Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1039-1051.doi: 10.3724/SP.J.1006.2023.22023

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice

ZHANG Chen-Hui(), ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke*(), HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei   

  1. Innovation Center of Rice Cultivation Technology in Yangtze River Valley of Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-04-21 Accepted:2022-09-05 Online:2023-04-12 Published:2022-09-15
  • Contact: *E-mail: xuke@yzu.edu.cn
  • Supported by:
    Jiangsu Province Agricultural Key Research and Development Plan Project(BE2021361/BE2019343);National Natural Science Foundation of China(32272200)

Abstract:

The side-deep fertilization of rice is an asymmetric local fertilization for rhizosphere of seedlings that fertilizers are applied deep in paddy soil. It has the advantages of reducing fertilizer application and labor cost, increasing fertilizer use efficiency and grain yield. However, the effects of side-deep fertilization on root characteristics and its relationship with grain yield are unclear. This field experiment was conducted using rice verities of Fengjing 1606 and Nanjing 9108. Four nitrogen treatments, conventional fertilization with common urea (CF), conventional fertilization with 15% reduction of control released fertilizer (CFCR), side-deep fertilization with 15% reduction of common urea (SDCU), and side-deep fertilization with 15% reduction of control released fertilizer (SDCR), were tested to explore the effects of different nitrogen treatments on root morphological traits, anatomical structure, physiological characteristics, and grain yield. The results showed as follows: (1) The grain yield of SDCR treatment was the highest, followed by CF and CFCR treatments, the yields of SDCU treatment was the lowest. (2) SDCR treatment significantly increased the total root length, the root tips, root surface area, and root volume at different growth stage. (3) SDCR treatment reduced the cortical cross-sectional area of rice roots, the cortical cell layers, and the root diameter, and increases the stele diameter at different growth stages, however, there was no significant effect on the aerenchyma area and cortical cell area. (4) Compared with CF treatment, SDCR treatment significantly improved rice root activity, root nitrogen metabolism enzyme activity increased and reached the peak at heading stage, and then decreased, SDCR treatment had the highest GOGAT and GS activities at different growth stages. Therefore, to improve rice yield, improve the fertilizer utilization efficiency, and achieve the purpose of nitrogen reduction and production increase, the side-deep fertilization with 15% reduction of control released fertilizer could improve root morphological traits, anatomical structure, and physiological characteristics, enhance the root ability to absorb nutrients and water, prevent premature senescence of plant.

Key words: rice, side-deep fertilization, yield, root morphology structure, physiological characteristics

Table 1

Nitrogen treatment and application rate"

处理
Treatment
施氮量
Nitrogen application
rate (kg N hm-2)
氮肥运筹 Nitrogen fertilizer application (kg N hm-2)
基肥
Base fertilizer
分蘖肥
Tillering fertilizer
穗肥(倒3.5叶)
Panicle fertilizer
(3.5 leaf age remainders)
穗肥(倒1.5叶)
Panicle fertilizer
(1.5 leaf age remainders)
CF 300 120 60 60 60
CFCR 255 255 0 0 0
SDCU 255 255 0 0 0
SDCR 255 255 0 0 0

Table 2

Basic meteorological data in this experiment"

月份
Month
最低温度
Minimum
temperature (℃)
最高温度
Maximum
temperature (℃)
平均温度
Mean
temperature (℃)
降雨量
Rainfall
(mm)
相对湿度
Relative humidity
(%)
日照时间
Day length
(h)
2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021
5 13.0 12.6 35.4 34.6 22.6 21.6 48.6 193.4 72.8 73.5 188.6 157.4
6 13.5 16.7 35.4 36.4 25.5 26.4 359.1 121.7 80.9 76.6 112.0 151.1
7 19.8 22.0 34.6 37.7 25.5 29.0 212.2 434.9 87.2 83.3 63.8 133.1
8 23.2 20.7 38.3 37.7 30.5 28.0 140.7 138.7 81.7 83.9 202.9 138.7
9 16.5 18.2 34.6 35.9 24.0 26.0 30.2 35.7 77.8 78.8 183.7 128.4
10 5.5 8.0 29.6 33.9 17.0 19.5 39.4 88.2 75.4 76.2 159.0 101.3
11 4.6 1.7 28.5 22.0 12.5 12.5 60.4 33.9 75.9 68.3 136.0 95.9

Table 3

Soil foundation and soil fertility in this experiment"

