G X, Yan N N. Effects of planting density and mixed sowing ratio of silage corn and fodder soybean beans on silage quality. Acta Agrest Sin, 2017, 25: 178-183. (in Chinese with English abstract)
[33] 张海星, 常生华, 贾倩民, 周大梁, 张程, 刘永杰, 李红, 侯扶江. 禾豆间作与施氮对河西地区青贮玉米产量及水氮利用的影响. 中国土壤与肥料, 2021, (3): 51-62.
Zhang H X, Chang S H, Jia Q M, Zhou D L, Zhang C, Liu Y J, Li H, Hou F J. Effects of gramineae/legume intercropping and nitrogen application on yield, quality, water and nitrogen utilization of forage crops in Hexi region. Soils Fert Sci China, 2021, (3): 51-62. (in Chinese with English abstract)
[34] 王俊, 隋标, 王鸿斌, 赵兴敏, 赵兰坡. 吉林省玉米带玉米与大豆不同间作方式对作物产量及水分利用率的影响. 吉林农业大学学报, 2021, 43: 22-27.
Wang J, Sui B, Wang H B, Zhao X M, Zhao L P. Effects of different corn and soybean intercropping modes on crop yield and water use efficiency in Jilin corn belt. J Jilin Agric Univ, 2021, 43: 22-27. (in Chinese with English abstract)
[35] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017, 50: 3702-3713.
Gao Y L, Sun Z X, Bai W, Feng L S, Yang N, Cai Q, Feng C, Zhang Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Sci Agric Sin, 2017, 50: 3702-3713. (in Chinese with English abstract)
[36] 张凤云, 吴普特, 赵西宁, 成雪峰. 间套作提高农田水分利用效率的节水机理. 应用生态学报, 2012, 23: 1400-1406.
Zhang F Y, Wu P T, Zhao X N, Cheng X F. Water-saving mechanisms of intercropping system in improving cropland water use efficiency. Chin J Appl Ecol, 2012, 23: 1400-1406. (in Chinese with English abstract)
[37] 胡春花, 张吉贞, 孟卫东, 林力, 肖云. 不同栽培措施对青贮玉米产量和营养品质的影响. 热带作物学报, 2015, 36: 847-853.
Hu C H, Zhang J Z, Meng W D, Lin L, Xiao Y. Effects of different cultivation measures on silage maize yield and nutrition quality. J Trop Crops, 2015, 36: 847-853. (in Chinese with English abstract)
[38] 兰宏亮. 氮肥运筹对夏播农大108青贮产量的影响. 农业科技通讯, 2017, (9): 53-55.
Lan H L. Effect of nitrogen management on silage yield of summer sowing Nongda 108. Bull Agric Sci Technol, 2017, (9): 53-55. (in Chinese)
[39] 陈远学, 陈曦, 陈新平, 罗永, 牟勇, 吕世华, 徐开未. 不同施氮对饲草玉米产量品质及养分吸收的影响. 草业学报, 2014, 23(3): 255-261.
Chen Y X, Chen X, Chen X P, Luo Y, Mou Y, Lyu S H, Xu K W. Effects of different nitrogen application on yield, quality and nutrient absorption of forage maize. Acta Pratacult Sin, 2014, 23(3): 255-261. (in Chinese with English abstract)
[40] Jia Q M, Yang L Y, An H Y, Dong S, Chang S H, Zhang C, Liu Y J, Hou F J. Nitrogen fertilization and planting models regulate maize productivity, nitrate and root distributions in semi-arid regions. Soil Tillage Res, 2020, 200: 104636.
[41] 宋晋辉, 赵祥, 高运青, 李龙江, 王宏伟. 施氮量对青贮玉米产量和品质的影响. 江苏农业科学, 2012, 40(5): 155-156.
Song J H, Zhao X, Gao Y Q, Li L J, Wang H W. Effect of nitrogen application rate on Yield and quality of silage corn. Jiangsu Agric Sci, 2012, 40(5): 155-156 (in Chinese with English abstract).
[42] 王晨光, 赵美娟, 裴文东, 王国兴, 张宏军, 雷格丽, 张仁和. 施氮量对粮饲兼用玉米子粒产量和饲用品质的影响. 玉米科学, 2020, 28(6): 148-153.
Wang C G, Zhao M J, Pei W D, Wang G X, Zhang H F, Lei G L, Zhang R H, Effects of nitrogen rates on grain yield and forage quality of dual-purpose maize. J Maize Sci, 2020, 28(6): 148-153. (in Chinese with English abstract)
[43] 白琪林, 陈绍江, 戴景瑞. 我国常用玉米自交系秸秆品质性状及其相关分析. 作物学报, 2007, 33: 1777-1781.
Bai Q L, Chen S J, Dai J R. Stalk quality traits and their correlations of maize inbred lines in China. Acta Agron Sin, 2007, 33: 1777-1781. (in Chinese with English abstract)
[44] 张平良, 郭天文, 刘晓伟, 李书田, 曾骏, 谭雪莲, 董博. 密度和施氮量互作对全膜双垄沟播玉米产量、氮素和水分利用效率的影响. 植物营养与肥料学报, 2019, 25: 579-590.
Zhang P L, Guo T T, Liu X W, Li S T, Zeng J, Tan X L, Dong B. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing. J Plant Nutr Fert, 2019, 25: 579-590. (in Chinese with English abstract)
[45] 王久龙, 王振华, 李文昊, 裴磊, 赵波, 扁青永, 朱延凯. 施氮量对复播青贮玉米光合特性和产量的影响. 干旱地区农业研究, 2017, 35(5): 250-255.
Wang J L, Wang Z H, Li W H, Pei L, Zhao B, Bian Q Y, Zhu Y K. Effects of nitrogen application rate on photosynthetic characteristics and yield of silage maize. Agric Res Arid Areas, 2017, 35(5): 250-255. (in Chinese with English abstract)
[46] 高洪军, 朱平, 彭畅, 张秀芝, 李强, 张卫建. 不同施肥方式对东北春玉米农田土壤水热特征的影响. 水土保持学报, 2015, 29(4): 195-200.
Gao H J, Zhu P, Peng C, Zhang X Z, Li Q, Zhang W J. Effects of different fertilization methods on soil moisture and temperature characteristics of Spring maize field in northeast China. J Soil Water Conserv, 2015, 29(4): 195-200. (in Chinese with English abstract)
[47] 刘庚山, 郭安红, 安顺清, 林日暖, 任三学. 开发利用土壤深层水资源的一种有效途径"以肥调水"的大田试验研究. 自然资源学报, 2002, 17: 423-429.
Liu G S, Guo A H, An S Q, Lin R N, Ren S X. Field experimental study on “regulating water with fertilizer”, an effective way to develop and utilize deep soil water resources. J Nat Res, 2002, 17: 423-429. (in Chinese with English abstract)
[1] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[2] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[3] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[4] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[5] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[6] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[7] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[8] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[9] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[10] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[11] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[12] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[13] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[14] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[15] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[2] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .
[3] YIN Jing;WANG Guang-Jin;ZHANG Hong-Ji;SUN Yan;DIAO Yan-Ling;HUANG Jing-Hua;GUO Qiang;XIAO Jia-Lei;Ma Feng-Ming;SUN Guang-Zu. Genetic Analysis and SSR Mapping of Stem Rust Resistance Gene from Wheat Mutant D51[J]. Acta Agron Sin, 2007, 33(08): 1262 -1266 .
[4] LI Hao ; ZHANG Ping-Ping ; ZHA Xiang-Dong ; XIA Xian-Chun ; HE Zhong-Hu ;;. Isolation of Differentially Expressed Genes from Wheat Cultivars Jinan 17 and Yumai 34 with Good Bread Quality under Heat Stress during Grain Filling Stage[J]. Acta Agron Sin, 2007, 33(10): 1644 -1653 .
[5] LI Yu-Sheng;ZHU Zhen;ZHANG Ya-Dong;ZHAO Ling;WANG Cai-Lin. Genetic Analysis of Rice False Smut Resistance Using Major Gene Plus Polygene Mixed Genetic Model[J]. Acta Agron Sin, 2008, 34(10): 1728 -1733 .
[6] LI Jin-Cai ;WEI Feng-Zhen;WANG Cheng-Yu;YIN Jun. Effects of Waterlogging on Senescence of Root System at Booting Stage in Winter Wheat[J]. Acta Agron Sin, 2006, 32(09): 1355 -1360 .
[7] GUO Zai-Hua; HE Li-Yuan;XU Cai-Guo;ZHANG Qi-Fa. Indexes for Screening and Identify of Rice Tolerant to Low-P Stress[J]. Acta Agron Sin, 2005, 31(01): 65 -69 .
[8] LIN Rui-Yu;CHEN Hong-Fei;DENG Jia-Yao;LIANG Yi-Yuan;LIANG Kang-Jing;LIN Wen-Xiong. Analysis on Energy Accumulation and Calorific Value of Early-Season Rice and Its Ratooning Rice under Different Cultivation Models[J]. Acta Agron Sin, 2007, 33(11): 1794 -1801 .
[9] HAO Zhi;TIAN Ji-Chun;JIANG Xiao-Ling. Analyses of Fe, Zn, Cu, and Mn Contents in Grains and Grouping Based on the Contents for Main Kindred Germplasm of Common Wheat (Triticum aestivum)[J]. Acta Agron Sin, 2007, 33(11): 1834 -1839 .
[10] WANG Yun-Fei;ZHAO Fa-Mao;LI Tian-Jiao;JU Qian;WANG Xian-Ze. Type, Activity, and Purification of Starch-Debranching Enzymes during Grain Filling Period in Wheat[J]. Acta Agron Sin, 2007, 33(11): 1840 -1844 .