Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1016-1027.doi: 10.3724/SP.J.1006.2023.24037

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus

BAI Cheng-Cheng**(), YAO Xiao-Yao**(), WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu*()   

  1. College of Agronomy and Biotechnology/Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
  • Received:2022-02-13 Accepted:2022-06-07 Online:2023-04-12 Published:2022-06-21
  • Contact: *E-mail: nmniyu@126.com
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32171938);National Natural Science Foundation of China(31771694);Natural Science Foundation of Chongqing, China(cstc2021jcyj-msxmX0332);China Agriculture Research System of MOF and MARA(CARS-12)

Abstract:

Very-long-chain (VLC) alkanes are the main components of cuticular wax in Brassica napus, which play a key role in preventing non-stomatal water loss. BnCER1-2 is the core enzyme that catalyzes the synthesis of VLC alkanes in B. napus. However, it is unclear whether BnCER1-2 protein regulates VLC alkane synthesis by interacting with other proteins. Four genes potentially involved in VLC alkane synthesis, BnCER3.a10, BnCER3.c02, BnCYTB5B.c09, and BnCER1-L2.a05, were screened previously by the transcriptome in B. napus with differential wax load. In this study, their coding sequences were cloned from B. napus. A typical fatty acid hydroxylase domain and a wax2 C-terminal domain were detected in the predicted BnCER3.a10/c02 and BnCER1-L2.a05 proteins, while cyt_b5 protein family conserved domain was in the predicted BnCYTB5B.c09. Subcellular localization showed that BnCER3.a10/c02, BnCYTB5B.c09, and BnCER1-L2.a05 were all located in the endoplasmic reticulum, which were co-located with BnCER1-2. Bimolecular fluorescence complementary (BiFC) and luciferase complementation assay (LCA) revealed that BnCER3.a10, BnCYTB5B.c09, and BnCER1-L2.a05 interacted with BnCER1-2 protein, while BnCER3.c02 did not interact with BnCER1-2. The RT-qPCR indicated that BnCER3.a10 and BnCYTB5B.c09 were mainly expressed in the stems or leaves of B. napus, and the relative expression was significantly up-regulated under drought stress, which were consistent with the expression pattern of BnCER1-2. The relative expression levels of BnCER3.a10 decreased significantly under NaCl and low temperature stresses. Further, the relative expression level of BnCER3.a10 was significantly down-regulated by MeJA and ACC, while the relative expression level of BnCYTB5B.c09 was up-regulated by ABA. The highest relative expression of BnCER1-L2.a05 was in flowers and the lowest in stems and leaves, and its expression was significantly down-regulated under drought, cold, and NaCl stresses. Further, the relative expression level of BnCER1-L2.a05 was up-regulated by SA, while down-regulated by MeJA. The relative expression levels of BnCER3.a10 and BnCYTB5B.c09 in B. napus with high wax/alkane load were significantly higher than that with low wax/alkane load, while BnCER1-L2.a05 had the opposite change. Comprehensive analysis suggested that BnCER3.a10 and BnCYTB5B.c09 may promote the biosynthesis of VLC alkanes in B. napus by interacting with BnCER1-2, while BnCER1-L2.a05 may negatively regulate the synthesis of VLC alkanes by interacting with BnCER1-2.

Key words: Brassica napus, cuticular wax, protein interaction, very-long-chain alkanes

Table 1

Primers used in BiFC"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
酶切位点
Restriction site
重组载体
Vector
FBnCER1-2 TCTGAGGAGGATCTTCCCGGGATGGCTACGAAACCAGGCATCC Sma I nYFP
RBnCER1-2 AGGGCATGCCTGCAGGTCGACTCAGGGGTATTGGAAGTGATGTGG Sal I
FBnCER3.a10 TCTAGGAGCTCGGTACCCGGGATGGTAGCTTTTTCAGCTTGGCCT Sma I cYFP
RBnCER3.a10 ATCGTATGGGTACATACTAGTTCTTGTGAGTGAAGAAACAGAGCGAA Spe I
FBnCER3.c02 TCTAGGAGCTCGGTACCCGGGATGGTTACTTTATCAGTCTGGCCTTGG Sma I cYFP
RBnCER3.c02 ATCGTATGGGTACATACTAGTATTAGTGAGTGAAGACACAGAGCTAAGGC Spe I
FBnCYTB5B.c09 TCTAGGAGCTCGGTACCCGGGATGGGCGGAGACGGCAAAGT Sma I cYFP
RBnCYTB5B.c09 ATCGTATGGGTACATACTAGTAGAAGAAGAAGGAGTCTTGGTGTAAGAACG Spe I
FBnCER1-L2.a05 TCTAGGAGCTCGGTACCCGGGATGGCGTCGAGACCAGGTTTTC Sma I cYFP
RBnCER1-L2.a05 ATCGTATGGGTACATACTAGTGTAACCATTGCTCAATCCTTTGGTCTC Spe I

Table 2

Primers used in LCA"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
酶切位点
Restriction site
重组载体
Vector
FBnCER1Bi AACACGGGGGACGAGCTCGGTACCATGGCTACGAAACCAGGCAT Kpn I nLUC
RBnCER1Bi GGACGCGTACGAGATCTGGTCGACGGGGTATTGGAAGTGATGTGG Sal I
FBnCER3.a10Bi TACGCGTCCCGGGGCGGTACCATGGTAGCTTTTTCAGCTTGGCCT Kpn I cLUC
RBnCER3.a10Bi ACGAAAGCTCTGCAGGTCGACTCATCTTGTGAGTGAAGAAACAGAGCG Sal I
FBnCER3.c02Bi TACGCGTCCCGGGGCGGTACCATGGTTACTTTATCAGTCTGGCCTTGG Kpn I cLUC
RBnCER3.c02Bi ACGAAAGCTCTGCAGGTCGACATTAGTGAGTGAAGACACAGAGCTAAGGC Sal I
FBnCYTB5.c09Bi TACGCGTCCCGGGGCGGTACCATGGGCGGAGACGGCAAAGT Kpn I cLUC
RBnCYTB5.c09Bi ACGAAAGCTCTGCAGGTCGACTCAAGAAGAAGAAGGAGTCTTGGTGTA Sal I
FBnCER1-L2.a05Bi TACGCGTCCCGGGGCGGTACCATGGCGTCGAGACCAGGTTTTC Kpn I cLUC
RBnCER1-L2.a05Bi ACGAAAGCTCTGCAGGTCGACCTAGTAACCATTGCTCAATCCTTTGGTCT Sal I

Table 3

Primers used in subcellular localization"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
酶切位点
Restriction site
FBnCER3.a10S GCTGCGGCAGCGGCCGAATTCATGGTAGCTTTTTCAGCTTGGCCT EcoR I
RBnCER3.a10S TTATCTAGATCCGGTGGATCCTCATCTTGTGAGTGAAGAAACAGAGCG BamH I
FBnCER3.c02S GCTGCGGCAGCGGCCGAATTCATGGTTACTTTATCAGTCTGGCCTTGG EcoR I
RBnCER3.c02S TTATCTAGATCCGGTGGATCCTCAATTAGTGAGTGAAGACACAGAGCTA BamH I
FBnCYTB5.c09S GCTGCGGCAGCGGCCGAATTCATGGGCGGAGACGGCAAAGT EcoR I
RBnCYTB5.c09S TTATCTAGATCCGGTGGATCCTCAAGAAGAAGAAGGAGTCTTGGTGTAAGAA BamH I
FBnCER1-L2.a05S GCTGCGGCAGCGGCCGAATTCATGGCGTCGAGACCAGGTTTTC EcoR I
RBnCER1-L2.a05S TTATCTAGATCCGGTGGATCCCTAGTAACCATTGCTCAATCCTTTGGTC BamH I

Table 4

Primers for RT-qPCR"

引物名称
Primer name
上游引物序列
Forward sequence (5°-3°)
引物名称
Primer name
下游引物序列
Reverse sequence (5°-3°)
扩增片段大小
Size (bp)
qFBnCER3.a10 AGATTCGGGTTCCAATACTT qRBnCER3.a10 TAACACCAATCTTATCAGCCCTA 94
qFBnCYTB5.c09 GGATTTCCTCATCAAGATCCTTCA qRBnCYTB5.c09 GGAGTCTTGGTGTAAGAACG 87
qFBnCER1-L2.a05 TGTCTTTGAGAGAAACCGC qRBnCER1-L2.a05 GTTGATAGATTCTTTACACTGCTG 135

Fig. 1

Structure domain of BnCER3.a10/c02, BnCYTB5B.c09, and BnCER1-L2.a05 A: fatty_acid_hydroxylase domain Wax2 C-terminal domain; B: wax2 C-terminal domain; C: cyt_B5 protein conserved domain. The proteins involved in amino acid sequence alignment include Arabidopsis thaliana CER1 (AT1G02205), CER1-L1 (AT1G02190), CER1-L2 (AT2G37700), and CER3 (AT5G57800). The CYTB5 proteins aligned are from Arabidopsis thaliana (AT5G48810), Brassica oleracea (XP_013609519.1), Brassica carinata (KAG2316461.1), Capsella rubella (XP_006279708.1), and Raphanus sativus (XP_018457867.1), respectively."

Fig. 2

Phylogenetic tree of BnCER3.a10/c02, BnCYTB5B.c09, BnCER1-L2.a05, and other related proteins from Brassicaceae species The amino acid sequences involved in phylogenetic analysis include AtCER1 (AT1G02205), AtCER1-L1 (AT1G02190), AtCER1-L2 (AT2G37700), AtCER3 (AT5G57800), and AtCYTB5 (AT5G48810) from Arabidopsis thaliana, BrCER1 (XP_009118866.2), BrCER1-L2 (XP_009143457.1), BrCER3 (XP_033137694.1), and BrCYTB5B (XP_009151679.1) from Brassica rapa, BoCER1 (QCO76034.1), BoCER1-L2 (XP_013632332.1), BoCER3 (XP_013621098.1), and BoCYTB5B (XP_013597870.1) from Brassica oleracea. (XP_013597870.1)。"

Fig. 3

Subcellular localization of BnCER3.a10/c02, BnCYTB5B.c09, and BnCER1-L2.a05 in tobacco leaf Bar: 20 μm."

Fig. 4

Interaction analysis of BnCER1-2 with BnCER3.a10, BnCYTB5B.c09, and BnCER1-L2.a05 protein by using BiFC The combination “pC1300-YN-OsHAL3 + pC2300-OsHAL3-YC” is used as the positive control, while the combination “pC1300-YN-BnCER1-2 + pC2300-OsHAL3-YC”, “pC1300-YN-OsHAL3 + pC2300-BnCER3.a10-YC”, “pC1300-YN-OsHAL3 + pC2300-BnCYTB5B.c09-YC”, and “pC1300-YN-OsHAL3 + pC2300-BnCER1-L2.a05-YC” are used as the negative controls, respectively. Bar: 20 μm."

Fig. 5

Interaction of BnCER1-2 with BnCER3.a10, BnCYTB5B.c09, and BnCER1-L2.a05 protein using LCA A: the interaction detection between BnCER3.a10 and BnCER1-2; B: the interaction detection between BnCYTB5B.c09 and BnCER1-2; C: the interaction detection between BnCER1-L2.a05 and BnCER1-2. The combination of NLuc empty vector with CLuc vector containing target gene, the combination of CLuc empty vector with NLuc vector containing target gene, and the combination of CLuc empty vector with NLuc empty vector were used as the negative controls, respectively."

Fig. 6

Relative expression profiles of BnCER3.a10, BnCYTB5B.c09, and BnCER1-L2.a05 in Brassica napus A: the specific relative expression of organs and tissues; B: the differential expression in Brassica napus with high load wax and low load wax; C: induced expression by abiotic stress and hormone. SA: salicylic acid; MeJA: methyl jasmonic acid; ACC: 1-aminocyclopropanecarboxylic acid; ABA: abscisic acid. *: P < 0.05."

[1] Ahmadi M, Bahrani M J. Yield and yield components of rapeseed as influenced by water stress at different growth stages and nitrogen levels. Am-Eur J Agric Environ Sci, 2009, 5: 755-761.
[2] Iizumi T, Ramankutty N. How do weather and climate influence cropping area and intensity? Glob Food Secur Agric Policy, 2015, 4: 46-50.
[3] Schreiber L, Skrabs M, Hartmann K D, Diamantopoulos P, Simanova E, Santrucek J. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta, 2001, 214: 274-282.
pmid: 11800392
[4] Riederer M, Schreiber L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot, 2001, 52: 205-208.
[5] Ficke A, Gadoury D M, Godfrey D, Dry I B. Host barriers and responses to Uncinula necator in developing grape berries. Phytopathology, 2004, 94: 438-445.
doi: 10.1094/PHYTO.2004.94.5.438 pmid: 18943761
[6] Eigenbrode S D, Rayor L, Chow J, Latty P. Effects of wax bloom variation in Brassica oleracea on foraging by avespid wasp. Entomol Exp Appl, 2000, 97: 161-166.
doi: 10.1046/j.1570-7458.2000.00726.x
[7] Krauss P, Markstädter C, Riederer M. Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ, 1997, 20: 1079-1085.
doi: 10.1111/j.1365-3040.1997.tb00684.x
[8] Ni Y, Xia R E, Li J N. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant, 2014, 36: 2481-2490.
doi: 10.1007/s11738-014-1621-x
[9] Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 2003, 42: 5180.
[10] Barthhlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surface. Planta, 1997, 202: 18.
doi: 10.1007/s004250050098
[11] 王婧, 刘泓利, 宋超, 倪郁. 甘蓝型油菜叶表皮蜡质组分及结构与菌核病抗性关系. 植物生理学报, 2012, 48: 958-964.
Wang J, Liu H L, Song C, Ni Y. Relationship between Brassica napus epicuticular wax composition and structure and resistance to Sclerotinia sclerotiorum. Plant Physiol J, 2012, 48: 958-964. (in Chinese with English abstract)
[12] Wang Y M, Jin S R, Xu Y, Li S, Zhang S J, Yuan Z, Li J N, Ni Y. Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J, 2020, 8: 26-37.
doi: 10.1016/j.cj.2019.04.006
[13] Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J D, Haslam R P, Napier J A, Lessire R, Joubès J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 2012, 24: 3106-3118.
doi: 10.1105/tpc.112.099796
[14] Pascal S, Bernard A, Deslous P, Gronnier J, Fournier-Goss A, Domergue F, Rowland O, Joubès J, Notes A. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane- forming complex. Plant Physiol, 2019, 179: 415-432.
doi: 10.1104/pp.18.01075
[15] Jin S R, Zhang S J, Liu Y H, Jiang Y W, Wang Y M, Li J N, Ni Y. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. BMC Plant Biol, 2020, 20: 458.
doi: 10.1186/s12870-020-02675-y
[16] Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubès J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29-45.
doi: 10.1104/pp.111.172320 pmid: 21386033
[17] 蒋有为. 甘蓝型油菜BnCER1-2.c09顺式作用元件及其反式作用因子研究. 西南大学硕士学位论文, 重庆, 2021.
Jiang Y W. Studies on the cis-acting Elements and Trans-acting Factors of BnCER1-2.c09 in Brassica napus. MS Thesis of Southwest University, Chongqing, China, 2021. (in Chinese with English abstract)
[18] Aarts M, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 1995, 7: 2115-2127.
doi: 10.1105/tpc.7.12.2115 pmid: 8718622
[19] Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S, Joubès J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918-1929.
doi: 10.1104/pp.109.141911
[20] Hu C D, Chinenov Y, Kerppola T K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell, 2002, 9: 789-798.
doi: 10.1016/S1097-2765(02)00496-3
[21] Zhou Z Y, Bi G Z, Zhou J M. Luciferase complementation assay for protein-protein interactions in plants. Curr Protoc Plant Biol, 2018, 3: 42-50.
doi: 10.1002/cppb.20066 pmid: 30040251
[1] CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925.
[2] CHEN Xiao-Han, WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. BnABCI8 affects chloroplast development of Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 893-905.
[3] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[4] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[5] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[6] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[7] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[8] LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947.
[9] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[10] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[11] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[12] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[13] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[14] YANG Wen-Jing, LU Hai-Qin, CHEN Wu-Jun, ZENG Lei, XIE Tao, JIANG Jin-Jin, WANG You-Ping. Functional identification of Bna-miR171g on improving tolerance to osmotic stress in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(12): 3071-3079.
[15] LIU Shu-Xian, YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection [J]. Acta Agronomica Sinica, 2022, 48(12): 3080-3090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .