Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1006-1015.doi: 10.3724/SP.J.1006.2023.24055

Previous Articles     Next Articles

Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique

YAN Xin1,**(), XIANG Chao2,**(), LIU Rong1, LI Guan1, LI Meng-Wei1, LI Zheng-Li3, ZONG Xu-Xiao1,*(), YANG Tao1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Crop Sciences, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    3Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2022-03-10 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-22
  • Contact: *E-mail: yangtao02@caas.cn;E-mail: zongxuxiao@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Infrastructure for Crop Germplasm Resources Project from the Ministry of Science and Technology of China(NCGRC-2021-07);Project of Identification, Evaluation, Replication, and Preservation of Food Legumes Collected by the Survey and Collection Action on Crop Germplasm Resources(19210867);China Agriculture Research System of MOF and MARA(CARS-08-G11)

Abstract:

In recent years, BSA-seq technology has been widely used in the mining of new genes related to agronomic traits. With the development of the first reference genome of pea, it is imperative to combine BSA-seq method with genome-wide sequencing for gene mapping. In this study, we used purple flower parent G0004562, white flower parent G0002930, and F2 populations for preliminarily locate the target genes controlling flower color by BSA-seq technology, and a mapping region of 31.42 Mb was obtained. Then, the InDel molecular markers were designed to further narrow the mapping interval, and finally the target gene was located in the range of 0.99 Mb with 19 genes. Based on gene annotation, Psat6g060480.1 was considered as the candidate gene that controled the flower color. The results of this study verified the feasibility of gene mapping by BSA-seq technology in pea.

Key words: pea, BSA-seq, InDel, gene mapping

Table 1

Plant numbers of different flower colors in F2 population"

杂交组合
Combination
紫花株数
No. of purple flower plant
白花株数
No. of white flower plant
期望值
Expectation ratio
卡方值
χ2
检验值
χ2(0.05,1)
G0004562×G0002930 941 321 3:1 0.13 3.84

Table 2

Sequencing comparison results of different samples"

样品编号
Sample ID
全部reads数
Total_reads
与参考基因组比对
Mapped (%)
平均覆盖深度
Ave_depth
基因组覆盖度
Cov_ratio_1× (%)
碱基数质量值大于30
Q30 (%)
R125 584,524,436 99.78 21 83.02 92.96
R127 558,380,728 99.64 20 79.03 93.28
R135 882,730,682 99.73 30 86.34 92.70
R138 880,248,082 99.75 30 86.58 92.94

Fig. 1

Distribution of association values on chromosomes (SNP) A: ED correlation analysis. The horizontal coordinate is the distribution of chromosomes, and each point represents the ED value of SNP. B: SNP-index association analysis. The horizontal coordinate is the distribution of chromosomes, and each dot represents the ΔSNP-index value."

Fig. 2

Distribution of association values on chromosomes (InDel) A: ED correlation analysis. The horizontal coordinate is the distribution of chromosomes, and each point represents the ED value of InDel site. B: SNP-index association analysis. The horizontal coordinate is the distribution of chromosomes, and each dot represents the ΔInDel-index value."

Table 3

Correlation regions obtained by different correlation analysis methods"

染色体位置
Chromosome ID
关联区域始位置
Start
关联区域终止位置
End
关联区域大小
Size (Mb)
关联区域内基因数量
Gene number
Chr6LG2 60,560,000 91,060,000 30.50 434
Chr6LG2 91,090,000 91,150,000 0.060 2
Chr6LG2 91,320,000 91,630,000 0.310 7
Chr6LG2 91,690,000 91,750,000 0.060 1
Chr6LG2 92,190,000 92,680,000 0.490 5
总共Total 31.42 449

Table 4

Polymorphic molecular markers for fine mapping"

位置
Position
引物名称
Primer name
正向引物
Forward sequence (5-3°)
反向引物
Reverse sequence (5-3°)
62,185,053 WDBH141-1 TGATTCCAAGGGCCAATGACA GCACGAAGCTAGCTAGTGAATAA
62,390,612 WDBH144-1 TTGTTCCACCACTGCAACCT TGGATTTACCCGCAGTTGGT
62,698,646 WDBH147-1 TGAAACGCCCCTTATTGAAGT TCTTCGAGTTCGGCTTTGCT
位置
Position
引物名称
Primer name
正向引物
Forward sequence (5-3°)
反向引物
Reverse sequence (5-3°)
64,421,149 WDBH172-1 ACCCAAAGCCACCAAAGAGAA TGACACAACTGTTTGACACCA
64,707,966 WDBH008-3 ATGAGGTGCCCCTATGTGAG TAATTGGTGGTGGTGAGATGGG
65,304,246 WDBH028-1 AGTCACGGCAATGGATGGAA ACATGTGCAAGCGACCTTCA
65,627,591 WDBH179-2 GGTGGGATGTATCTGCTGACC TCTGGTAGGAACACAAGTGGTTA
66,874,335 WDBH183-1 AACTGTGAGGAATGTCTATCCCA AGGTTTGCTCCCATTTGTCAC
66,960,275 WDBH013-2 GTTCGGTCTAGTGTGCTCGT TGCCAGCTGTACCATAGCAAA
67,036,795 WDBH194-1 ACTGTGTACACCCTTGCACT TCCATATTCTAGCCAACACCACC
67,579,583 WDBH187-1 CGGTCCAACTGAGATGGCAA TGGCTAGGGCTATAGGTATGAAGT
67,645,017 WDBH209-1 TGGGAGTTTGAAGTTGAGGGG TCCCTAAAATGAGGGAACTCAAA
67,998,027 WDBH084-1 GTGCAGGCTTGAGGGTTTTG TGTGTTCCCCAGTGTGTATCTC
68,240,556 WDBH200-1 TGTGGTGAGGAAATCGACGAA CCGAAACATGAGCGCGTAAC
68,307,829 WDBH113-1 TTTTCCTGTCCTGGCGTGAC AGGGTTGGGCGGTAATTCAA
68,309,277 WDBH090-1 GCTTCTTTGGCAGCGTTTGT TACACAATCCCGAGTCATGGT
68,551,555 WDBH029-1 TAGGGTTGCATGGGTTGCTT CACAAGTTGCTGCACACATTTC
68,566,772 WDBH220-1 CCATAGACTAAAGTTGAGACGAGC GATTGTGCCCCTGGAAGTGA
68,673,374 WDBH133-1 TCCCACAAGCCATGTCCAAA CGTGCACGAGAACGAAGGTT
69,494,713 WDBH129-1 CAGAACATGGCCAGGATCAATG TGCAGAGGCGTGTCTTTCAA
69,965,980 WDBH051-1 GAGATGCAGTGAAATCGCCG CAATTGGGGTGATGCACTCG
70,060,557 WDBH104-1 TCACCTCCATCATTTAAGCGGA ACATCGCGCGTCTCAATCTA
70,411,248 WDBH053-1 CCGATCCGCAGGTTGGAAAA GTGTGCAGACGAACCGATTT
72,140,477 WDBH059-1 AGTCCAATGGTCTGATAGCGT TTGTGCGAACCTCTTTCTGC
73,347,184 WDBH063-1 GAAAAACGCGAGCAGAGAGC TCCGAGTGGTCCGAGTATGT
75,496,657 WDBH032-1 ACGGAGGTCAGAGGCTACAA CGGCATAGGTTGACACATACG
75,976,029 WDBH080-1 TGGCCAATTCCCAAGCTCAA TTTGGGCTAGATGCGGAGAC
84,516,982 WDBH109-1 ACACGTTGATGAAAATGGGCG ATTTTGGTCTCCGACAGCGT
84,765,375 WDBH037-1 TTGCCCCTAGACGGTAGTGA TTTCCTGAGCCCACACATGG
86,084,668 WDBH011-2 CGGGTACCACGGGAATATACG GTTCGGCGGCGAATATGTTT
92,203,258 WDBH044-1 GCCACCTATTCGTCCATCGT AAGGGGACAAAGCACCCTTC

Fig. 3

Fine-mapping of the target regions of flower color gene in pea"

Table S1

Statistical results of exchange plants detected by InDel markers"

InDel标记
InDel markers
F2交换单株F2 exchange individual plant
003 013 014 034 038 044 049 057 079 082 089 094 099 115 122 123 131 148 186 198 206 216 240 242 250 254 279 285 300 302 320
WDBH141-1 + + - + - + - - + + + + + - + + - - - - + - - + - - - - - + -
WDBH144-1 + + - + - + - - + + + + - + + - - - - + - - + - - - - - + -
WDBH147-1 + + - + - + - - + + + + + - + + - - - - + - - + - - - - - + -
WDBH172-1 + - - + - - - - - - - + - - + + - - - - + - - - - - - - - - -
WDBH008-3 + - - + - - - - - - - + - - + + - - - - + - - - - - - - - - -
WDBH028-1 + - - + - - - - - - - + - - + + - - - - + - - - - - - - - - -
WDBH179-2 + - - - - - - - - - - + - - - + - - - - + - - - - - - - - - -
WDBH183-1 + - - - - - - - - - - + - - - + - - - - + - - - - - - - - - -
WDBH013-2 + - - - - - - - - - - + - - - + - - - - + - - - - - - - - - -
WDBH194-1 + - - - - - - - - - - - - - - - - - - - + - - - - - - - - - -
WDBH187-1 + - - - - - - - - - - - - - - - - - - - + - - - - - - - - - -
WDBH209-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH084-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH200-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH113-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH090-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH029-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH220-1 - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - -
WDBH133-1 - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - -
WDBH129-1 - - + - - - - + - - - - - - - - + + - - - - + - + - - - - - -
WDBH051-1 - - + - - - - + - - - - - - - - + + - - - - + - + - - - - - -
WDBH104-1 - - + - - - - + - - - - - - - - + + - + - - + - + - - - + - -
WDBH053-1 - - + - - - - + - - - - - - - - + + - + - - + - + - - - + - -
WDBH059-1 - - + - - - + + - - - - - + - - + + - + - - + - + - - + + - -
WDBH063-1 - - + - - - + + - - - - - + - - + + - + - - + - + - - + + - -
WDBH032-1 - - + - + - + + - - - - - + - - + + - + - + + - + - + + + - -
WDBH080-1 - - + - + - + + - - - - - + - - + + - + - + + - + - + + + - -
WDBH109-1 - - + - + - + + - - - - - + - - + + + + - + + - + - + + + - -
WDBH037-1 - - + - + - + + - - - - - + - - + + + + - + + - + - + + + - +
WDBH011-2 - - + - + - + + - - - - - + - - + + + + - + + - + + + + + - +
WDBH044-1 - - + - + - + + - - - - - + - - + + + + - + + - + + + + + - +

Table 5

Gene and function prediction in location range"

基因ID
Gene ID
起始位置
Start
终止位置
End
基因功能注释
Gene function annotation
Psat6g060000.1 67,641,138 67,657,547
Psat6g060040.1 67,824,817 67,825,137
Psat6g060080.1 67,833,124 67,835,423 41 kD的叶绿体茎环结合蛋白 Chloroplast stem-loop binding protein of 41 kD
Psat6g060120.1 67,836,103 67,837,783 RAN GTP酶激活蛋白1 RAN GTPase-activating protein 1
Psat6g060160.1 67,921,631 67,923,302
Psat6g060200.1 67,934,766 67,936,280
Psat6g060240.1 68,020,488 68,022,587 不活跃Patatin类蛋9 Probable inactive patatin-like protein 9
Psat6g060280.1 68,235,164 68,237,023 保卫细胞S型阴离子通道SLAC1 Guard cell S-type anion channel SLAC1
Psat6g060320.1 68,259,311 68,271,214 类Rac GTP结合蛋白RAC9 (前体)
Rac-like GTP-binding protein RAC9 (precursor)
Psat6g060360.1 68,302,270 68,302,889
Psat6g060400.1 68,305,575 68,309,198 五肽重复含蛋白 Pentatricopeptide repeat-containing protein
Psat6g060440.1 68,328,642 68,331,221
Psat6g060480.1 68,330,158 68,340,923 碱性螺旋-环-螺旋蛋白A Basic helix-loop-helix protein A
Psat6g060560.1 68,369,085 68,372,125 F-box蛋白 F-box protein
Psat6g060600.1 68,422,110 68,426,447 Sm类蛋白 LSM4 Sm-like protein LSM4
Psat6g060640.1 68,458,147 68,461,838 核糖体循环因子, 叶绿体(前体)
Ribosome-recycling factor, chloroplastic (precursor)
Psat6g060680.1 68,511,345 68,517,001 TIME FOR COFFEE蛋白 Protein TIME FOR COFFEE
Psat6g060720.1 68,549,094 68,551,796 Mut11蛋白 Protein Mut11
Psat6g060760.1 68,554,342 68,554,618
[1] Pandey A K, Rubiales D, Wang Y, Fang P, Sun T, Liu N, Xu P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor Appl Genet, 2021, 134: 755-776.
doi: 10.1007/s00122-020-03751-5 pmid: 33433637
[2] Food and Agriculture Organization of the United Nations. Agriculture production data. https://www.fao.org/faostat/en/#compare.
[3] Fan Z, Zhao Y, Chai Q, Zhao C, Yu A, Coulter J A, Gan Y, Cao W. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Sci Rep, 2019, 9: 10954.
doi: 10.1038/s41598-019-47554-1 pmid: 31358903
[4] Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866-878.
doi: 10.1111/j.1364-3703.2011.00718.x pmid: 21726385
[5] Hecht V, Laurie R E, Vander Schoor J K, Ridge S, Knowles C L, Liew L C, Sussmilch F C, Murfet I C, MacKnight R C, Weller J L. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell, 2011, 23: 147-161.
doi: 10.1105/tpc.110.081042
[6] Sussmilch F C, Berbel A, Hecht V, Vander Schoor J K, Ferrándiz C, Madueño F, Weller J L. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell, 2015, 27: 1046-1060.
doi: 10.1105/tpc.115.136150
[7] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
doi: 10.1093/genetics/136.4.1457 pmid: 8013918
[8] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199.
doi: 10.1093/genetics/121.1.185 pmid: 2563713
[9] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245.
doi: 10.3724/SP.J.1006.2009.00239
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-345. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00239
[10] Wu L, Fredua-Agyeman R, Hwang S F, Chang K F, Conner R L, McLaren D L, Strelkov S E. Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theor Appl Genet, 2021, 134: 2965-2990.
doi: 10.1007/s00122-021-03871-6
[11] Aznar-Fernández T, Barilli E, Cobos M J, Kilian A, Carling J, Rubiales D. Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Bruchus pisorum) in a high-density integrated DArTseq SNP-based genetic map of pea. Sci Rep, 2020, 10: 33.
doi: 10.1038/s41598-019-56987-7 pmid: 31913335
[12] Guo Z, Cai L, Chen Z, Wang R, Zhang L, Guan S, Zhang S, Ma W, Liu C, Pan G. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-seq and RNA-seq. Royal Soc Open Sci, 2020, 7: 201081.
doi: 10.1098/rsos.201081
[13] Li R, Jiang H, Zhang Z, Zhao Y, Xie J, Wang Q, Zheng H, Hou L, Xiong X, Xin D, Hu Z, Liu C, Wu X, Chen Q. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. Int J Mol Sci, 2019, 21: 42.
doi: 10.3390/ijms21010042
[14] Pujol M, Alexiou K G, Fontaine A S, Mayor P, Miras M, Jahrmann T, Garcia-Mas J, Aranda M A. Mapping cucumber vein yellowing virus resistance in cucumber (Cucumis sativus L.) by using BSA-seq analysis. Front Plant Sci, 2019, 10: 1583.
doi: 10.3389/fpls.2019.01583
[15] Zheng Y, Xu F, Li Q, Wang G, Liu N, Gong Y, Li L, Chen Z H, Xu S. QTL mapping combined with bulked segregant analysis identify SNP markers linked to leaf shape traits in Pisum sativum using SLAF sequencing. Front Genet, 2018, 9: 615.
doi: 10.3389/fgene.2018.00615
[16] Kreplak J, Madoui M A, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar’an B, Bendahmane A, Aury J M, Batley J, Le Paslier M C, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930
[17] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[18] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[19] Source Forge. Picard. San Diego, CA, USA. http://sourceforge.net/projects/picard/.
[20] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[21] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672
[22] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[23] Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One, 2013, 8: e68529.
doi: 10.1371/journal.pone.0068529
[24] Deng Y, Jianqi L I, Songfeng W U, Zhu Y, Chen Y, Fuchu H E. Integrated nr database in protein annotation system and its localization. Comp Engin, 2006, 32: 71-72.
[25] Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet, 2000, 25: 25-29.
doi: 10.1038/75556 pmid: 10802651
[26] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32: D277-D280.
doi: 10.1093/nar/gkh063 pmid: 14681412
[27] Tatusov R L, Galperin M Y, Natale D A, Koonin E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000, 28: 33-36.
[28] Gillmor C S, Roeder A H, Sieber P, Somerville C, Lukowitz W. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS One, 2016, 11: e0146492.
doi: 10.1371/journal.pone.0146492
[29] Branca A, Paape T D, Zhou P, Briskine R, Farmer A D, Mudge J, Bharti A K, Woodward J E, May G D, Gentzbittel L, Ben C, Denny R, Sadowsky M J, Ronfort J, Bataillon T, Young N D, Tiffin P. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci USA, 2011, 108: E864-E870.
[30] Zhao M, Hu B, Fan Y, Ding G, Yang W, Chen Y, Chen Y, Xie J, Zhang F. Identification, analysis, and confirmation of seed storability-related loci in dongxiang wild rice (Oryza rufipogon Griff.). Genes (Basel), 2021, 12: 1831.
doi: 10.3390/genes12111831
[31] Liu D, Wei X, Sun D, Yang S, Su H, Wang Z, Zhao Y, Li L, Liang J, Yang L, Zhang X, Yuan Y. An SNP mutation of gene RsPP converts petal color from purple to white in radish (Raphanus sativus L.). Front Plant Sci, 2021, 12: 643579.
doi: 10.3389/fpls.2021.643579
[32] Qin L, Sun L, Wei L, Yuan J, Kong F, Zhang Y, Miao X, Xia G, Liu S. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress. Plant J, 2021, 105: 1010-1025.
doi: 10.1111/tpj.15083
[33] Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 2011, 65: 771-784.
doi: 10.1111/j.1365-313X.2010.04465.x
[34] He F, Mu L, Yan G L, Liang N N, Pan Q H, Wang J, Reeves M J, Duan C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15: 9057-9091.
doi: 10.3390/molecules15129057 pmid: 21150825
[35] Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532
[36] Deng J, Li J, Su M, Lin Z, Chen L, Yang P. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiol Biochem, 2021, 158: 518-523.
doi: 10.1016/j.plaphy.2020.11.038
[37] Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore K S, Zhao J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol, 2016, 210: 905-921.
doi: 10.1111/nph.13816
[38] Hellens R P, Moreau C, Lin-Wang K, Schwinn K E, Thomson S J, Fiers M W, Frew T J, Murray S R, Hofer J M, Jacobs J M, Davies K M, Allan A C, Bendahmane A, Coyne C J, Timmerman- Vaughan G M, Ellis T H. Identification of Mendel’s white flower character. PLoS One, 2010, 5: e13230.
doi: 10.1371/journal.pone.0013230
[1] DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431.
[2] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[3] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[4] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[5] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[6] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[7] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[8] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[9] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[10] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[11] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[12] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[13] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[14] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[15] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .