Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1028-1038.doi: 10.3724/SP.J.1006.2023.24104

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China

MENG Lu1,2(), DU Ming-Wei1, LI Fang1, QI Hai-Kun1, LU Zheng-Ying3, XU Dong-Yong4, LI Cun-Dong5, ZHANG Ming-Cai1, TIAN Xiao-Li1,*(), LI Zhao-Hu1   

  1. 1Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2High Latitude Crops Institute, Shanxi Agricultural University, Datong 037006, Shanxi, China
    3Handan Academy of Agricultural Sciences, Handan 056001, Hebei, China
    4Hebei Cottonseed Engineering Technology Research Center, Hejian 062450, Hebei, China
    5College of Agronomy, Hebei Agricultural University, Baoding 071000, Hebei, China
  • Received:2022-04-27 Accepted:2022-09-05 Online:2023-04-12 Published:2022-09-20
  • Contact: *E-mail: tianxl@cau.edu.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-15-16);Key Research and Development Program of Hebei Province(21326404D)

Abstract:

Chemical defoliation and ripening is the premise of mechanical harvesting of cotton. The population size and maturity of cotton before defoliants significantly affect the efficacy of harvest aids. This field experiment was carried out in Hejian, Hebei in 2016 and 2017. Different varieties (CRI 60, Xinkang 4), planting densities (90,000 plants hm-2 and 120,000 plants hm-2), and sowing dates (April 20 and May 10) were used to create different populations. Then, 50% thidiazuron·ethephon suspension agent (T·E) was applied for defoliation and boll opening in late-September. The results showed that there were no differences in leaf number, boll opening percent and ratio of leaf to boll just prior to the application of T·E between two varieties, and 120,000 plants hm-2 had more leaves and lower percent of open bolls before T·E application compared with 90,000 plants hm-2. In addition, the late planting produced more leaves and higher ratio of leaf to boll, but lower percent of open bolls than early planting before T·E application. T·E enhanced leaf dropping powerfully, the defoliation was more than 90% at 21 days after T·E application in both years, and the defoliation efficacy was near or beyond 90%, while the number of residual leaves were 8.1-23.3 per square meter. The defoliation did not differ between varieties, plant densities, and sowing dates. However, the 120,000 plants hm-2 and late planting had more remained leaves than 90,000 plants hm-2 and early planting in 2017, respectively. In contrast to the excellent defoliation efficacy after T·E application, the efficacy of boll opening of T·E was less than 25%. At 21 days after T·E application, the percentage of open bolls was still lower than 70% in both years. Different varieties and plant densities had similar percent of boll opening, but the late sowing showed lower percent than early sowing. The Spearman partial correlation analysis showed that defoliation, defoliation efficacy and the number of remaining leaves at 7, 14, and 21 days after the T·E treatment were not related to the number of leaves, boll opening rate, and ratio of leaves to bolls before T·E application. However, there was a significant negative correlation between the percent of open bolls at 7, 14, and 21 days after T·E with the number of leaves before T·E (r = -0.393 to -0.432), and a significant positive correlation with the boll opening percent before T·E (r = 0.558 to 0.862). The efficacy of boll opening was also positively correlated with the boll opening percent before T·E. In conclusion, the efficacy of chemical defoliation under high-density population (90,000-120,000 plants hm-2) in the Yellow River Basin was better, and had a minor relationship with cotton population and maturity before treatment. However, the efficacy of boll opening was low, and the percent of boll opening at 21 days after T·E treatment was less than 95% for mechanical harvesting. In addition, the percent and efficacy of boll opening had a strong dependence on cotton population size and maturity before T·E application. The key to improve the efficacy of harvest aids in cotton is to control the population size and promote earliness through reasonable decision of sowing time and density.

Key words: cotton, canopy characteristics, defoliation, percent of boll opening, correlation analysis

Fig. 1

Average daily temperature and rainfall during cotton growing period in 2016 and 2017"

Fig. 2

Daily average temperature, precipitation, and sunshine hours after spraying defoliants in 2016 and 2017"

Table 1

Effect of variety and sowing date on leaf number, boll opening rate, and leaf-boll ratio in cotton before leaf removal and ripening in 2016"

处理
Treatment
叶片数
Number of leaves (No. m-2)
吐絮率
Percentage of open bolls (%)
叶铃比
Ratio of leaves to bolls
品种
Variety
欣抗4号 Xinkang 4 310.7 a 22.5 a 2.1 a
中棉所60 CRI60 323.9 a 19.2 a 2.1 a
播期
Sowing date
4月20日 April 20 301.6 a 29.1 a 1.8 b
5月10日 May 10 333.0 a 12.7 b 2.4 a
变异来源
Source of variation
品种 Variety (V) 0.287 0.141 0.871
播期 Sowing date (S) 0.014 0 0
品种×播期 V×S 0.255 0.480 0.839

Table 2

Effect of density and sowing date on leaf number, boll opening rate, and leaf-boll ratio in cotton before leaf removal and ripening in 2017"

处理
Treatment
叶片数
Number of leaves (No. m-2)
吐絮率
Percentage of open bolls (%)
叶铃比
Ratio of leaves to bolls
密度
Density (plant hm-2)
90,000 302.8 b 16.3 a 2.1 a
120,000 353.8 a 11.9 b 2.2 a
播期
Sowing date
4月20日 April 20 311.9 b 18.3 a 1.9 b
5月10日 May 10 344.7 a 10.0 b 2.4 a
变异来源
Source of variation
密度 Density (D) 0 0.008 0.653
播期 Sowing date (S) 0.014 0 0
密度×播期 D×S 0.720 0.357 0.319

Table 3

Effect of variety, sowing date, and harvest aids on cotton defoliation and defoliation efficacy in 2016 (%)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
脱叶率
Defoliation
药效
Defoliation
efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
品种
Variety
欣抗4号 Xinkang 4 58.9 a 62.0 a 76.7 a 84.0 a 81.8 a 88.1 a
中棉所60 CRI60 60.7 a 67.1 a 77.5 a 87.0 a 81.1 a 90.0 a
播期
Sowing date
4月20日 April 20 58.0 a 60.6 a 76.9 a 82.2 b 81.0 a 86.0 b
5月10日 May 10 61.5 a 68.4 a 77.4 a 88.7 a 81.9 a 92.1 a
脱叶催熟剂
Harvest aids
CK 22.7 b 35.7 c 43.5 b
T·E 1800 mL hm-2 74.3 a 69.0 a 90.6 ab 85.6 b 93.4 a 87.9 ab
T·E 2700 mL hm-2 69.9 a 60.7 a 87.2 b 79.0 b 92.5 a 86.5 b
T·E 1350+1350 mL hm-2 72.2 a 64.0 a 95.0 a 91.8 a 96.4 a 92.8 a
变异来源
Source of
variation
品种 Variety (V) 0.585 0.246 0.647 0.241 0.700 0.435
播期 Sowing date (S) 0.282 0.078 0.784 0.014 0.554 0.017
脱叶催熟剂 Harvest aids (H) 0 0.300 0 0.001 0 0.092
品种×播期 V×S 0.131 0.181 0.209 0.898 0.331 0.369
品种×脱叶催熟剂 V×H 0.580 0.478 0.864 0.797 0.798 0.692
播期×脱叶催熟剂 S×H 0.889 0.876 0.058 0.881 0.251 0.913
品种×播期×脱叶催熟剂 V×S×H 0.301 0.179 0.063 0.091 0.553 0.362

Table 4

Effect of density, sowing date, and harvest aids on cotton defoliation and defoliant efficacy in 2017 (%)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
脱叶率
Defoliation
药效
Defoliation efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
密度
Density (plant hm-2)
90,000 72.2 a 80.5 a 81.8 a 89.7 a 88.6 a 92.0 a
120,000 66.8 b 76.0 a 79.7 a 89.1 a 86.3 a 91.2 a
播期
Sowing date
4月20日 April 20 70.9 a 78.6 a 81.8 a 90.0 a 88.6 a 92.7 a
5月10日 May 10 68.0 a 77.9 a 79.6 a 88.8 a 86.3 a 90.5 a
脱叶催熟剂
Harvest aids
CK 26.2 b 41.6 b 60.1 b
T·E 1800 mL hm-2 82.2 a 77.1 a 92.4 a 87.7 a 95.8 a 90.4 a
T·E 2700 mL hm-2 83.3 a 76.3 a 92.7 a 87.0 a 96.5 a 90.8 a
T·E 1350+1350 mL hm-2 86.2 a 81.3 a 96.2 a 93.5 a 97.4 a 93.6 a
变异来源
Source of variation
密度 Density (D) 0.042 0.182 0.334 0.811 0.242 0.774
播期 Sowing date (S) 0.259 0.834 0.300 0.666 0.222 0.390
脱叶催熟剂 Harvest aids (H) 0 0.534 0 0.084 0 0.495
密度×播期 D×S 0.672 0.752 0.327 0.862 0.583 0.487
密度×脱叶催熟剂 D×H 0.954 0.832 0.742 0.808 0.469 0.610
播期×脱叶催熟剂 S×H 0.577 0.919 0.617 0.660 0.633 0.687
密度×播期×脱叶催熟剂 D×S×H 0.921 0.762 0.445 0.818 0.874 0.993

Table 5

Effect of variety, sowing date, and harvest aids on the number of remained leaves in 2016"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
品种
Variety
欣抗4号 Xinkang 4 125.1 a 70.8 a 56.1 a
中棉所60 CRI60 133.2 a 77.2 a 65.4 a
播期
Sowing date
4月20日 April 20 129.6 a 72.0 a 60.1 a
5月10日 May 10 128.7 a 75.9 a 61.4 a
脱叶催熟剂
Harvest aids
CK 253.4 a 212.2 a 187.0 a
T·E 1800 mL hm-2 79.9 b 29.1 b 20.7 b
T·E 2700 mL hm-2 90.4 b 38.2 b 23.3 b
T·E 1350+1350 mL hm-2 92.9 b 16.4 b 12.0 b
变异来源
Source of
variation
品种 Variety (V) 0.492 0.379 0.206
播期 Sowing date (S) 0.939 0.595 0.859
脱叶催熟剂 Harvest aids (H) 0 0 0
品种×播期 V×S 0.050 0.089 0.189
品种×脱叶催熟剂 V×H 0.313 0.157 0.185
播期×脱叶催熟剂 S×H 0.880 0.109 0.293
品种×播期×脱叶催熟剂 V×S×H 0.289 0.039 0.400

Table 6

Effect of density, sowing date, and harvest aids on the number of remained leaves in 2017"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
密度
Density
90,000 plant hm-2 82.8 b 54.0 b 33.9 b
120,000 plant hm-2 115.0 a 70.6 a 47.3 a
播期
Sowing date
4月20日 April 20 88.7 b 54.4 b 34.1 b
5月10日 May 10 109.1 a 70.2 a 47.1 a
脱叶催熟剂
Harvest aids
CK 237.4 a 187.2 a 128.2 a
T·E 1800 mL hm-2 60.3 b 26.5 b 14.7 b
T·E 2700 mL hm-2 53.9 b 23.5 b 11.4 b
T·E 1350+1350 mL hm-2 44.1 b 12.0 b 8.1 b
变异来源
Source of
variation
品种 Variety (V) 0 0.017 0.027
播期 Sowing date (S) 0.014 0.023 0.032
脱叶催熟剂 Harvest aids (H) 0 0 0
品种×播期 V×S 0.514 0.390 0.614
品种×脱叶催熟剂 V×H 0.318 0.078 0.054
播期×脱叶催熟剂 S×H 0.038 0.042 0.080
品种×播期×脱叶催熟剂 V×S×H 0.884 0.509 0.829

Table 7

Effect of variety, sowing date, and harvest aids on rate of open bolls and boll opening efficacy in 2016 (%)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
品种
Variety
欣抗4号 Xinkang 4 34.4 a -10.9 a 53.4 a -0.6 a 57.8 a -1.4 b
中棉所60 CRI60 30.4 a -6.2 a 50.4 a 12.3 a 57.5 a 23.4 a
播期
Sowing date
4月20日 April 20 42.6 a -10.1 a 61.9 a 4.7 a 66.9 a 11.1 a
5月10日 May 10 22.2 b -7.0 a 42.0 b 7.0 a 48.4 b 11.0 a
脱叶催熟剂
Harvest aids
CK 36.2 a 49.2 53.4 bc
T·E 1800 mL hm-2 29.9 a -11.1 a 56.5 10.9 a 63.5 a 19.0 ab
T·E 2700 mL hm-2 33.9 a -2.4 a 55.0 13.8 a 62.6 ab 23.3 a
T·E 1350+1350 mL hm-2 29.7 a -12.1 a 47.0 -7.2 a 51.1 c -9.2 b
变异来源
Source of variation
品种 Variety (V) 0.123 0.323 0.337 0.170 0.922 0.033
播期 Sowing date (S) 0 0.504 0 0.807 0 0.995
脱叶催熟剂 Harvest aids (H) 0.209 0.185 0.160 0.154 0.035 0.050
品种×播期 V×S 0.908 0.867 0.733 0.867 0.687 0.683
品种×脱叶催熟剂 V×H 0.769 0.554 0.827 0.894 0.438 0.661
播期×脱叶催熟剂 S×H 0.902 0.521 0.991 0.807 0.990 0.601
品种×播期×脱叶催熟剂 V×S×H 0.992 0.787 0.997 0.954 0.989 0.946

Table 8

Effect of density, sowing date, and harvest aids on rate of open bolls and boll opening efficacy in 2017 (%)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
密度
Density
90,000 plant hm-2 25.1 a 6.1 a 35 a 14.8 a 38.4 a 17.7 a
120,000 plant hm-2 20.8 b -2.4 a 31 a 8.3 a 34.5 a 7.2 a
播期
Sowing date
4月20日 April 20 28.3 a 5.2 a 41.6 a 20.5 a 45.3 a 23.7 a
5月10日 May 10 17.6 b -1.5 a 24.4 b 2.6 b 27.5 b 1.2 b
脱叶催熟剂
Harvest aids
CK 21.1 a 25.8 b 28.8 b
T·E 1800 mL hm-2 24.9 a 4.6 a 35.4 a 12.0 a 38.8 a 13.0 a
T·E 2700 mL hm-2 21.3 a -0.5 a 33.9 a 10.7 a 37.4 a 11.6 a
T·E 1350+1350 mL hm-2 24.6 a 1.4 a 37.1 a 11.9 a 40.6 a 12.7 a
变异来源
Source of
variation
密度 Density (D) 0.046 0.076 0.123 0.232 0.136 0.053
播期 Sowing date (S) 0 0.158 0 0.002 0 0
脱叶催熟剂 Harvest aids (H) 0.426 0.667 0.018 0.977 0.013 0.976
密度×播期 D×S 0.100 0.104 0.062 0.256 0.161 0.300
密度×脱叶催熟剂 D×H 0.044 0.139 0.111 0.154 0.060 0.084
播期×脱叶催熟剂 S×H 0.756 0.978 0.245 0.912 0.090 0.840
密度×播期×脱叶催熟剂 D×S×H 0.574 0.921 0.767 0.769 0.710 0.763

Table 9

Spearman partial correlation of cotton leaves, open boll percent, and ratio of leaves to bolls before harvest aids application and efficacy of harvest aids in defoliation and boll opening (n = 84)"

药后 After harvest aids application 药前 Before harvest aids application
脱叶吐絮效果
Functions of harvest aids
天数
Days (d)
叶片数
Number of leaves
吐絮率
Percentage of open bolls
叶铃比
Ratio of leaves to bolls
r p r p r p
脱叶率
Defoliation
7 0.142 0.192 -0.099 0.362 -0.165 0.128
14 0.133 0.222 -0.159 0.143 -0.148 0.173
21 0.046 0.675 -0.342 0.001 -0.256 0.018
脱叶率药效
Defoliant efficacy of defoliation rate
7 0.143 0.193 -0.128 0.244 -0.182 0.098
14 0.104 0.347 -0.187 0.089 -0.146 0.184
21 0.004 0.972 -0.324 0.003 -0.233 0.033
残留叶片数
Number of remained leaves
7 0.099 0.365 0.092 0.398 0.188 0.083
14 0.059 0.591 0.195 0.072 0.196 0.070
21 0.144 0.187 0.347 0.001 0.282 0.009
吐絮率
Percent of open bolls
7 -0.416 0 0.862 0 0.224 0.038
14 -0.393 0 0.652 0 0.077 0.479
21 -0.432 0 0.558 0 0.076 0.491
吐絮率药效
Defoliant efficacy of boll opening rate
7 -0.026 0.819 0.289 0.008 0.139 0.211
14 -0.128 0.250 0.299 0.006 0.045 0.689
21 -0.213 0.054 0.240 0.030 0.069 0.536
[1] 张鲁云, 陈永成. 新疆生产建设兵团机采棉现状及建议. 农业机械, 2011, 3(5): 80-82.
Zhang L Y, Chen Y C. Current situation and suggestions of machine-picking cotton in Xinjiang production and construction. Farm Mach, 2011, 3(5): 80-82 (in Chinese with English abstract).
[2] Suttle J C. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiol, 1988, 86: 241-245.
doi: 10.1104/pp.86.1.241 pmid: 16665874
[3] Brecke B J, Banks J C, Cothren J T. Harvest-aid treatments:products and application timing. In: Supak J R, Snipes C E, eds. Cotton Harvest Management: Use and Influence of Harvest Aids. Memphis: the Cotton Foundation, 2001. pp 119-142.
[4] 陈冠文, 李新裕, 王光强, 韩树德, 谢军, 乔江, 陶学江, 阎志顺. 南疆机采棉田化学脱叶技术试验. 新疆农垦科技, 2000, (6): 9-11.
Chen G W, Li X Y, Wang G Q, Han S D, Xie J, Qiao J, Tao X J, Yan Z S. Experiment of chemical defoliation technology in machine-picked cotton fields in southern Xinjiang. Xinjiang Farm Res Sci Technol, 2000, (6): 9-11. (in Chinese)
[5] 周先林, 覃琴, 王龙, 李璐, 胡成成, 洪秀春, 王伟, 朱海勇. 脱叶剂对两种机采模式下棉花脱叶效果及纤维品质的影响. 中国农业科技导报, 2020, 22(11): 144-152.
doi: 10.13304/j.nykjdb.2019.0628
Zhou X L, Qin Q, Wang L, Li L, Hu C C, Hong X C, Wang W, Zhu H Y. Influence of defoliant on defoliation effect and fiber quality of cotton under two kinds of mechanical harvesting modes. J Agric Sci Technol, 2020, 22(11): 144-152. (in Chinese with English abstract)
[6] 刘婵. 不同脱叶剂效果及对棉花产量品质的影响. 塔里木大学硕士学位论文, 新疆维吾尔自治区阿拉尔, 2021.
Liu C. Effects of Different Defoliants and Effects on Cotton Yield and Quality. MS Thesis of Tarim University, Alaer, Xinjiang Uygur Autonomous Region, China, 2021 (in Chinese with English abstract).
[7] Snipes C E, Baskin C C. Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Res, 1994, 37: 137-143.
doi: 10.1016/0378-4290(94)90042-6
[8] Wright S D, Hutmacher R B. Impact of early defoliation on California Pima Cotton boll opening, lint yield, and quality. J Crop Imp, 2015, 29: 528-541.
[9] Wang H M, Gao K, Fang S, Zhou Z G. Cotton yield and defoliation efficiency in response to nitrogen and harvest aids. Agron J, 2019, 111: 250-256.
doi: 10.2134/agronj2018.01.0061
[10] Gwathmey C O, Bednarz C W, Fromme D D, Holman E M, Miller D K. Agronomy and soils: response to defoliation timing based on heat-unit accumulation in diverse field environments. J Cotton Sci, 2004, 8: 142-153.
[11] Reddy V R. Modeling ethephon-temperature interactions in cotton. Comput Electron Agric, 1995, 13: 27-35.
doi: 10.1016/0168-1699(95)00012-S
[12] Gwathmey C O, Clement J D. Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crops Res, 2010, 116: 101-107.
doi: 10.1016/j.fcr.2009.11.019
[13] Kerby T A, Buxton D R. Competition between adjacent fruiting forms. Agron J, 1981, 73: 867-871.
doi: 10.2134/agronj1981.00021962007300050028x
[14] Heitholt J J. Canopy characteristics associated with deficient and excessive cotton plant population densities. Crop Sci, 1994, 34: 1291-1297.
doi: 10.2135/cropsci1994.0011183X003400050028x
[15] Kaggwa-Asiimwe R, Andrade-Sanchez P, Wang G Y. Plant architecture influences growth and yield response of upland cotton to population density. Field Crop Res, 2013, 145: 52-59.
doi: 10.1016/j.fcr.2013.02.005
[16] 牛玉萍, 陈宗奎, 杨林川, 罗宏海, 张旺锋. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响. 作物学报, 2016, 42: 1506-1515.
doi: 10.3724/SP.J.1006.2016.01506
Niu Y P, Chen Z K, Yang L C, Luo H H, Zhang W F. Effect of drip irrigation pattern and planting density on growth and yield performance of cotton in arid area. Acta Agron Sin, 2016, 42: 1506-1515. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01506
[17] 赵新华, 束红梅, 王友华, 陈兵林, 周治国. 播期对棉铃生物量和氮累积与分配的影响及其与棉铃品质的关系. 作物学报, 2010, 36: 1707-1714.
doi: 10.3724/SP.J.1006.2010.01707
Zhao X H, Shu H M, Wang Y H, Chen B L, Zhou Z G. Effects of sowing date on accumulation and distribution of biomass and nitrogen in cotton bolls. Acta Agron Sin, 2010, 36: 1707-1714. (in Chinese with English abstract)
[18] 易福华. 地膜内由温度梯度引起的土壤水分运动及其应用. 中国农业科学, 1988, 21(1): 27-32.
Yi F H. Soil water movement caused by temperature gradient in plastic film and its application. Sci Agric Sin, 1988, 21(1): 27-32. (in Chinese with English abstract)
[19] 董忠义, 冯永平, 苏彩虹. 旱地棉花高产稳产抗逆栽培技术研究. 干旱地区农业研究, 1996, 4(4): 40-46.
Dong Z Y, Feng Y P, Su C H. Research on high-yield, stable-yield and stress-resistant cultivation techniques of cotton in dryland. Agric Res Arid Areas, 1996, 4(4): 40-46. (in Chinese with English abstract)
[20] Nuti R C, Viator R P, Casteel S, Edmisten K L, Wells R. Effect of planting date, mepiquat chloride, and glyphosate application to glyphosate-resistant cotton. Agron J, 2006, 98: 1627-1633.
doi: 10.2134/agronj2005.0360
[21] Boquet D J, Clawson E L. Cotton planting date: yield, seedling survival, and plant growth. Agron J, 2009, 101: 1123-1130.
doi: 10.2134/agronj2009.0071
[22] Kerby T A, Hake K D. Monitoring cotton’s growth. In: Hake S J, Kerby T A, Hake K D, eds. Cotton Production Manual. Oakland: University of California Press, 1996. pp 335-355.
[23] 黎芳. 黄河流域棉区棉花 DPC+化学封顶技术及其配套措施研究. 中国农业大学博士学位论文, 北京, 2017.
Li F. Study on the Technology of Cotton Chemical Topping with DPC+ and Its Supporting Measures in the Yellow River Valley Region of China. PhD Dissertation of China Agricultural University, Beijing, China, 2017. (in Chinese with English abstract)
[24] 王香茹, 侯玉茹, 杜明伟, 黄冬梅, 李亚兵, 田晓莉, 李召虎. 地点、播期和品种对黄河流域棉区棉花脱叶催熟剂应用效果的影响. 中国棉花, 2017, 44(1): 6-12.
Wang X R, Hou Y R, Du M W, Huang D M, Li Y B, Tian X L, Li Z H. Effect of harvest aids on cotton in the yellow river valley region as affected by site, planting date and cultivars. China Cotton, 2017, 44(1): 6-12. (in Chinese with English abstract)
[25] 王香茹. 黄河流域棉区适于机械采收的棉花播期和密度研究. 中国农业大学博士学位论文, 北京, 2016.
Wang X R. The Managing of Planting Date and Plant Density for Mechanical Harvesting of Cotton in the Yellow River Valley of China. PhD Dissertation of China Agricultural University, Beijing, China, 2016. (in Chinese with English abstract)
[26] Hake S J, Hake K D, Kerby T A. Preharvest/harvest decisions. In: Hake S J, Kerby T A, Hake K D, eds. Cotton production manual. Oakland: Division of Agriculture and Natural Resources Press, 1996. pp 73-81.
[27] Cathey G W. Physiology of defoliation in cotton production. In: Mauney J R, Stewart J M, eds. Cotton Physiology. Memphis: The Cotton Foundation, 1986. pp 143-153.
[28] Gwathmey C O, Cothren J T, Legé K E, Logan J, Roberts B, Supak J R. Influence of environment on cotton defoliation and boll opening. In: Supak J R, Snipes C E, eds. Cotton Harvest Management: Use and Influence of Harvest Aids. Memphis: the Cotton Foundation, 2001. pp 51-72.
[29] 谈春松. 棉花株型栽培研究. 中国农业科学, 1993, 26(4): 36-43.
Tan C S. Research on plant type cultivation of cotton. Sci Agric Sin, 1993, 26(4): 36-43. (in Chinese with English abstract)
[30] Brodrick R, Bange M P, Milroy S P, Hammer G L. Yield and maturity of ultranarrow row cotton in high input production systems. Agron J, 2010, 102: 843-848.
doi: 10.2134/agronj2009.0473
[31] Roussopoulos D, Liakatas A, Whittington W J. Cotton responses to different light-temperature regimes. J Agric Sci, 1998, 131: 277-283.
doi: 10.1017/S0021859698005735
[32] 刘文燕, 孙惠珍, 周庆祺, 郑泽荣. 棉铃开裂生理: I. 棉铃的开裂与内生乙烯释放. 中国棉花, 1981, (1): 22-24.
Liu W Y, Sun H Z, Zhou Q Q, Zheng Z R. Physiology of cotton boll dehiscence: I. Dehiscence of cotton boll and release of endogenous ethylene. China Cotton, 1981, (1): 22-24. (in Chinese with English abstract)
[33] 宋兴虎. 长江流域麦/油后直播棉脱叶催熟技术研究. 中国农业大学博士学位论文, 北京, 2022.
Song X H. Study on Defoliation and Ripening Technology of Direct Seeding Cotton after Wheat/Rape in Yangtze River Valley of China. PhD Dissertation of China Agricultural University, >Beijing, China, 2022. (in Chinese with English abstract)
[1] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[2] LEI Jian-Feng, LI Yue, DAI Pei-Hong, ZHAO Yi, YOU Yang-Zi, JIA Jian-Guo, ZHAO Shuai, QU Yan-Ying, LIU Xiao-Dong. Study on VIGE system mediated by different plant viruses in cotton [J]. Acta Agronomica Sinica, 2023, 49(4): 978-987.
[3] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[4] LOU Shan-Wei, GAO Fei, WANG Chong, TIAN Xiao-Li, DU Ming-Wei, DUAN Liu-Sheng. Screening of different dropping formulations about mepiquat chloride and their effects on cotton growth and development [J]. Acta Agronomica Sinica, 2023, 49(2): 552-560.
[5] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[6] LI Ming-Jiang, LEI Jian-Feng, ZULIPIYE·Tuoheniyazi , DAI Pei-Hong, LIU Chao, LIU Xiao-Dong. Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt [J]. Acta Agronomica Sinica, 2022, 48(9): 2265-2273.
[7] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[8] ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812.
[9] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[10] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[11] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[12] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[15] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!