Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2625-2637.doi: 10.3724/SP.J.1006.2022.13057

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Response of grain yield formation to planting density of maize varieties in different eras

WANG Li-Qing1(), YU Xiao-Fang1,2,*(), GAO Ju-Lin1,2,*(), MA Da-Ling1,2, HU Shu-Ping2,3, GUO Huai-Huai1, LIU Ai-Ye4   

  1. 1Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    2Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, Hohhot 010019, Inner Mongolia, China
    3Vocational and Technical College, Inner Mongolia Agricultural University, Salaqi 014109, Inner Mongolia, China
    4Bureau of Agriculture, Animal Husbandry and Science and Technology of Urad Front Banner, Wulashan 014400, Inner Mongolia, China
  • Received:2021-09-18 Accepted:2022-02-25 Online:2022-10-12 Published:2022-03-25
  • Contact: YU Xiao-Fang,GAO Ju-Lin E-mail:18447053543@163.com;yuxiaofang75@163.com;nmgaojulin@163.com
  • Supported by:
    Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology(KJXM2020001-06);National Natural Science Foundation of China(31560360);National Key Research and Development Program of China(2017YFD0300804);China Agriculture Research System of MOF and MARA (Meize, CARS-02-50);Scientific Observation and Experimental Station of Crop cultivation in North China Loess Plateau, Ministry of Agriculture and Rural Affairs(25204120)

Abstract:

To clarify the difference of photosynthetic and grain-filling characteristics of maize varieties in different ages in response to increasing planting density, and to provide a theoretical basis for the reasonable density and production of maize, in this study, five maize varieties planted in large areas during production from 1970s to 2010s in China were used as materials, two planting densities of 45,000 plants hm-2 and 105,000 plants hm-2 were set for three-year field experiment. The yield and its components, leaf photosynthetic performance, and grain filling characteristics of maize varieties in different years were compared and analyzed under different planting densities. The results showed that under low planting density, compared with varieties of 1970s-2000s, the SPAD value of ear-leaf after anthesis, Pn of ear-leaf at 50 d after anthesis, and the average grain filling rate of 2010s varieties (DH618) were significantly increased by 2.18-12.05, 0.57-4.88 μmol CO2 m-2 s-1, and 0.02-0.09 g kernel-1 d-1. The active grain-filling period was significantly prolonged by 2.62-4.74 d, which significantly increasing grain weight and yield at P<0.05. After densification, the yield of varieties in 1970s and 1980s decreased, the yield of varieties in the 1990s did not change significantly, but the yield of varieties in 2000s and 2010s increased significantly and the largest increased in 2010s was 2.11 t hm-2. Further correlation analysis to the indicators of photosynthetic performance, filling characteristics, 100-grain weight, and yield, the results showed that 100-grain weight of 2010s varieties under high planting density was more dependent during active grain filling period (r = 0.70). Compared with 1970s to 2000s, the 2010s varieties kept relatively high SPAD at silking stage, milking stage, and maturity stage (increased by 6.42%-41.92%), delayed leaf senescence and maintained high LAD in maize leaves after anthesis and Pn in 30-50 d after anthesis (increased by 1.09%-88.95%). Therefore, more photosynthates were accumulated, which prolonged the active grain filling period by 8.73% to 15.80% and the average filling rate increased by 3.39% to 24.33%, and then maintained a relatively stable 100-grain weight.

Key words: maize, varieties of different eras, planting density, grain filling characteristics, canopy configuration

Table 1

Soil basic productivity in the test area"

年份
Year
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkaline N (mg kg-1)
速效钾
Alkaline K
(mg kg-1)
速效磷
Alkaline P
(mg kg-1)
有机质
Organic matter
(g kg-1)
pH
2018 1.48 78.18 155.19 17.06 19.63 7.95
2019 1.31 79.31 144.00 18.45 17.74 8.50
2020 1.54 74.89 136.28 21.32 17.83 8.36

Fig. 1

Main meteorological factors during the growth period in the experimental area"

Table 2

Analysis of variance of maize LAI"

变异来源
Sources of variations
大喇叭口期
12-leave stage
吐丝期
Silking stage
乳熟期
Milking stage
成熟期
Maturity stage
年份Year 82.68** 23.63** 168.48** 547.47**
密度Density (D) 8036.83** 8320.00** 25,462.73** 2425.42**
品种Variety (V) 91.80** 61.31** 36.47** 683.29**
密度×品种D×V 9.25** 11.31** 24.20** 114.77**
误差均方Error MS 0.004 0.008 0.002 0.001

Fig. 2

Effects of planting density on LAI of maize varieties in different eras LAI: leaf area index. V12: the 12 leaves stage; R1: the silking stage; R3: the milking stage; R6: the maturity stage. D1: the 45,000 plants hm-2; D2: the 105,000 plants hm-2. ZD2: Zhongdan 2; DY13: Danyu 13; YD13: Yedan 13; XY335: Xianyu 335; DH618: Denghai 618."

Table 3

Variance of maize LAD"

变异来源
Sources of variation
花前
Post anthesis stage
花后
After anthesis stage
年份Years 174.50** 1315.52**
密度Density (D) 1077.98** 1077.98**
品种Varieties (V) 157.61** 157.61**
密度×品种D×V 14.04** 14.04**
误差均方Error MS 0.198 0.198

Fig. 3

Effects of planting density on LAD of maize varieties in different eras Abbreviations are the same as those given in Fig. 2."

Table 4

Variance analysis of SPAD of maize ear position leaf"

变异来源
Sources of
variation
吐丝期
Silking
stage
乳熟期
Milking stage
成熟期
Maturity stage
年份Year 6.41** 162.59** 164.41**
密度Density (D) 255.37** 545.08** 1604.17**
品种Variety (V) 32.25** 87.81** 328.07**
密度×品种D×V 2.31 5.87** 2.01
误差均方Error MS 0.918 1.182 0.0503

Fig. 4

Effects of planting density on the SPAD of ear position and leaf of maize varieties in different eras Abbreviations are the same as those given in Fig. 2."

Table 5

Variance analysis of Pn of maize ear position leaf"

变异来源
Sources of variation
吐丝期
Silking stage
吐丝后10 d
10 days after anthesis
吐丝后30 d
30 days after anthesis
吐丝后50 d
50 days after anthesis
吐丝后65 d
65 days after anthesis
年份Year 2022.76** 275.50** 120.20** 136.93** 5.34*
密度Density (D) 1191.46** 1519.13** 3210.76** 8031.43** 35,150.95**
品种Variety (V) 31.15** 78.22** 160.17** 511.91** 335.89**
密度×品种D×V 10.12** 16.53** 3.52* 12.83** 93.47**
误差均方Error MS 0.198 0.208 0.114 0.050 0.014

Fig. 5

Effects of planting density on the Pn of ear position and leaf of maize varieties in different eras Abbreviations are the same as those given in Fig. 2."

Table 6

Effects of planting density on grain filling characteristics of maize varieties in different eras"

密度
Density
品种
Variety
2018 2019 2020
Gmean
(g kernel-1 d-1)
D
(d)
Gmean
(g kernel-1 d-1)
D
(d)
Gmean
(g kernel-1 d-1)
D
(d)
D1 中单2号ZD2 0.68 50.92 0.56 60.24 0.60 50.84
丹玉13 DY13 0.68 50.63 0.57 61.16 0.59 51.94
掖单13 YD13 0.64 50.47 0.56 59.86 0.57 49.98
先玉335 XY335 0.72 52.98 0.60 62.31 0.67 53.09
登海618 DH618 0.73 55.29 0.64 63.82 0.68 57.12
D2 中单2号ZD2 0.55 49.06 0.51 50.60 0.55 45.58
丹玉13 DY13 0.58 47.69 0.51 52.44 0.52 49.79
掖单13 YD13 0.55 49.33 0.48 59.10 0.54 49.22
先玉335 XY335 0.61 54.26 0.50 63.61 0.56 56.78
登海618 DH618 0.65 57.80 0.54 64.78 0.62 58.00

Table 7

Analysis of variance of maize yield and its constituent factors"

变异来源
Sources of variation
产量
Yield
有效穗数
Harvested number
穗粒数
Number of grains per panicle
百粒重
100-grain weight
年份Year 7.83** 36.39** 1.01 237.49**
密度Density (D) 0.22 8680.29** 1643.75** 1840.78**
品种Variety (V) 312.81** 44.51** 73.62** 513.04**
密度×品种D×V 43.53** 26.09** 20.55** 21.68**
误差均方Error MS 0.057 0.019 91.696 0.164

Fig. 6

Influence of planting density on the yield of maize varieties and their constituent factors in different eras Abbreviations are the same as those given in Fig. 2."

Fig. 7

Correlation analysis between 100-grain weight, yield, and grain filling characteristics Gmean: average grouting rate; D: active grouting duration; the other abbreviations are the same as those given in Fig. 2. *: P < 0.05; **: P < 0.01."

Table 8

Correlation analysis between grouting characteristics and canopy indexes"

指标
Index
生育阶段
Growth stage
灌浆特性参数Grouting characteristic parameters
平均灌浆速率Gmean 活跃灌浆持续时间D
叶面积指数
Leaf area index
大喇叭口期 12 leaves stage -0.748** -0.245
吐丝期Silking stage -0.780** -0.264
乳熟期Milking stage -0.705** -0.138
成熟期Maturity stage -0.346 0.125
叶绿素相对含量
Soil and plant analyzer development
吐丝期Silking stage 0.732** 0.544*
乳熟期Milking stage 0.793** 0.540*
成熟期Maturity stage 0.754** 0.605**
光合势
Leaf area duration
花前Post anthesis stage 0.029 0.117
花后After anthesis stage 0.566** 0.250
净光合速率Pn 吐丝期Silking stage 0.764** -0.330
花后10 d 10 days after anthesis 0.824** 0.136
花后30 d 30 days after anthesis 0.665** 0.537*
花后50 d 50 days after anthesis 0.707** 0.487*
花后65 d 65 days after anthesis 0.730** 0.330
[1] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108
[2] Listed N. How to feed a hungry world. Nature, 2021, 466: 531-532.
doi: 10.1038/466531a
[3] 刘小丹, 杜妍, 任军, 代玉仙, 于明彦, 李淑华, 徐国良, 才卓. 2019年美国玉米高产竞赛简报. 玉米科学, 2020, 28(4): 56-60.
Liu X D, Du Y, Ren J, Dai Y X, Yu M Y, Li S H, Xu G L, Cai Z. Bulletin of American corn high yield competition in 2019. J Maize Sci, 2020, 28(4): 56-60 (in Chinese with English abstract).
[4] 程雅婷, 李荣发, 王克如, 谢瑞芝, 侯鹏, 明博, 薛军, 张国强, 刘广周, 李少昆. 中国春玉米高产纪录的创造与思考. 玉米科学, 2021, 29(2): 56-59.
Cheng Y T, Li R F, Wang K R, Xie R Z, Hou P, Ming B, Xue J, Zhang G Q, Liu G Z, Li S K. Creation and thinking of high yield record of spring maize in China. J Maize Sci, 2021, 29(2): 56-59. (in Chinese with English abstract)
[5] 柯福来, 马兴林, 黄瑞冬, 王传海, 徐安波. 种植密度对先玉335群体子粒灌浆特征的影响. 玉米科学, 2011, 19(2): 58-62.
Ke F L, Ma X L, Huang R D, Wang C H, Xu A B. Effects of planting densities on population grain filling characteristics of maize hybrid Xianyu 335. J Maize Sci, 2011, 19(2): 58-62. (in Chinese with English abstract)
[6] Chen Y J, Hoogenboom G, Ma Y T, Li B G. Maize kernel growth at different floret positions of the ear. Field Crops Res, 2013, 149: 177-186.
doi: 10.1016/j.fcr.2013.04.028
[7] Sadras V O, Egli D B. Seed size variation in grain crops: allometric relationships between rate and duration of seed growth. Crop Sci, 2008, 48: 408-416.
doi: 10.2135/cropsci2007.05.0292
[8] Johnson D R, Tanner J W, Calculation of the rate and duration of grain filling in corn (Zea mays L.). Crop Sci, 1972, 12: 485-486.
doi: 10.2135/cropsci1972.0011183X001200040028x
[9] 孟战赢, 王育红, 王向阳, 沈东风. 密度对夏玉米灌浆特性及产量的影响. 河南农业科学, 2011, 40(12): 48-51.
Meng Z Y, Wang Y H, Wang X Y, Shen D F. The effects of increasing density on summer grouting characteristics and yield. J Henan Agric Sci, 2011, 40(12): 48-51. (in Chinese with English abstract)
[10] Wang X Y, Wang X L, Xu C C, Tan W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019, 59: 2794-2805.
doi: 10.2135/cropsci2019.04.0218
[11] 张明, 宋振伟, 陈涛, 闫孝贡, 朱平, 任军, 邓艾兴, 张卫建. 不同春玉米品种干物质生产和子粒灌浆对种植密度的响应. 玉米科学, 2015, 23(3): 57-65.
Zhang M, Song Z W, Chen T, Yan X G, Zhu P, Ren J, Deng A X, Zhang W J. Differences in responses of biomass production and grain-filling to planting density between spring maize cultivars. J Maize Sci, 2015, 23(3): 57-65. (in Chinese with English abstract)
[12] 刘娟, 董树亭, 刘鹏, 张吉旺, 赵斌. 增密与施氮对不同耐密型玉米产量及籽粒灌浆特性的影响. 山东农业科学, 2017, 49(1): 38-47.
Liu J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of increasing density and nitrogen application rate on yield and grain-filling characteristics of different density-tolerance maize hybrids. Shandong Agric Sci, 2017, 49(1): 38-47. (in Chinese with English abstract)
[13] 王婷, 柴守玺. 不同播种密度对西北绿洲冬小麦灌浆特性的影响. 甘肃农业大学学报, 2008, 43(5): 33-40.
Wang T, Chai S X. Effect of different density on winter wheat filling characters in the northwest oasis. J Gansu Agric Univ, 2008, 43(5): 33-40. (in Chinese with English abstract)
[14] Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. Senescence and yield responses to plant density in stay green and earlier-senescing 11 maize hybrids from Argentina. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016
[15] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, Li S K, Hou P. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017, 212: 126-134.
doi: 10.1016/j.fcr.2017.05.006
[16] Chen X C, Chen F J, Chen Y L, Gao Q, Yang X L, Yuan L X, Zhang F S, Mi G H. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biol, 2013, 19: 923-936.
doi: 10.1111/gcb.12093
[17] Liu G Z, Yang J M, Liu W M, Guo Z Y. Leaf removal affects Maize morphology and grain yield. Agronomy, 2020, 10: 269-281.
doi: 10.3390/agronomy10020269
[18] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016, 42: 104-112.
doi: 10.3724/SP.J.1006.2016.00104
Chang J F, Zhang H H, Li H P, Dong P F, Li C H. Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agron Sin, 2016, 42: 104-112. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00104
[19] Huang S B, Gao Y B, Li Y B, Xu L N, Tao H B, Wang P. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J, 2017, 5: 52-62.
doi: 10.1016/j.cj.2016.06.018
[20] 冀华, 李宏, 张树伟. 玉米雌雄穗发育及其与产量的关系. 山西农业科学, 2011, 39: 754-755.
Ji H, Li H, Zhang S W. Differentiation and growth of the male and female ears and the relationship with yield in maize. J Shanxi Agric Sci, 2011, 39: 754-755. (in Chinese with English abstract)
[21] Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different area to change in plant density. Field Crops Res, 2002, 79: 39-51.
doi: 10.1016/S0378-4290(02)00124-7
[22] Tokatlidis I S, Koutroubas S D. A review of maize hybrids dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004, 88: 103-114.
doi: 10.1016/j.fcr.2003.11.013
[23] Meng Q F, Hou P, Wu L, Chen X P, Cui Z L, Zhang F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Res, 2013, 143: 91-97.
doi: 10.1016/j.fcr.2012.09.023
[24] Zhao J, Xue Q W, Hao B Z, Marek T H, Jessup K E, Xu W W, Bean B W, Colaizzi P D. Yield determination of maize hybrids under limited irrigation. J Crop Improv, 2019, 33: 410-427.
doi: 10.1080/15427528.2019.1606129
[25] Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, Zhang Y, Wang R N, Arshad A, Hao X Y, Sun M, Gao Z Q, Zhang L Z. Maize plant density affects yield, growth and source-sink relationship of crops in maize/ peanut intercropping. Field Crops Res, 2020, 257: 107926.
[26] 刘红杰, 倪永静, 任德超, 杜克明, 葛君, 朱培培, 赵敬领, 黄建英, 吕国华, 胡新. 不同基因型冬小麦籽粒灌浆特征及其与千粒重的关系. 中国农业气象, 2019, 40: 630-636.
Liu H J, Ni Y J, Ren D C, Du K M, Ge J, Zhu P P, Zhao J L, Huang J Y, Lyu G H, Hu X. Grain filling characters and its correlation with 1000-grain weight in different winter wheat varieties. Chin J Agrometeorol, 2019, 40: 630-636. (in Chinese with English abstract)
[27] Wiegand C L, Cuellar J A. Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Sci, 1981, 21: 95-101.
doi: 10.2135/cropsci1981.0011183X001100010027x
[28] 魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25: 441-450.
Wei S S, Wang X Y, Dong S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014, 25: 441-450. (in Chinese with English abstract)
[29] 李德新, 宫秀杰, 钱春荣. 玉米籽粒灌浆及脱水速率品种差异与相关分析. 中国农学通报, 2011, 27(27): 92-97.
Li D X, Gong X J, Qian C R. Difference and correlation analysis of grain milking rate and grain dehydrating rate on maize. Chin Agric Sci Bull, 2011, 27(27): 92-97. (in Chinese with English abstract)
[30] Bolaños J. Physiological bases for yield differences in selected maize cultivars from central America. Field Crops Res, 1995, 42: 69-80.
doi: 10.1016/0378-4290(95)00022-I
[31] 王小春, 杨文钰, 龚江洪, 卢小红, 李燕蓉. 播期对不同株型玉米灌浆特性的影响. 作物杂志, 2009, (3): 55-57.
Wang X C, Yang W Y, Gong J H, Lu X H, Li Y R. Effects of sowing date on grain filling characteristics of maize with different plant types. Crops, 2009, (3): 55-57. (in Chinese with English abstract)
[32] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.93011
[33] 徐丽娜, 闫艳, 梅沛沛, 陈士林, 王小龙. 种植密度对不同玉米品种籽粒灌浆特性的影响. 山东农业科学, 2020, 52(7): 20-23.
Xu L N, Yan Y, Mei P P, Chen S L, Wang X L. Effects of planting density on grain filling characteristics of different maize varieties. Shandong Agric Sci, 2020, 52(7): 20-23. (in Chinese with English abstract)
[34] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47: 3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y J, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of spring maize varieties with different maturity. Sci Agric Sin, 2014, 47: 3557-3565. (in Chinese with English abstract)
[35] 朱亚利. 不同玉米品种与密度配置对光温资源利用效率及产量的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Zhu Y L. Effects of Different Maize Varieties and Density Configuration on Utilization Efficiencies of Light and Temperature Resources and Yield. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021. (in Chinese with English abstract)
[36] David G. Sánchez R, Fowler J L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agron J, 2002, 94: 1317-1323.
doi: 10.2134/agronj2002.1317
[37] Yao H S, Zhang Y L, Yi X P, Zhang X J, Zhang W F. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Res, 2016, 188: 10-16.
doi: 10.1016/j.fcr.2016.01.012
[38] Liu G Z, Liu W M, Yang Y S, Guo X X. Marginal superiority of maize: an indicator for density tolerance under high plant density. Sci Rep, 2020, 10: 15378-15384.
doi: 10.1038/s41598-020-72435-3
[39] 丁相鹏, 白晶, 张春雨, 张吉旺, 刘鹏, 任佰朝, 赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53: 3915-3927.
Ding X P, Bai J, Zhang C Y, Zhang J W, Liu P, Ren B C, Zhao B. Effects of line-spacing expansion and row-spacing shrinkage on population structure and yield of summer maize. Sci Agric Sin, 2020, 53: 3915-3927. (in Chinese with English abstract)
[40] 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21: 492-496.
Xu Q Z, Wang Q C, Niu Y Z, Wang Z X, Zhang J. Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agron Sin, 1995, 21: 492-496. (in Chinese with English abstract)
[41] 王志刚, 高聚林, 任有志, 赵明, 董志强, 李少昆, 杨凤山. 春玉米超高产群体冠层结构的研究. 玉米科学, 2007, 15(6): 51-56.
Wang Z G, Gao J L, Ren Y Z, Zhao M, Dong Z Q, Li S Q, Yang F S. Study on canopy structure of super-high yield colony in spring maize. J Maize Sci, 2007, 15(6): 51-56. (in Chinese with English abstract)
[42] Tollenaar M, Aguilera A. Radiation use efficiency of an old and a new maize hybrid. Agron J, 1992, 84: 536-541.
doi: 10.2134/agronj1992.00021962008400030033x
[43] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017, 50: 2238-2246.
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Sci Agric Sin, 2017, 50: 2238-2246. (in Chinese with English abstract)
[1] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[2] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[3] GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883.
[4] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[5] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[6] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[7] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[8] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[9] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[10] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[11] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[12] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[13] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[14] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[15] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[3] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[4] Xia Zhongyan. STUDIES ON INHERITANCE AND SELECTION OF THE LEAF SHAPE IN KENG RICE[J]. Acta Agron Sin, 1983, 9(04): 275 -282 .
[5] ZHAO Xiang;WANG Yan-Liang;WANG Ya-Jing;WANG Xi-Li;ZHANG Xiao. Effects of Exogenous Ca2+ on Somatal Movement and Plasma Membrane K+ Channels of Vicia Guard Cell under Salt Stress[J]. Acta Agron Sin, 2008, 34(11): 1970 -1976 .
[6] Ye Xiaoli;Li Xuegang;Li Jiana. Mechanism of Melanin Synthesis in Seed Coat of Brassica napus L.[J]. Acta Agron Sin, 2002, 28(05): 638 -643 .
[7] WANG Xu;ZENG Zhao-Hai;ZHU Bo;HU Yue-Gao. Effect of Different Intercropping and Mixture Modes on Forage Yield and Quality of Oat and Common Vetch[J]. Acta Agron Sin, 2007, 33(11): 1892 -1895 .
[8] XU Ning;CHENG Xu-Zhen;WANG Su-Hua;WANG Li-Xia;ZHAO Dan. Establishment of an Adzuki Bean (Vigna angularis) Core Collection Based on Geographical Distribution and Phenotypic Data in China[J]. Acta Agron Sin, 2008, 34(08): 1366 -1373 .
[9] Meng Jinling;Liu Houli. THE EFFECTS OF SUCCESSIVE INBREEDING ON THE EMBRYO DEVELOPMENT OF BRASSICA NAPUS L[J]. Acta Agron Sin, 1986, 12(02): 79 -86 .
[10] Chen Shuping; Shu Shizhen. Study on Storage Technique of Stevia rebaudiana Seed[J]. Acta Agron Sin, 1995, 21(01): 102 -105 .