年份
Year
pH 有机质
Organic matter (g kg-1)
全氮
Total nitrogen (g kg-1)
速效磷
Olsen-P (mg kg-1)
速效钾
Available K (mg kg-1)
2020 7.79 31.01 2.58 14.77 122.08
2021 8.34 33.73 3.10 14.80 123.12

Table 4

Spatial distribution of ammonia and nitrate in soil in this experiment (mg kg-1)"

时期
Stage
处理
Treatment
铵态氮
Ammoniacal nitrogen
铵态氮
Ammoniacal nitrogen
硝态氮
Nitrate nitrogen
硝态氮
Nitrate nitrogen
FJ 1606 NJ 9108 FJ 1606 NJ 9108
0-5 cm 5-10 cm 0-5 cm 5-10 cm 0-5 cm 5-10 cm 0-5 cm 5-10 cm
PI CF 43.55 32.38 41.57 28.61 29.75 28.04 31.14 28.11
CFCR 35.76 27.42 35.72 25.90 29.40 20.71 29.51 25.65
SDCU 40.69 25.19 39.82 26.35 30.97 26.72 24.81 23.95
SDCR 37.82 28.91 37.28 32.20 31.54 21.33 29.06 24.51
HD CF 15.83 15.63 16.29 20.54 20.14 19.76 16.54 18.80
CFCR 16.33 13.84 15.30 17.65 20.82 16.80 13.82 17.54
SDCU 14.68 13.77 14.41 21.83 22.12 17.18 14.03 16.64
SDCR 18.84 16.86 17.36 18.16 21.67 19.60 17.20 19.50
MT CF 17.44 14.54 16.15 32.89 31.52 23.36 16.87 22.60
CFCR 16.35 12.38 15.71 29.87 28.94 22.74 14.69 21.35
SDCU 15.81 12.14 14.19 26.30 25.11 20.12 13.13 19.16
SDCR 19.87 15.06 18.12 32.31 32.43 23.40 15.25 23.78

Table 5

Soil enzyme activity ranged from 0?5 cm in this experiment (IU L-1)"

时期
Stage
处理
Treatment
碱性磷酸酶
Alkaline phosphatase
脲酶
Urease
蔗糖酶
Sucrase
纤维素酶
Cellulase
脱氢酶
Dehydrogenase
FJ1606 NJ 9108 FJ 1606 NJ 9108 FJ 1606 NJ 9108 FJ 1606 NJ 9108 FJ 1606 NJ 9108
PI CF 65.31 64.88 909.31 779.68 709.68 727.43 116.26 116.57 85.09 87.12
CFCR 63.95 58.96 748.24 750.47 649.55 646.26 119.78 115.64 83.33 86.24
SDCU 63.86 55.61 895.75 768.67 639.25 642.87 115.70 112.78 84.47 83.38
SDCR 65.58 66.88 760.23 736.77 717.23 744.44 129.22 126.48 86.75 88.33
HD CF 68.31 68.16 762.83 752.05 721.75 752.86 123.58 125.17 92.22 93.68
CFCR 65.50 65.08 837.84 789.23 668.13 703.43 128.40 120.29 89.36 89.64
SDCU 65.34 64.40 763.93 735.25 668.13 670.18 126.90 118.67 86.90 86.35
SDCR 68.56 71.30 783.91 836.61 762.43 815.75 132.64 138.26 93.33 96.90
MT CF 57.30 57.43 722.38 722.17 693.21 616.16 113.91 115.47 84.40 86.93
CFCR 57.29 56.51 707.84 714.22 662.23 599.73 108.02 110.22 82.65 84.23
SDCU 57.07 56.27 708.31 687.75 573.92 568.50 103.45 111.46 79.97 82.93
SDCR 58.14 61.20 750.68 710.08 699.29 627.49 121.35 122.01 85.30 87.71

Table 6

Effects of different nitrogen treatments on yield and yield components in rice"

