Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1006-1015.doi: 10.3724/SP.J.1006.2023.24055
Previous Articles Next Articles
YAN Xin1,**(), XIANG Chao2,**(), LIU Rong1, LI Guan1, LI Meng-Wei1, LI Zheng-Li3, ZONG Xu-Xiao1,*(), YANG Tao1,*()
[1] |
Pandey A K, Rubiales D, Wang Y, Fang P, Sun T, Liu N, Xu P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor Appl Genet, 2021, 134: 755-776.
doi: 10.1007/s00122-020-03751-5 pmid: 33433637 |
[2] | Food and Agriculture Organization of the United Nations. Agriculture production data. https://www.fao.org/faostat/en/#compare. |
[3] |
Fan Z, Zhao Y, Chai Q, Zhao C, Yu A, Coulter J A, Gan Y, Cao W. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Sci Rep, 2019, 9: 10954.
doi: 10.1038/s41598-019-47554-1 pmid: 31358903 |
[4] |
Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866-878.
doi: 10.1111/j.1364-3703.2011.00718.x pmid: 21726385 |
[5] |
Hecht V, Laurie R E, Vander Schoor J K, Ridge S, Knowles C L, Liew L C, Sussmilch F C, Murfet I C, MacKnight R C, Weller J L. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell, 2011, 23: 147-161.
doi: 10.1105/tpc.110.081042 |
[6] |
Sussmilch F C, Berbel A, Hecht V, Vander Schoor J K, Ferrándiz C, Madueño F, Weller J L. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell, 2015, 27: 1046-1060.
doi: 10.1105/tpc.115.136150 |
[7] |
Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
doi: 10.1093/genetics/136.4.1457 pmid: 8013918 |
[8] |
Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199.
doi: 10.1093/genetics/121.1.185 pmid: 2563713 |
[9] |
王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245.
doi: 10.3724/SP.J.1006.2009.00239 |
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-345. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00239 |
|
[10] |
Wu L, Fredua-Agyeman R, Hwang S F, Chang K F, Conner R L, McLaren D L, Strelkov S E. Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theor Appl Genet, 2021, 134: 2965-2990.
doi: 10.1007/s00122-021-03871-6 |
[11] |
Aznar-Fernández T, Barilli E, Cobos M J, Kilian A, Carling J, Rubiales D. Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Bruchus pisorum) in a high-density integrated DArTseq SNP-based genetic map of pea. Sci Rep, 2020, 10: 33.
doi: 10.1038/s41598-019-56987-7 pmid: 31913335 |
[12] |
Guo Z, Cai L, Chen Z, Wang R, Zhang L, Guan S, Zhang S, Ma W, Liu C, Pan G. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-seq and RNA-seq. Royal Soc Open Sci, 2020, 7: 201081.
doi: 10.1098/rsos.201081 |
[13] |
Li R, Jiang H, Zhang Z, Zhao Y, Xie J, Wang Q, Zheng H, Hou L, Xiong X, Xin D, Hu Z, Liu C, Wu X, Chen Q. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. Int J Mol Sci, 2019, 21: 42.
doi: 10.3390/ijms21010042 |
[14] |
Pujol M, Alexiou K G, Fontaine A S, Mayor P, Miras M, Jahrmann T, Garcia-Mas J, Aranda M A. Mapping cucumber vein yellowing virus resistance in cucumber (Cucumis sativus L.) by using BSA-seq analysis. Front Plant Sci, 2019, 10: 1583.
doi: 10.3389/fpls.2019.01583 |
[15] |
Zheng Y, Xu F, Li Q, Wang G, Liu N, Gong Y, Li L, Chen Z H, Xu S. QTL mapping combined with bulked segregant analysis identify SNP markers linked to leaf shape traits in Pisum sativum using SLAF sequencing. Front Genet, 2018, 9: 615.
doi: 10.3389/fgene.2018.00615 |
[16] |
Kreplak J, Madoui M A, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar’an B, Bendahmane A, Aury J M, Batley J, Le Paslier M C, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930 |
[17] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111 |
[18] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[19] | Source Forge. Picard. San Diego, CA, USA. http://sourceforge.net/projects/picard/. |
[20] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[21] |
Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672 |
[22] |
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975 |
[23] |
Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One, 2013, 8: e68529.
doi: 10.1371/journal.pone.0068529 |
[24] | Deng Y, Jianqi L I, Songfeng W U, Zhu Y, Chen Y, Fuchu H E. Integrated nr database in protein annotation system and its localization. Comp Engin, 2006, 32: 71-72. |
[25] |
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet, 2000, 25: 25-29.
doi: 10.1038/75556 pmid: 10802651 |
[26] |
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32: D277-D280.
doi: 10.1093/nar/gkh063 pmid: 14681412 |
[27] | Tatusov R L, Galperin M Y, Natale D A, Koonin E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000, 28: 33-36. |
[28] |
Gillmor C S, Roeder A H, Sieber P, Somerville C, Lukowitz W. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS One, 2016, 11: e0146492.
doi: 10.1371/journal.pone.0146492 |
[29] | Branca A, Paape T D, Zhou P, Briskine R, Farmer A D, Mudge J, Bharti A K, Woodward J E, May G D, Gentzbittel L, Ben C, Denny R, Sadowsky M J, Ronfort J, Bataillon T, Young N D, Tiffin P. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci USA, 2011, 108: E864-E870. |
[30] |
Zhao M, Hu B, Fan Y, Ding G, Yang W, Chen Y, Chen Y, Xie J, Zhang F. Identification, analysis, and confirmation of seed storability-related loci in dongxiang wild rice (Oryza rufipogon Griff.). Genes (Basel), 2021, 12: 1831.
doi: 10.3390/genes12111831 |
[31] |
Liu D, Wei X, Sun D, Yang S, Su H, Wang Z, Zhao Y, Li L, Liang J, Yang L, Zhang X, Yuan Y. An SNP mutation of gene RsPP converts petal color from purple to white in radish (Raphanus sativus L.). Front Plant Sci, 2021, 12: 643579.
doi: 10.3389/fpls.2021.643579 |
[32] |
Qin L, Sun L, Wei L, Yuan J, Kong F, Zhang Y, Miao X, Xia G, Liu S. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress. Plant J, 2021, 105: 1010-1025.
doi: 10.1111/tpj.15083 |
[33] |
Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 2011, 65: 771-784.
doi: 10.1111/j.1365-313X.2010.04465.x |
[34] |
He F, Mu L, Yan G L, Liang N N, Pan Q H, Wang J, Reeves M J, Duan C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15: 9057-9091.
doi: 10.3390/molecules15129057 pmid: 21150825 |
[35] |
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532 |
[36] |
Deng J, Li J, Su M, Lin Z, Chen L, Yang P. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiol Biochem, 2021, 158: 518-523.
doi: 10.1016/j.plaphy.2020.11.038 |
[37] |
Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore K S, Zhao J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol, 2016, 210: 905-921.
doi: 10.1111/nph.13816 |
[38] |
Hellens R P, Moreau C, Lin-Wang K, Schwinn K E, Thomson S J, Fiers M W, Frew T J, Murray S R, Hofer J M, Jacobs J M, Davies K M, Allan A C, Bendahmane A, Coyne C J, Timmerman- Vaughan G M, Ellis T H. Identification of Mendel’s white flower character. PLoS One, 2010, 5: e13230.
doi: 10.1371/journal.pone.0013230 |
[1] | DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431. |
[2] | TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230. |
[3] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[4] | LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646. |
[5] | JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876. |
[6] | LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471. |
[7] | ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248. |
[8] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[9] | DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913. |
[10] | ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904. |
[11] | BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079. |
[12] | XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099. |
[13] | WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133. |
[14] | HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842. |
[15] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
|