Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2654-2662.doi: 10.3724/SP.J.1006.2022.11074
• RESEARCH NOTES • Previous Articles Next Articles
ZHANG Xiao-Wen1(), LI Shi-Jiao1, ZHANG Xiao-Jun2, LI Xin2, YANG Zu-Jun3, ZHANG Shu-Wei2, CHEN Fang2, CHANG Li-Fang2, GUO Hui-Juan2, CHANG Zhi-Jian2,*(), QIAO Lin-Yi2,*()
[1] | 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. p 650. |
The National Soil Survey Office. Soils of China. Beijing: China Agriculture Press, 1998. p 650. (in Chinese) | |
[2] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[3] |
Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007 |
[4] |
Gorham J, Hardy C, Jones R, Joppa L R, Law C N. Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet, 1987, 74: 584-588.
doi: 10.1007/BF00288856 pmid: 24240213 |
[5] |
Dubcovsky J, María G S, Epstein E, Luo M C, Dvořák J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet, 1996, 92: 448-454.
doi: 10.1007/BF00223692 pmid: 24166270 |
[6] |
James R A, Davenport R J, Munns R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 142: 1537-1547.
doi: 10.1104/pp.106.086538 |
[7] |
Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene. Nat Biotechnol, 2012, 30: 360-364.
doi: 10.1038/nbt.2120 pmid: 22407351 |
[8] |
Turki N, Shehzad T, Harrabi M, Okuno K. Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 2015, 201: 29-41.
doi: 10.1007/s10681-014-1164-7 |
[9] | 单雷, 赵双宜, 陈芳, 夏光敏. 小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位. 中国农业科学, 2006, 39: 225-230. |
Shan L, Zhao S Y, Chen F, Xia G M. Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No. 3. Sci Agric Sin, 2006, 39: 225-230. (in Chinese with English abstract) | |
[10] | 车婧. 山融3号小麦BC2代群体耐盐主效QTL相关分子标记的筛选定位. 山东农业大学硕士学位论文, 山东泰安, 2010. pp 39-41. |
Che J. The Major Salt-Relative QTL Located by Molecular Markers in Salt-Tolerance Introgression BC2 Population of SR3 with Jinan 177. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2010. pp 39-41 (in Chinese with English abstract) | |
[11] | Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg L H. Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica, 2019, 215: 103. |
[12] |
Asif M A, Garcia M, Tilbrook J, Brien C, Pearson A S. Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol, 2021, 48: 131-140.
doi: 10.1071/FP20167 |
[13] |
Ge R C, Chen G P, Zhao B C, Shen Y Z, Huang Z J. Cloning and functional characterization of a wheat serine/threonine kinase gene (TaSTK) related to salt-resistance. Plant Sci, 2007, 173: 55-60.
doi: 10.1016/j.plantsci.2007.04.005 |
[14] |
Liu S, Liu S, Wang M, Wei T, Meng C, Wang M, Xia G. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell, 2014, 26: 164-180
doi: 10.1105/tpc.113.118687 |
[15] | 吕伟东, 徐鹏彬, 蒲训. 偃麦草属种质资源在普通小麦育种中的应用现状简介. 草业学报, 2007, 16(6): 136-140. |
Lyu W D, Xu P B, Pu X. Summary of situation for applying genetic resources from Elytrigia in Triticum aestivum breeding. Acta Pratac Sin, 2007, 16(6): 136-140. (in Chinese with English abstract) | |
[16] | 畅志坚, 赵怀生, 李生海. 小麦与天蓝偃麦草远缘杂交中结实性的研究. 山西农业科学, 1992, 20(2): 7-10. |
Chang Z J, Zhao H S, Li S H. Study on the fruitfulness of a distant cross between winter wheat and Agropyron glaucum. Shanxi Agric Sci, 1992, 20(2): 7-10. (in Chinese with English abstract) | |
[17] | 畅志坚. 几个小麦-偃麦草新种质的创制及分子细胞遗传学分析. 四川农业大学博士论文, 四川雅安, 1999. pp 23-26. |
Chang Z J. Creation and Creation and Molecular Cytogenetics Analysis of Several New Wheat-Thinopyrum Germplasm. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 1999. pp 23-26. (in Chinese with English abstract) | |
[18] |
Chang Z J, Zhang X J, Yang Z J, Zhan H X, Li X, Liu C, Zhang C Z. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Heredita, 2010, 147: 304-312.
doi: 10.1111/j.1601-5223.2010.02156.x |
[19] | 乔麟轶, 张潇文, 李世姣, 陈芳, 李欣, 郭慧娟, 张树伟, 常利芳, 张晓军, 畅志坚. 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69-73. |
Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat- Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69-73. (in Chinese with English abstract) | |
[20] | 张蕾, 侯雅静, 张晓军, 李欣, 乔麟轶, 畅志坚. 小偃麦渗入系耐盐性鉴定及其在F2群体中的遗传分析. 山西农业科学, 2016, 44: 281-283. |
Zhang L, Hou Y J, Zhang X J, Li X, Qiao L Y, Chang Z J. Identification and genetic analysis for salt-tolerance of wheat-Thinopyrum intermedium introgression line and its F2 population. Shanxi Agric Sci, 2016, 44: 281-283. (in Chinese with English abstract) | |
[21] | 舒焕麟, 杨足君, 李光蓉. 创新诱发材料SY95-71选育和利用价值研究. 四川农业大学学报, 1999, 17: 249-253. |
Shu H L, Yang Z J, Li G R. Selection and evaluation of a wheat line SY95-71 as new yellow rust spreader. J Sichuan Agric Univ, 1999, 17: 249-253. (in Chinese with English abstract) | |
[22] | Amirbakhtiar N, Ismaili A, Ghaffari M, Mansuri R M, Sanjari S, Shobbar Z. Transcriptome analysis of bread wheat leaves in response to salt stress. PLoS One, 2021, 16: e0254189. |
[23] | 乔麟轶. 小麦材料CH7034中抗白粉病和抗条锈病QTL定位. 山西大学博士学位论文, 山西太原, 2018. pp 31-32. |
Qiao L Y. Mapping of Resistance Loci to Powdery Mildew and Stripe Rust in Wheat Cultivar CH7034. PhD Dissertation of Shanxi University, Taiyuan, Shanxi, China, 2018. pp 31-32. (in Chinese with English abstract) | |
[24] | Chinpongpanich A, Limruengroj K, Phean-O-Pas S, Limpaseni T, Buaboocha T. Expression analysis of calmodulin and calmodulin- like genes from rice, Oryza sativa L. BMC Res Notes, 2012, 5: 625. |
[25] |
Kim B G, Waadt R, Yong H C, Pandey G K, Sheng L. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52: 473-484.
doi: 10.1111/j.1365-313X.2007.03249.x |
[26] |
Tang R J, Liu H, Yang Y, Yang L, Gao X S, Garcia V J, Luan S, Zhang H X. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res, 2012, 22: 1650-1665.
doi: 10.1038/cr.2012.161 |
[27] |
Li P, Li Y J, Zhang F J, Zhang G Z, Jiang X Y, Yu H M, Hou B K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J, 2017, 89: 85-103.
doi: 10.1111/tpj.13324 |
[28] |
Zhao C Z, Wang X M, Wang X Y, Wu K L, Li P, Chang N, Wang J F, Wang F, Li J L, Bi Y R. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation. J Plant Physiol, 2015, 181: 83-95.
doi: 10.1016/j.jplph.2015.03.016 |
[29] |
Bhatia Y, Mishra S, Bisaria V S. Microbial-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol, 2002, 22: 375-407.
pmid: 12487426 |
[30] |
Lee J M, Kim Y R, Kim J K, Jeong G T, Ha J C, Kong I S. Characterization of salt-tolerant β-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood. Bioprocess Biosyst Eng, 2015, 38: 1335-1346.
doi: 10.1007/s00449-015-1375-x |
[31] |
Cai L N, Xu S N, Lu T, Lin D Q, Yao S J. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol, 2019, 292: 12-22.
doi: S0168-1656(19)30004-5 pmid: 30664896 |
[32] |
Dutta A, Sen J, Deswal R. New evidences about strictosidine synthase (Str) regulation by salinity, cold stress and nitric oxide in Catharanthus roseus. J Plant Biochem Biotechnol, 2013, 22: 124-131.
doi: 10.1007/s13562-012-0118-1 |
[33] |
Khan N A, Nazar R, Anjum N A. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic, 2009, 122: 455-460.
doi: 10.1016/j.scienta.2009.05.020 |
[34] |
Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 2012, 35: 1156-1170.
doi: 10.1111/j.1365-3040.2012.02480.x |
[35] | Wang X T, Zeng J, Li Y, Rong X L, Sun J T, Sun T, Li M, Wang L Z, Feng Y, Chai R H, Chen M J, Chang J L, Li K X, Yang G X, He G Y. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci, 2015, 6: 615. |
[36] | Li X, Tang Y, Zhou C, Zhang L, Lyu J. A wheat WRKY transcription factor TaWRKY46 enhances tolerance to osmotic stress in transgenic Arabidopsis plants. Int J Mol Sci, 2020, 21: 1321. |
[37] | Ye H, Qiao L Y, Guo H Y, Guo L P, Ren F, Bai J F, Wang Y K. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances. Front Plant Sci, 2021, 12: 663118. |
[1] | ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227. |
[2] | TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254. |
[3] | FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314. |
[4] | CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350. |
[5] | LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399. |
[6] | WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408. |
[7] | DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913. |
[8] | GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
[9] | FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770. |
[10] | LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786. |
[11] | WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729. |
[12] | ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760. |
[13] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[14] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[15] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
|