年份
Year
品种
Variety
处理
Treatment
穗数
Panicles number
(×104 hm-2)
每穗粒数
Spikelets number
per panicle
千粒重
1000-grain weight (g)
结实率
Grain filling rate (%)
产量
Grain yield
(t hm-2)
2020 丰粳1606
FJ 1606
CF 293.41 a 139.67 a 27.25 a 95.29 a 10.03 ab
CFCR 288.87 a 139.33 a 27.46 a 94.09 a 9.83 bc
SDCU 288.74 a 138.33 a 27.65 a 93.63 a 9.77 c
SDCR 294.01 a 140.67 a 27.72 a 95.29 a 10.18 a
南粳9108
NJ 9108
CF 321.22 ab 147.33 a 24.43 a 94.30 a 10.41 a
CFCR 318.23 b 147.33 a 24.54 a 94.20 a 10.33 a
SDCU 317.98 b 145.33 a 24.43 a 93.84 a 10.33 a
SDCR 324.03 a 147.33 a 24.85 a 93.40 a 10.53 a
2021 丰粳1606
FJ 1606
CF 287.72 a 150.64 a 26.65 a 92.55 a 10.06 a
CFCR 284.16 ab 151.25 a 26.57 a 90.01 ab 9.87 b
SDCU 275.00 b 144.20 a 25.89 a 89.40 b 9.77 b
SDCR 292.09 a 154.56 a 26.14 a 87.69 b 10.18 a
南粳9108
NJ 9108
CF 319.70 a 155.23 a 24.30 a 87.20 b 10.49 a
CFCR 317.56 a 155.15 a 24.35 a 89.14 ab 10.33 b
SDCU 316.21 a 154.46 a 24.15 a 89.31 ab 10.30 b
SDCR 323.46 a 155.21 a 24.35 a 90.72 a 10.63 a

Table 7

Effects of different nitrogen treatments on root morphological traits at different growth stage in rice"

品种
Variety
生育
时期
Growth
stage
处理
Treatment
总根长
Root length
(×103 cm plant-1)
根尖数
Root tip number
(×104 plant-1)
根表面积
Root surface area
(×103 cm2 plant-1)
根体积
Root
volume
(cm3 plant-1)
比根长
Specific root length
(m g-1)
比根重
Specific root weight
(g m-1)
比根表面积
Specific root surface area
(cm2 g-1)
比根体积
Specific root volume
(cm3 g-1)
丰粳1606
FJ 1606
PI CF 10.08 b 5.54 b 1.62 ab 24.16 b 48.68 ab 0.021 ab 780.27 a 11.67 b
CFCR 8.40 c 4.58 c 1.52 b 20.77 c 46.45 ab 0.022 ab 840.43 a 11.43 b
SDCU 8.88 c 4.73 c 1.55 ab 23.36 b 43.79 b 0.023 a 764.80 a 11.46 b
SDCR 11.03 a 9.63 a 1.66 a 28.07 a 54.17 a 0.019 b 817.34 a 13.80 a
HD CF 11.55 b 6.74 b 1.90 b 25.06 b 38.68 b 0.026 a 634.94 b 8.40 c
CFCR 11.12 b 5.64 c 1.80 bc 22.45 c 60.25 a 0.018 c 980.31 a 12.05 a
SDCU 10.64 b 5.75 c 1.72 c 21.27 c 45.08 b 0.022 b 727.90 b 9.00 bc
SDCR 15.79 a 12.79 a 2.19 a 29.66 a 53.99 a 0.019 c 747.83 b 10.14 b
MT CF 7.57 b 5.47 b 1.23 a 15.86 ab 47.34 a 0.021 c 767.43 a 9.91 b
CFCR 6.98 c 3.76 c 1.08 b 15.94 ab 49.94 a 0.020 c 774.17 a 11.37 a
SDCU 6.52 c 2.71 d 1.03 b 14.28 b 35.54 b 0.029 a 566.57 b 7.72 c
SDCR 8.30 a 7.54 a 1.28 a 17.59 a 39.82 b 0.025 b 610.73 b 8.41 c
南粳9108
NJ 9108
PI CF 16.15 b 12.79 b 2.25 b 24.08 b 76.08 a 0.013 b 1058.86 a 11.32 b
CFCR 13.56 c 9.44 d 1.56 d 17.30 d 60.23 b 0.017 a 693.94 b 7.73 c
SDCU 15.57 b 11.78 c 2.00 c 19.83 c 80.24 a 0.012 b 1033.27 a 10.22 b
品种
Variety
生育
时期
Growth
stage
处理
Treatment
总根长
Root length
(×103 cm plant-1)
根尖数
Root tip number
(×104 plant-1)
根表面积
Root surface area
(×103 cm2 plant-1)
根体积
Root
volume
(cm3 plant-1)
比根长
Specific root length
(m g-1)
比根重
Specific root weight
(g m-1)
比根表面积
Specific root surface area
(cm2 g-1)
比根体积
Specific root volume
(cm3 g-1)
南粳9108
NJ 9108
PI SDCR 17.30 a 13.70 a 2.47 a 30.85 a 75.24 a 0.013 b 1072.88 a 13.41 a
HD CF 18.64 b 17.88 b 2.65 b 32.26 b 66.40 a 0.015 c 942.53 a 11.49 a
CFCR 17.34 c 14.89 c 2.35 c 28.06 c 54.77 b 0.018 b 741.39 b 8.88 b
SDCU 16.30 c 12.24 d 2.06 d 26.67 c 36.15 c 0.028 a 455.71 c 5.91 c
SDCR 22.35 a 24.24 a 3.62 a 51.62 a 48.49 b 0.021 b 785.52 b 11.19 a
MT CF 8.80 b 3.65 b 1.79 b 21.28 b 32.69 a 0.031 ab 664.47 a 7.90 b
CFCR 7.25 c 3.17 b 1.34 c 18.20 c 35.04 a 0.028 b 647.51 a 8.83 b
SDCU 6.27 d 3.14 b 1.13 d 14.56 d 34.26 a 0.029 b 613.59 a 7.96 b
SDCR 9.68 a 4.87 a 2.08 a 35.01 a 30.58 a 0.033 a 655.23 a 11.06 a

Table 8

Effects of different nitrogen treatments on root anatomical structure at different growth stages in rice"

品种
Variety
生育
时期
Time
处理
Treatment
皮层
横截面积
Cortical cross-sectional area
(×104 µm2)
皮层生活细胞面积
Cortical cell area
(×104 µm2)
皮层细胞层数
Cortical cell layer
中柱
直径
Stele
diameter
(µm)
不定根
直径
Root diameter
(µm)
通气组织
面积
Aerenchyma area
(×103 µm2)
通气组织
比例
Aerenchyma formation
(%)
皮层生活细胞比例
Cortical cell area formation
(%)
中柱直径与根直径之比
Stele
diameter
/root
diameter
丰粳1606
FJ 1606
PI CF 21.21 b 17.42 b 11.33 ab 126.12 b 565.81 a 37.92 ab 17.89 ab 82.11 ab 0.22 bc
CFCR 22.36 b 22.14 a 12.00 a 119.88 c 562.11 a 2.19 b 1.10 b 98.90 a 0.21 c
SDCU 24.71 a 18.22 ab 12.00 a 115.41 d 543.07 a 62.90 a 25.64 a 73.54 b 0.21 c
SDCR 20.55 b 17.11 b 9.67 b 133.64 a 549.12 a 34.49 ab 16.78 ab 83.22 ab 0.24 a
HD CF 13.88 b 7.14 b 10.33 ab 124.89 a 497.25 b 60.14 a 42.89 a 51.38 b 0.25 b
CFCR 16.62 a 13.01 a 11.00 ab 115.40 b 562.35 a 36.05 a 21.81 a 78.19 a 0.21 c
SDCU 16.46 a 12.97 a 11.67 a 118.72 b 549.51 a 34.95 a 20.00 a 80.00 a 0.22 c
SDCR 12.76 b 8.77 ab 9.33 b 125.75 a 424.32 c 42.70 a 33.68 a 68.45 ab 0.30 a
MT CF 8.08 b 5.88 a 11.67 a 92.24 ab 440.81 b 21.94 a 27.68 a 72.32 a 0.21 b
CFCR 13.70 a 8.90 a 11.67 a 91.30 b 481.28 a 48.04 a 35.10 a 64.90 a 0.19 c
SDCU 13.78 a 8.61 a 12.00 a 92.92 ab 440.25 b 53.33 a 38.73 a 62.47 a 0.21 b
SDCR 8.79 b 5.39 a 11.33 a 96.09 a 413.71 b 33.97 a 38.26 a 61.72 a 0.23 a
南粳9108
NJ 9108
PI CF 17.56 c 15.60 c 11.33 a 122.49 b 563.95 ab 23.11 a 12.75 a 89.22 a 0.22 b
CFCR 25.42 a 24.72 a 11.00 ab 119.22 bc 575.89 ab 6.99 a 2.83 a 97.17 a 0.21 bc
SDCU 21.93 b 20.78 b 11.67 a 116.63 c 600.65 a 11.54 a 4.94 a 95.06 a 0.20 c
SDCR 13.27 d 12.40 d 10.33 b 130.05 a 534.06 b 8.63 a 6.44 a 93.56 a 0.24 a
HD CF 19.06 b 13.35 b 9.67 a 114.51 b 490.25 a 57.05 a 30.07 a 69.93 b 0.23 b
CFCR 20.32 ab 17.57 a 9.67 a 104.16 c 453.34 a 27.55 b 13.52 b 86.48 a 0.23 b
SDCU 21.55 a 17.32 a 10.00 a 101.66 c 454.54 a 42.31 ab 19.51 ab 80.49 ab 0.23 b
SDCR 11.97 c 8.69 c 9.67 a 122.04 a 458.87 a 32.77 b 27.10 a 72.90 b 0.27 a
MT CF 8.53 b 6.24 b 11.00 a 110.14 b 460.38 b 22.96 b 26.78 b 73.22 a 0.24 a
CFCR 10.68 a 8.09 a 11.00 a 101.59 c 546.12 a 25.86 b 24.74 b 75.26 a 0.19 b
SDCU 11.00 a 5.89 b 11.00 a 102.52 c 557.24 a 51.09 a 46.63 a 53.37 b 0.19 b
SDCR 8.00 b 4.71 b 10.00 b 116.42 a 457.97 b 32.93 b 41.21 a 58.79 b 0.25 a

Fig. 1

Effects of different nitrogen treatments on root oxidation activity of rice at different growth stages Different letters indicate significant differences between CF and SDCR treatments for each variety at the 0.05 probability level. Abbreviations are the same as those given in Table 4."

Fig. 2

Effects of different nitrogen treatments on GOGAT activity at different growth stages Abbreviations are the same as those given in Table 4."

Fig. 3

Effect of different nitrogen treatments on root GS activity at different growth stages Abbreviations are the same as those given in Table 4."

Table 9

Relationships of yield and yield components with root characteristics in rice (n = 24)"

根系性状
Root trait
产量
Grain yield
穗数
Panicle
每穗粒数
Spikelets number per panicle
千粒重
1000-grain weight
结实率
Grain filling percentage
幼穗分化期总根长PI-root length 0.9581** 0.9701** 0.9352** -0.9070** -0.3710
幼穗分化期根尖数PI-root tips 0.9593** 0.9031** 0.8828** -0.8085* -0.2517
幼穗分化期根表面积PI-root surface area 0.7957* 0.7799* 0.7150* -0.6719 -0.4170
幼穗分化期根体积PI-root volume 0.2469 0.0159 -0.0267 0.2023 0.0719
抽穗期总根长HD-root length 0.9565** 0.8958** 0.8980** -0.7736* -0.3036
抽穗期根尖数HD-root tips 0.9270** 0.8634** 0.8651** -0.7268* -0.3149
抽穗期根表面积HD-root surface area 0.8255* 0.7572* 0.7481* -0.5994 -0.3603
抽穗期根体积HD-root volume 0.7687* 0.6666 0.6422 -0.4903 -0.3313
成熟期总根长MT-root length 0.6221 0.4386 0.4620 -0.2460 0.0549
成熟期根尖数MT-root tips 0.1093 -0.2493 -0.2204 0.4169 0.7170*
成熟期根表面积MT-root surface area 0.7896* 0.7216* 0.7194* -0.5718 -0.2551
成熟期根体积MT-root volume 0.6709 0.5987 0.5850 -0.4276 -0.3856
幼穗分化期皮层横截面积PI-cortical cross-sectional area -0.6231 -0.4876 -0.4424 0.3205 0.1569
幼穗分化期皮层细胞层数PI-cortical cell layer -0.5375 -0.2371 -0.2816 0.0418 -0.3768
幼穗分化期中柱直径PI-stele diameter 0.3551 0.0199 0.0488 0.1846 0.5095
幼穗分化期不定根直径PI-root diameter 0.1454 0.2575 0.2453 -0.4340 0.0939
抽穗期皮层横截面积HD-cortical cross-sectional area 0.1083 0.3602 0.3692 -0.5552 -0.2802
抽穗期皮层细胞层数HD-cortical cell layer -0.8515** -0.6453 -0.6912 0.5402 -0.3246
抽穗期中柱直径HD-stele diameter -0.2587 -0.4993 -0.5041 0.6656 0.4301
根系性状
Root trait
产量
Grain yield
穗数
Panicle
每穗粒数
Spikelets number per panicle
千粒重
1000-grain weight
结实率
Grain filling percentage
抽穗期不定根直径HD-root diameter -0.7646* -0.5588 -0.5723 0.4527 -0.2760
成熟期皮层横截面积MT-cortical cross-sectional area -0.7189* -0.4836 -0.4787 0.3417 -0.4266
成熟期皮层细胞层数MT-cortical cell layer -0.9154** -0.8645** -0.8492** 0.7447* 0.3802
成熟期中柱直径MT-stele diameter 0.9008** 0.9104** 0.8854** -0.8076* -0.4662
成熟期不定根直径MT-root diameter 0.3167 0.5253 0.5243 -0.6749 -0.4038
幼穗分化期谷氨酸合成酶PI-GOGAT 0.4215 0.1932 0.1726 0.0320 -0.0583
抽穗期谷氨酸合成酶HD-GOGAT 0.3741 0.1307 0.1684 0.0847 0.1961
成熟期谷氨酸合成酶MT-GOGAT 0.8249* 0.6521 0.7022 -0.4840 0.0128
幼穗分化期谷氨酰胺合成酶PI-GS 0.4580 0.2722 0.2134 -0.0662 -0.1606
抽穗期谷氨酰胺合成酶HD-GS 0.4203 0.2032 0.2476 -0.0072 0.2327
成熟期谷氨酰胺合成酶MT-GS 0.3913 0.1283 0.1042 0.0923 0.1464
[1] Carter C A, Zhong F, Zhu J. Advances in Chinese agriculture and its global implications. Appl Econ Perspt Policy, 2012, 34(1): 1-36.
[2] 麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究. 植物营养与肥料学报, 2018, 24: 1113-1120.
Ma K, Diao G. Research on the contribution rate of fertilizer to grain yield in China. J Plant Nutr Fert, 2018, 24: 1113-1120. (in Chinese with English abstract)
[3] Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
doi: 10.1016/j.fcr.2005.05.004
[4] Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y X, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lv S H, Sun Y X, Liu Y Y, Peng X L, Ren J, Li S Q, Deng X P, Shi X J, Zhang Q, Yang Z P, Tang L, Wei C Z, Jia L L, Zhang J, He M G, Tong Y N, Tang Q Y, Zhong X H, Liu Z H, Cao N, Kou C L, Ying H, Yin Y L, Jiao X Q, Zhang Q S, Fan M S, Jiang R F, Dou Z X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[5] 赵立军, 颜珊珊, 王宇杰, 张志鹏, 张玉鑫, 陈昌峰, 许春林. 侧深施肥插秧机施肥量对水稻栽培的影响. 农机化研究, 2019, 41(10): 192-197.
Zhao L J, Yan S S, Wang Y J, Zhang Z P, Zhang Y X, Chen C F, Xu C L. The influence of fertilization rate on the rice cultivation by side deep fertilizer transplanter. J Agric Mechan Res, 2019, 41(10): 192-197. (in Chinese with English abstract)
[6] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群.. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation in china. Sci Agric Sin, 2021, 54: 1301-1321. (in Chinese with English abstract)
[7] 陈雄飞, 罗锡文, 王在满, 张明华, 胡炼, 曾山, 莫钊文. 水稻穴播同步侧位深施肥技术试验研究. 农业工程学报, 2014, 30(16) : 1-7.
Chen X F, Luo X W, Wang Z M, Zhang M H, Hu L, Zeng S, Mo Z W. Experiment of synchronous side deep fertilizing technique with rice hill-drop drilling. Trans CSAE, 2014, 30(16): 1-7. (in Chinese with English abstract)
[8] Ke J, He R C, Hou P F, Ding C, Ding Y F, Wang S H, Liu Z H, Tang S, Ding C Q, Chen L, Li G H. Combined controlled- released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agric Ecosys Environ, 2018, 265: 402-412.
doi: 10.1016/j.agee.2018.06.023
[9] Zhu C H, Xiang J, Zhang Y, Zhang Y K, Zhu D F, Chen H Z. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in eastern China. Sci Rep, 2019, 9: 5653
doi: 10.1038/s41598-019-42039-7 pmid: 30948780
[10] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Yuan J Q, Wang Y, Zhao C, Wang W L, Huo Z Y, Xu K, Dai Q G, Zhang H C, Li J D, Liu G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02086
[11] 王晓丹, 向镜, 张玉屏, 张义凯, 王亚梁, 陈惠哲. 水稻机插同步侧深施肥技术进展及应用. 中国稻米, 2020, 26(5): 53-57.
doi: 10.3969/j.issn.1006-8082.2020.05.012
Wang X D, Xiang J, Zhang Y P, Zhang K Y, Wang Y L, Chen H Z. Research advances and application of rice mechanized transplanting with side deep fertilization technology. China Rice, 2020, 26(5): 53-57. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2020.05.012
[12] Henry A, Cal A J, Batoto C, Torres R O, Serraj R. Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot, 2012, 63: 4751-4763.
doi: 10.1093/jxb/ers150 pmid: 22791828
[13] Kadam N N, Yin X, Bindraban P S, Struik P C, Jagadish K S V. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? Plant Physiol, 2015, 167: 1389-1401.
doi: 10.1104/pp.114.253328 pmid: 25614066
[14] Hu B, Henry A, Brown K M, Lynch J P. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays). Ann Bot, 2014, 113: 181-189.
doi: 10.1093/aob/mct259
[15] Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol, 2014, 166: 1943-1955.
doi: 10.1104/pp.114.249037 pmid: 25355868
[16] 唐文帮, 邓化冰, 肖应辉, 张桂莲, 范科, 莫慧, 陈立云. 两系杂交水稻C两优系列组合的高产根系特征. 中国农业科学, 2010, 43: 2859-2868.
Tang W B, Deng H B, Xiao Y H, Zhang G L, Fang K, Mo H, Chen L Y. Root characteristics of high-yield C Liangyou rice combinations of two-line hybrid rice. Sci Agric Sin, 2010, 43: 2859-2868. (in Chinese with English abstract)
[17] Ramasamy S, Berge H, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res, 1997, 51: 65-82.
doi: 10.1016/S0378-4290(96)01039-8
[18] Rhodes D, Rendon G A, Stewart G R. The control of glutamine synthetase level in Lemna minor L. Planta, 1975, 125: 201-211.
doi: 10.1007/BF00385596 pmid: 24435433
[19] Singh R P, Srivastava H S. Increase in glutamate synthetase activity (NADH-dependent) in excised root and leaf of maize seedlings in response to acidic amino acids and amides. Physiol Plant, 1987, 182: 497-500.
[20] 尹娟, 费良军, 勉韶平. 宁夏银南灌区稻田控制排水条件下氮素淋失的研究. 西北农林科技大学学报(自然科学版), 2006, (1): 108-112.
Yin J, Fei L J, Mian S P. Experiment on the nitrogen leaching in the drainage condition of rice field in Ningxia Yinnan irrigation region. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2006, (1): 108-112. (in Chinese with English abstract)
[21] 关宋萌. 土壤酶及其研究法. 北京: 农业出版社, 1986. pp 274-323.
Guan S M. Soil Enzymes and Their Research Methods. Beijing: Agriculture Press, 1986. pp 274-323. (in Chinese)
[22] 莫钊文, 潘圣刚, 王在满, 罗锡文, 田华, 段美洋, 唐湘如. 机械同步深施肥对水稻品质和养分吸收利用的影响. 华中农业大学学报, 2013, 32(5): 34-39.
Mo Z W, Pan S G, Wang Z M, Luo W X, Tian H, Duan M Y, Tang X R. Effects of deeply mechanized fertilizer application on rice quality and nutrient absorption and utilization of direct seeding rice. J South China Agric Univ, 2013, 32(5): 34-39. (in Chinese with English abstract)
[23] Pan S G, Wen X C, Wang Z M, Umair A, Tian H, Duan M Y, Mo Z W, Fan P S, Tang X R. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res, 2017, 203: 139-149.
doi: 10.1016/j.fcr.2016.12.011
[24] 赵红玉, 徐寿军, 杨成林, 王丽妍. 侧深施肥技术对寒地水稻生长及产量形成的影响. 内蒙古民族大学学报(自然科学版), 2017, 32: 347-352.
Zhao Y H, Xu S J, Yang C L, Wang L Y. Effects of side deep fertilizing on growth and yield of rice in cold regions. J Inner Mongolia Agric Univ (Nat Sci Edn), 2017, 32: 347-352. (in Chinese with English abstract)
[25] 怀燕, 陈照明, 张耿苗, 姜铭北, 许剑锋, 王强. 水稻侧深施肥技术的氮肥减施效应. 浙江大学学报(农业与生命科学版), 2020, 46(2): 217-224.
Huai Y, Chen Z M, Zhang G M, Jiang M B, Xu J F, Wang Q. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production. J Zhejiang Univ (Agric Life Sci Edn), 2020, 46(2): 217-224. (in Chinese with English abstract)
[26] 刘汝亮, 王芳, 王开军, 张爱平, 李友宏, 洪瑜, 杨正礼. 控释氮肥侧条施用对东北地区水稻产量和氮肥损失的影响. 水土保持学报, 2018, 32: 252-256.
Liu R L, Wang F, Wang K J, Zhang A P, Li Y H, Hong Y, Yang Z L. Effects of side strip application of controlled release nitrogen fertilizer on rice yield and nitrogen loss in Northeast China. J Soil Water Conserv, 2018, 32: 252-256. (in Chinese with English abstract).
[27] 王昕, 唐宏亮, 申建波. 玉米根系对土壤氮、磷空间异质性分布的响应. 植物营养与肥料学报, 2013, 19: 1058-1064.
Wang X, Tang H L, Shen J B. Root responses of maize to spatial heterogenous nitrogen and phosphorus. Plant Nutr Fert Sci, 2013, 19: 1058-1064. (in Chinese with English abstract).
[28] 郑圣先, 聂军, 戴平安, 郑颖俊. 控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响. 植物营养与肥料学报, 2006, 12: 2188-2194.
Zhen S X, Nie J, Dai P A, Zheng Y J. Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice. Plant Nutr Fert Sci, 2006, 12: 2188-2194. (in Chinese with English abstract)
[29] 陈亚宇. 不同施肥深度对水稻氮磷钾动态变化及生长和产量的影响. 湖南农业大学硕士学位论文, 湖南长沙, 2015.
Chen Y Y. NPK Dynamic Changes of Rice Cultivation System and Influence of Growth and Yield with Different Fertilization Depth. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015. (in Chinese with English abstract)
[30] 彭玉, 马均, 蒋明金, 严奉君, 孙永健, 杨志远. 缓/控释肥对杂交水稻根系形态、生理特性和产量的影响. 植物营养与肥料学报, 2013, 19: 1048-1057.
Peng Y, Ma J, Jiang M J, Yan F J, Sun Y J, Yang Z Y. Effect of slow/controlled release fertilizer on root morphological and physiological characteristics of rice. Plant Nutr Fert Sci, 2013, 19: 1048-1057. (in Chinese with English abstract)
[31] 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 根际氧环境对水稻幼苗根系微形态结构的影响及其生理机制. 中国水稻科学, 2022, 36: 399-409.
doi: 10.16819/j.1001-7216.2022.211103
Xiao S D, Xu C M, Wang D Y, Zhang X F, Chu G, Liu Y H. The effect of rhizosphere oxygen environment on the root micromorphological structure and its physiological mechanism of rice seedlings. Chin J Rice Sci, 2022, 36: 399-409.
[32] Fan M, Zhu J, Richards C, Brown K M, Lynch J P. Physiological roles for aerenchyma in phosphorus-stressed roots. Funct Plant Biol, 2003, 30: 493-506.
doi: 10.1071/FP03046 pmid: 32689034
[33] Yang X, Li Y, Ren B, Ding L, Gao C, Shen Q, Guo S. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant Cell Physiol, 2012, 53: 495-504.
doi: 10.1093/pcp/pcs003 pmid: 22257489
[34] 李科, 卢向阳, 彭丽莎. 饲料稻氮代谢特性研究. 湖南农业大学学报(自然科学版), 2001, (5): 331-334.
Li K, Lu X Y, Peng L S. Characteristics of nitrogen metabolism in forage rice. J Hunan Agric Univ (Nat Sci Edn), 2001, (5): 331-334. (in Chinese with English abstract)
[35] 卢永恩, 罗风, 杨猛, 李香花, 练兴明. 抑制表达谷氨酸合酶基因对水稻碳氮代谢的影响. 中国科学: 生命科学, 2011, 41: 481-493.
Lu Y N, Luo F, Yang M, Li X H, Lian X M. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.). Sci China Life Sci, 2011, 41: 481-493. (in Chinese with English abstract)
[1] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice-oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[2] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerancea [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[3] LIU Er-Hua, ZHOU Guang-Sheng, WU Bing-Yi, SONG Yan-Ling, HE Qi-Jin, LYU Xiao-Min, ZHOU Meng-Zi. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981–2010 in single-cropping rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1305-1315.
[4] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[5] DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431.
[6] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[7] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
[8] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[9] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[10] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
[11] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[12] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[13] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[14] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[15] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .