Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 459-471.doi: 10.3724/SP.J.1006.2023.24041

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing

LIU Jun-Hua1,2,3(), WU Zheng-Feng3, DANG Yan-Xue4, YU Tian-Yi3, ZHENG Yong-Mei3, WAN Shu-Bo5,*(), WANG Cai-Bin3, LI Lin1,*()   

  1. 1Hunan Agriculture University / Upland Crop Research Institute, Hunan Agriculture University, Changsha 410128, Hunan, China
    2College of Biology and Environment Engineering, Binzhou University, Binzhou 256600, Shandong, China
    3Shandong Peanut Research Institute / National Peanut Engineering Technology Research Center, Qingdao 266100, Shandong, China
    4Linyi Academy of Agricultural Sciences, Linyi 276000, Shandong, China
    5Shandong Academy of Agricultural Sciences / Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Province, Jinan 250100, Shandong, China
  • Received:2022-02-21 Accepted:2022-06-07 Online:2022-07-09 Published:2022-07-09
  • Contact: WAN Shu-Bo,LI Lin E-mail:liujh516@163.com;wanshubo2016@163.com;Lilindw@163.com
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2018YFD1000906);China Agriculture Research System of MOF and MARA(CARS-13);Major Scientific and Technological Innovation Projects in Shandong Province(2019JZZY010702);Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2022A10)

Abstract:

In order to clarify the effect of planting density on the population quality of peanut with different plant types under the mode of single-seed precision sowing, this experiment were carried out with two plant-types (erect big peanut variety “Huayu 22” and semi-creeping big peanut variety “Huayu 9513”), three densities (75,000 plants hm-2, 150,000 plants hm-2, and 225,000 plants hm-2). Yield, photosynthetic product accumulation and distribution, leaf area index, plant characteristics and grain leaf ratio were studied. The results were as follows: (1) With the increase of density, the pod yield of “Huayu 22” increased, while that of “Huayu 9513” increased first and then decreased, in addition, the optimum planting density of “Huayu 9513” was lower than that of “Huayu 22”. (2) The population dry weight of “Huayu 22” increased with the increase of density during the growth period, and the greater the density, the smaller the increase range. While the population dry weight of “Huayu 9513” increased with the increase of density at seedling stage, increased first and then decreased with the increase of density after flower pegging stage, and the dry weight of D2 density was the largest. With the increase of density, the distribution proportion of dry matter in roots increased and that in fruit needles decreased; “Huayu 9513” and “Huayu 22” had the probably same dry weight at harvest stage, while the distribution proportion of dry matter to pods was less, and the economic coefficient and grain to leaf were lower. The leaf area index and leaf area duration of peanut increased with the increase of density at the early growth stage, and the increase of “Huayu 9513” was higher than that of “Huayu 22”. The leaf area index and leaf area duration of “Huayu 9513” was not significantly different from that of “Huayu 22” before pod setting stage, however from pod setting stage to harvest stage it was significantly higher than that of “Huayu 22”. (3) The number of lateral branches and fruit branches per plant decreased with the increase of density in the harvest period, while that of the population increased with the increase of density. (4) The correlation analysis showed that there were positive or significant positive correlation between peanut pod yield and dry matter accumulation after pod setting stage, especially dry matter accumulation at pod fulling stage, leaf area duration, plant dry weight, and leaf area index at harvest stage. In conclusion, density showed different effects on the population quality of peanut with different plant types, erect peanut “Huayu 22” showed good density tolerance and the optimum density was higher, while semi-creeping peanut “Huayu 9513” showed poor density tolerance. The optimum density of “Huayu 9513” was lower.

Key words: density, peanut, plant type, single-seed precision sowing, population quality

Table 1

Soil chemical properties of experimental site"

年份
Year
pH 有机质
Organic matter
(%)
水解氮Hydrolysable N
(mg kg-1)
速效磷Available P (mg kg-1) 速效钾Available K (mg kg-1) 交换性钙
Exchangeable calcium
(cmol kg-1)
2019 6.5 1.16 80.4 130.0 93.4 8.0
2020 6.9 1.32 97.8 58.5 127.0 9.8

Fig. 1

Effects of density on pod yield of peanut with different plant types D1, D2, and D3 represent planting densities of 75,000, 150,000, and 225,000 plants hm-2, respectively. HY22: Huayu 22; HY9513: Huayu 9513. Different lowercase letters indicate significantly different at the 0.05 probability level."

Table 2

Effects of density on pod yield components of peanut with different plant types"

年份
Year
品种
Variety
密度
Density
单株结果数
Pods per plant
公顷果数
Pods per hm2
(×104 hm-2)
千克果数
Pods per kg
2019 花育22
Huayu 22
D1 56.9±2.2 a 426.7±16.3 ab 568.7±32.6 b
D2 32.7±0.6 c 490.0±8.7 a 569.8±34.5 b
D3 22.2±0.5 de 499.0±11.3 a 610.2±19.6 ab
平均Average 37.2±17.8 A 471.9±39.4 A 582.9±23.7 B
花育9513
Huayu 9513
D1 43.0±5.8 b 322.5±43.6 c 613.4±31.9 ab
D2 25.2±0.7 d 378.3±10.4 bc 569.7±22.3 b
D3 18.4±3.9 e 415.0±86.9 ab 666.0±30.5 a
平均Average 28.9±12.7 B 371.9±46.6 B 616.3±48.2 A
品种Variety (V) ** ** **
密度Density (D) ** ns *
品种×密度V×D ns ns ns
2020 花育22
Huayu 22
D1 50.7±5.8 a 380.0±43.3 b 563.2±1.6 b
D2 35.4±6.2 b 531.3±92.6 a 596.4±33.7 ab
D3 24.9±3.8 c 560.6±85.2 a 595.4±19.1 ab
平均Average 37.0 ±12.9 A 490.6±96.9 A 585.0±18.9 A
花育9513
Huayu 9513
D1 39.3±5.4 b 294.4±40.6 b 628.4±46.5 a
D2 20.8±3.1 c 312.5±46.9 b 580.7±18.1 ab
D3 16.1±5.4 c 361.9±120.7 b 607.6±26.0 ab
平均Average 25.4±12.2 B 322.9±34.9 B 605.6±23.9 A
品种Variety (V) ** ** ns
密度Density (D) ** ns ns
品种×密度V×D ns ns ns

Table 3

Effects of density on population dry matter accumulation of peanut with different plant types"

年份
Year
品种
Variety
密度
Density
干物质重
Dry matter weight
(t hm-2)
阶段干物质累积量
Dry matter accumulation
(t hm-2)
幼苗期SS 花针期FPS 结荚期PSS 收获期HS 结荚前BPS 结荚后APS
2019 花育22
Huayu 22
D1 / 4.5±0.4 ab 8.0±0.8 a 10.2±1.0 c 4.5±0.4 ab 5.7±0.7 b
D2 / 5.6±0.6 ab 10.6±3.2 a 12.4±1.8 bc 5.6±0.6 ab 6.9±2.3 ab
D3 / 6.1±0.7 a 11.6±2.7 a 15.0±1.9 ab 6.1±0.7 a 8.8±1.2 ab
平均Average / 5.4±0.9 A 10.1±2.6 A 12.5±2.5 A 5.4±0.9 A 7.1±1.6 B
花育9513
Huayu 9513
D1 / 3.8±0.7 b 8.5±2.5 a 12.4±2.3 bc 3.8±0.7 b 8.6±1.6 ab
D2 / 5.7±1.4 a 11.7±1.6 a 14.3±0.6 ab 5.7±1.4 a 8.6±1.4 ab
D3 / 5.5±1.1 ab 10.6±1.8 a 16.1±2.2 a 5.5±1.1 ab 10.6±3.3 a
平均Average / 5.0±1.3 A 10.3±2.2 A 14.3±2.3 A 5.0±1.3 A 9.3±1.2 A
品种Variety (V) ns ns ns ns *
密度Density (D) * ns ** * ns
品种×密度V×D ns ns ns ns ns
2020 花育22
Huayu 22
D1 0.6±0.2 cd 5.8±0.3 bc 10.4±1.6 cd 9.6±1.3 ab 5.8±0.3 bc 3.9±1.6 a
D2 1.1±0.3 b 7.3±0.5 ab 9.5±0.2 d 11.2±1.8 ab 7.3±0.5 ab 3.8±1.3 a
D3 1.6±0.4 a 8.5±2.1 a 14.3±1.0 a 12.0±1.3 a 8.5±2.1 a 3.6±2.9 a
平均Average 1.1±0.5 A 7.2±1.6 A 11.4±2.4 A 11.0±1.7 A 7.2±1.6 A 3.8±0.2 A
花育9513
Huayu 9513
D1 0.5±0.1 d 4.0±0.5 c 9.9±1.6 d 9.8±0.7 ab 4.0±0.5 c 5.9±1.0 a
D2 1.0±0.1 bc 6.6±0.1 ab 12.7±0.5 ab 10.6±1.3 ab 6.6±0.1 ab 4.0±1.3 a
D3 1.3±0.2 ab 8.3±1.3 a 11.7±1.7 bc 9.0±0.5 b 8.3±1.3 a 0.7±0.8 b
平均Average 0.9±0.4 A 6.3±2.0 A 11.5±1.7 A 9.8±1.0 A 6.3±2.0 A 3.5±2.6 A
品种Variety (V) ns ns ns ns ns ns
密度Density (D) ** ** ** ns ** ns
品种×密度V×D ns ns ** ns ns ns

Table 4

Effects of density on dry matter distribution of peanut with different plant types at harvest stage"

年份 Year 品种
Variety
密度
Density
干物质分配比例Dry matter distribution ratio (%) 营养体/生殖体
V/ R

Root

Stem

Leaf

Pod
果针
Peg
2019 花育22
Huayu 22
D1 1.7±0.5 b 21.8±3.7 b 6.7±2.2 c 66.0±3.1 a 3.9±1.3 a 0.4±0.1 b
D2 1.8±0.6 b 24.2±1.4 b 8.7±7.4 c 62.3±6.9 a 3.1±0.4 a 0.5±0.2 b
D3 3.0±0.7 a 25.0±4.0 b 9.1±4.3 bc 60.6±4.7 a 2.4±1.5 a 0.6±0.1 b
平均Average 2.1±0.7 A 23.6±1.7 B 8.1±1.3 B 63.0±2.8 A 3.1±0.7 A 0.5±0.1 B
花育9513
Huayu 9513
D1 2.1±0.4 a 36.4±1.0 a 17.0±2.9 ab 41.4±1.6 b 3.1±0.6 a 1.3±0.1 a
D2 2.0±0.1 a 40.9±4.4 a 13.6±1.0 abc 41.0±4.0 b 2.5±1.1 a 1.3±0.2 a
D3 2.8±1.0 a 39.4±2.6 a 18.0±2.8 a 37.7±3.8 b 2.1±0.1 a 1.5±0.2 a
平均Average 2.3±0.4 A 38.9±2.3 A 16.2±2.3 A 40.0±2.0 B 2.6±0.5 A 1.4±0.1 A
品种Variety (V) ns ** ** ** ns **
密度Density (D) * ns ns ns ns ns
品种×密度V×D ns ns ns ns ns ns
2020 花育22
Huayu 22
D1 1.4±0.1 e 27.4±1.9 b 1.8±0.8 cd 65.7±1.5 a 3.7±0.3 a 0.4±0.0 c
D2 1.5±0.1 e 27.6±1.7 b 1.1±0.4 d 66.3±1.7 a 3.5±0.3 a 0.4±0.0 c
D3 1.8±0.1 d 28.6±1.2 b 0.9±0.5 d 65.7±0.5 a 3.0±0.3 bc 0.5±0.0 c
平均Average 1.5±0.2 B 27.9±0.6 B 1.3±0.5 B 65.9±0.4 A 3.4±0.3 A 0.4±0.0 B
花育9513
Huayu 9513
D1 1.9±0.1 c 43.9±1.2 a 6.5±1.4 a 44.4±1.1 c 3.2±0.3 ab 1.1±0.0 a
D2 2.3±0.2 b 43.3±2.1 a 5.2±1.8 ab 46.1±3.6 bc 3.1±0.1 bc 1.0±0.1 ab
D3 2.6±0.1 a 43.1±0.4 a 3.5±0.2 bc 48.2±0.6 b 2.6±0.4 c 1.0±0.0 b
平均Average 2.3±0.3 A 43.5±0.4 A 5.1±1.5 A 46.2±1.9 B 3.0±0.3 B 1.0±0.1 A
品种Variety (V) ** ** ** ** ** **
密度Density (D) ** ns * ns ** ns
品种×密度V×D * ns ns ns ns ns

Fig. 2

Effects of density on leaf area index of peanut with different plant types Abbreviations are the same as those given in Table 3 and Fig. 1."

Fig. 3

Effects of density on leaf area duration of peanut with different plant types Different lowercase letters indicate significant difference among different plant density at the 0.05 probability level at the same stage. BPS: before pod setting; PSS: pod setting stage; PFS: pod fulling stage. Abbreviations are the same as those given in Fig. 1."

Table 5

Effects of density on grain to leaf of peanut with different plant types"

年份
Year
品种
Variety
处理
Treatment
结实数/叶面积
Number of fruits/Leaf area (No. dm-2)
果数/叶面积
Number of pods/Leaf area (No. dm-2)
果重/叶面积
Dry weight of pods/Leaf area (g dm-2)
2019 花育22
Huayu 22
D1 1.8±0.2 a 1.6±0.2 a 2.4±0.3 a
D2 1.8±0.6 a 1.3±0.4 ab 2.0±0.4 ab
D3 1.4±0.7 ab 1.2±0.6 ab 1.9±0.7 abc
平均Average 1.7±0.5 A 1.4±0.4 A 2.1±0.5 A
花育9513
Huayu 9513
D1 0.9±0.1 b 0.7±0.1 b 1.1±0.2 cd
D2 0.8±0.2 b 0.6±0.1 b 1.0±0.2 d
D3 1.1±0.3 ab 0.8±0.4 b 1.2±0.5 bcd
平均Average 0.9±0.2 B 0.7±0.2 B 1.1±0.3 B
品种Variety (V) ** ** **
密度Density (D) ns ns ns
品种×密度V×D ns ns ns
2020 花育22
Huayu 22
D1 1.4±0.2 a 1.1±0.2 a 1.9±0.3 a
D2 1.8±0.1 a 1.4±0.1 a 1.9±0.1 a
D3 1.8±0.4 a 1.4±0.5 a 2.0±0.6 a
平均Average 1.7±0.3 A 1.3±0.3 A 1.9±0.3 A
花育9513
Huayu 9513
D1 0.7±0.1 b 0.5±0.2 b 0.8±0.2 b
D2 0.7±0.1 b 0.5±0.1 b 0.8±0.1 b
D3 0.9±0.2 b 0.6±0.1 b 0.8±0.1 b
平均Average 0.7±0.2 B 0.5±0.1 B 0.8±0.1 B
品种Variety (V) ** ** **
密度Density (D) ns ns ns
品种×密度V×D ns ns ns

Fig. 4

Effects of density on plant characteristics of peanut with different plant types Abbreviations are the same as those given in Table 3 and Fig. 1."

Table 6

Effects of density on branch number of peanut with different plant types at harvest stage"

品种
Variety
密度
Density
侧枝数Number of lateral branches 果枝数Number of fruit branches 有效枝比率Effective branch ratio (%)
单株Single
(No. plant-1)
群体 Population
(×104 hm-2)
单株Single
(No. plant-1)
群体 Population
(×104 hm-2)
花育22
Huayu 22
D1 30.3±2.5 bc 227.5±18.9 c 11.7±1.2 b 87.5±8.7 b 38.8±6.8 b
D2 15.0±3.0 d 225.0±45.0 c 10.0±3.0 b 150.0±45.0 ab 69.6±26.7 a
D3 18.3±0.6 d 412.5±13.0 b 9.3±1.5 b 210.0±34.4 a 51.1±9.5 ab
花育9513
Huayu 9513
D1 63.0±5.0 a 472.5±37.5 ab 19.7±6.0 a 147.5±26.5 ab 31.2±2.6 b
D2 39.0±7.0 b 585.0±105.0 a 12.0±0.0 b 180.0±0.0 a 30.8±5.2 b
D3 21.0±5.6 cd 472.5±125.3 ab 8.0±1.0 b 180.0±22.5 a 41.1±17.0 b

Table 7

Correlation analysis between pod yield and population quality index"

群体质量指标 Population quality index 花育22 Huayu 22 花育9513 Huayu 9513
单位面积株数 Number of plants per hm2 0.357 -0.138
单株果数 Number of pods per plant -0.298 0.287
公顷果数 Number of pods per hm2 0.328 0.420
千克果数 Number of pods per kg 0.005 -0.107
结实数/叶面积 No. of fruits/the maximum leaf area -0.124 0.288
果数/叶面积 No. of pods/the maximum leaf area -0.097 0.386
果重/叶面积 Dry weight of pods/the maximum leaf area -0.119 0.488*
主茎高 Stem height -0.488* -0.426
侧枝长 Lateral branch length -0.503* 0.189
株型指数 Plant type index -0.069 0.368
侧枝数 The number of lateral branches 0.235 0.107
花针期叶面积系数 LAI of flower pegging stage 0.071 -0.355
结荚期叶面积系数 LAI of pod setting stage 0.345 -0.024
收获期叶面积系数 LAI of harvest stage 0.590** 0.684**
结荚前光合势 LAD before pod setting stage -0.312 -0.480*
结荚期光合势 LAD of pod setting stage 0.564* 0.605**
饱果期光合势 LAD of pod fulling stage 0.612** 0.769**
花针期植株干重 DMW of flower pegging stage -0.252 -0.291
结荚期植株干重 DMW of pod setting stage 0.103 -0.276
收获期植株干重 DMW of harvest stage 0.537* 0.712**
结荚前干物质累积 DMW accumulation before pod setting stage -0.252 -0.291
结荚后干物质累积 DMW accumulation after pod setting stage 0.634** 0.686**
结荚期干物质累积 DMW accumulation of pod setting stage 0.281 -0.018
饱果期干物质累积 DMW accumulation of pod fulling stage 0.336 0.697**
[1] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌厉. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6): 1-11.
Ling Q H, Zhang H C, Cai J Z, Su Z F, Ling L. Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin, 1993, 26(6): 1-11. (in Chinese with English abstract)
[2] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 1-2.
Ling Q H. Crop Population Quality. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 1-2. (in Chinese)
[3] 魏海燕, 凌启鸿, 张洪程, 郭文善, 杨建昌, 陈德华, 冷锁虎, 陆卫平, 邢志鹏. 作物群体质量及其关键调控技术. 扬州大学学报(农业与生命科学版), 2018, 39(2): 1-9.
Wei H Y, Ling Q H, Zhang H C, Guo W S, Yang J C, Chen D H, Leng S H, Lu W P, Xing Z P. The quality of crop population and its key regulation technology. J Yangzhou Univ (Agric Life Sci Edn), 2018, 39(2): 1-9. (in Chinese with English abstract)
[4] 马尚宇, 王艳艳, 刘雅男, 姚科郡, 黄正来, 张文静, 樊永惠, 马元山. 播期、播量和施氮量对小麦干物质积累、转运和分配及产量的影响. 中国生态农业学报, 2020, 28: 375-385.
Ma S Y, Wang Y Y, Liu Y N, Yao K J, Huang Z L, Zhang W J, Fan Y H, Ma Y S. Effect of sowing date, planting density, and nitrogen application on dry matter accumulation, transfer, distribution, and yield of wheat. Chin J Eco-Agric, 2020, 28: 375-385. (in Chinese with English abstract)
[5] 黄艺华, 蒋桂英, 王海琪, 刘钰婷, 车子强. 氮肥基追比对滴灌春小麦群体质量及产量的影响. 西北农业学报, 2021, 30: 807-818.
Huang Y H, Jiang G Y, Wang H Q, Liu Y T, Che Z Q. Effect of base-topdressing ratio of nitrogen fertilizer on population quality and yield of spring wheat under drip irrigation. Acta Agric Boreali-Occident Sin, 2021, 30: 807-818. (in Chinese with English abstract)
[6] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048-3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci Agric Sin, 2020, 53: 3048-3058. (in Chinese with English abstract)
[7] Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016
[8] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
[9] 万书波, 张佳蕾, 张智猛. 花生种植技术的重大变革-单粒精播. 中国油料作物学报, 2020, 42: 927-933.
Wan S B, Zhang J L, Zhang Z M. Great change of peanut planting technology: single seed sowing. Chin J Oil Crop Sci, 2020, 42: 927-933. (in Chinese with English abstract)
[10] 梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26: 3700-3706.
Liang X Y, Guo F, Zhang J L, Meng J J, Li L, Wan S B, Li X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaea). Chin J Appl Ecol, 2015, 26: 3700-3706. (in Chinese with English abstract)
[11] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757-3766.
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757-3766. (in Chinese with English abstract)
[12] Zhang J L, Geng Y, Guo F, Li X G, Wan S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. J Integr Agric, 2020, 19: 1919-1927.
doi: 10.1016/S2095-3119(19)62763-2
[13] Liang X Y, Guo F, Feng Y, Zhang J L, Yang S, Meng J J, Li X G, Wan S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea. J Integr Agric, 2020, 19: 1019-1032.
doi: 10.1016/S2095-3119(19)62712-7
[14] 冯烨, 郭峰, 李宝龙, 孟静静, 李新国, 万书波. 单粒精播对花生根系生长、根冠比和产量的影响. 作物学报, 2013, 39: 2228-2237.
doi: 10.3724/SP.J.1006.2013.02228
Feng Y, Guo F, Li B L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing on root growth, root-shoot ratio, and yield in peanut (Arachis hypogaea L.). Acta Agron Sin, 2013, 39: 2228-2237. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02228
[15] 冯烨, 李宝龙, 郭峰, 孟静静, 李新国, 万书波. 单粒精播对花生活性氧代谢、干物质积累和产量的影响. 山东农业科学, 2013, 45(8): 42-46.
Feng Y, Li B L, Guo F, Meng J J, Li X G, Wan S B. Effects of single-seed precision sowing on active oxygen metabolism, dry matter accumulation and yield of Arachis hypogaea L. Shandong Agric Sci, 2013, 45(8): 42-46. (in Chinese with English abstract)
[16] 郭江, 郭新宇, 郭程瑾, 张凤路, 赵春江, 肖凯. 密度对不同株型玉米群体结构的调控效应. 华北农学报, 2008, 23(1): 149-153.
doi: 10.7668/hbnxb.2008.01.033
Guo J, Guo X Y, Guo C J, Zhang F L, Zhao C J, Xiao K. The effects of density on population structure of maize with different plant types. Acta Agric Boreali-Sin, 2008, 23(1): 149-153. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2008.01.033
[17] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50: 2463-2475.
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017, 50: 2463-2475. (in Chinese with English abstract)
[18] 刘俊华, 吴正锋, 李林, 郑永美, 孙学武, 李秋芝, 赵红军, 孙秀山, 王才斌, 万书波. 单粒精播密度对花生冠层结构及产量的影响. 中国油料作物学报, 2020, 42: 970-977.
Liu J H, Wu Z F, Li L, Zheng Y M, Sun X W, Li Q Z, Zhao H J, Sun X S, Wang C B, Wan S B. Effect of different density on canopy structure and pod yield of peanut under single seed precision sowing. Chin J Oil Crop Sci, 2020, 42: 970-977. (in Chinese with English abstract)
[19] 王亮, 李艳, 王桥江, 左文庆, 张力, 刘志刚, 韩萍, 魏建军. 滴灌条件下花生单粒播种密度对产量及其相关性状的影响. 安徽农业科学, 2015, 43(30): 380-382.
Wang L, Li Y, Wang Q J, Zuo W Q, Zhang L, Liu Z G, Han P, Wei J J. Effects of single-seed precision sowing densities on yield and major agronomic characters of peanut under the drip- irrigation conditions. J Anhui Agric Sci, 2015, 43(30): 380-382. (in Chinese with English abstract)
[20] 赵长星, 邵长亮, 王月福, 宋传雪, 王铭伦. 单粒精播模式下种植密度对花生群体生态特征及产量的影响. 农学学报, 2013, 3(2): 1-5.
Zhao C X, Shao C L, Wang Y F, Song C X, Wang M L. Effects of different planting densities on population ecological characteristics and yield of peanut under the mode of single-seed precision sowing. J Agric, 2013, 3(2): 1-5. (in Chinese with English abstract)
[21] 柏延文, 张宏军, 朱亚利, 郑学慧, 杨梅, 李从锋, 张仁和. 不同株型玉米冠层光氮分布、衰老特征及光能利用对增密的响应. 中国农业科学, 2020, 53: 3059-3070.
Bai Y W, Zhang H J, Zhu Y L, Zheng X H, Yang M, Li C F, Zhang R H. Responses of canopy radiation and nitrogen distribution, leaf senescence and radiation use efficiency on increased planting density of different variety types of maize. Sci Agric Sin, 2020, 53: 3059-3070. (in Chinese with English abstract)
[22] 李国卫, 秦圣豪, 刘译阳, 张佳蕾, 韩燕, 万书波. 花生株型相关性状研究进展. 中国油料作物学报, 2020, 42: 934-939.
Li G W, Qin S H, Liu Y Y, Zhang J L, Han Y, Wan S B. Advances in plant architecture studies of peanut. Chin J Oil Crop Sci, 2020, 42: 934-939. (in Chinese with English abstract)
[23] 彭振英, 单雷, 张智猛, 李新国, 万书波. 花生株型与高产. 花生学报, 2019, 48(2): 69-72.
Peng Z Y, Shan L, Zhang Z M, Li X G, Wan S B. High yield and plant type of peanut. J Peanut Sci, 2019, 48(2): 69-72. (in Chinese with English abstract)
[24] 李新国, 郭峰, 万书波. 高产花生理想株型的研究. 花生学报, 2013, 42(3): 23-26.
Li X G, Guo F, Wan S B. Peanut ideotypes with high yield. J Peanut Sci, 2013, 42(3): 23-26. (in Chinese with English abstract)
[25] 郭峰, 万书波, 王才斌, 李新国, 徐平丽, 张斌. 不同类型花生单粒精播生长发育、光合性质的比较研究. 花生学报, 2008, 37(4): 18-21.
Guo F, Wan S B, Wang C B, Li X G, Xu P L, Zhang B. Comparative study on peanut plant growth and development, photosynthesis for different peanut variety types under single-seed planting. J Peanut Sci, 2008, 37(4): 18-21. (in Chinese with English abstract)
[26] 梁晓艳, 郭峰, 张佳蕾, 李林, 孟静静, 李新国, 万书波. 不同密度单粒精播对花生养分吸收及分配的影响. 中国生态农业学报, 2016, 24: 893-901.
Liang X Y, Guo F, Zhang J L, Li L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing at different densities on nutrient uptake and distribution in peanut. Chin J Eco-Agric, 2016, 24: 893-901. (in Chinese with English abstract)
[27] 凌启鸿, 杨建昌. 水稻群体“粒叶比”与高产栽培途径的研究. 中国农业科学, 1986, 19(3): 1-8.
Ling Q H, Yang J C. Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. Sci Agric Sin, 1986, 19(3): 1-8. (in Chinese with English abstract)
[28] 淮贺举, 陆洲, 秦向阳, 李奇峰, 于莹, 臧辰龙. 种植密度对小麦产量和群体质量影响的研究进展. 中国农学通报, 2013, 29(9): 1-4.
Huai H J, Lu Z, Qin X Y, Li Q F, Yu Y, Zang C L. Advances of researches in plant density effects on the wheat yield and population quality. Chin Agric Sci Bull, 2013, 29(9): 1-4. (in Chinese with English abstract)
[29] Rasekh H, Asghari J, Safarzadeh wishkai M N, Massoumi S L, Zakerinejad R. Effect of planting pattern and plant density on physiological characteristics and yield of peanut (Arachis hypogaea L.) in Iran. Res J Biol Sci, 2010, 5: 542-547.
doi: 10.3923/rjbsci.2010.542.547
[30] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51: 4264-4276.
Xiao J B, Liu Z, Kong F X, Xin Z X, Wu H S. Effects of planting pattern and density on population structure and yield of sorghum. Sci Agric Sin, 2018, 51: 4264-4276 (in Chinese with English abstract).
[31] 郭天财, 查菲娜, 马冬云, 宋晓, 岳艳军. 种植密度对两种穗型冬小麦品种干物质和氮素积累、运转及产量的影响. 华北农学报, 2007, 22(6): 152-156.
doi: 10.7668/hbnxb.2007.06.031
Guo T C, Zha F N, Ma D Y, Song X, Yue Y J. Effects of plant density on the accumulation and transfer of dry matter and nitrogen and grain yield of two winter wheat cultivars with different spike types. Acta Agric Boreali-Sin, 2007, 22(6): 152-156. (in Chinese with English abstract)
[32] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.93011
[33] 董树亭, 胡昌浩, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 夏玉米群体光合速率特性及其与冠层结构、生态条件的关系. 植物生态学与地植物学学报, 1992, 16: 372-378.
Dong S T, Hu C H, Yue S S, Wang Q Y, Gao R Q, Pan Z L. The characteristics of canopy photosynthesis of summer corn (Zea mays) and its relation with canopy structure and ecological conditions. Acta Phytoecol Geobotan Sin, 1992, 16: 372-378. (in Chinese with English abstract)
[34] 邬小春, 苏文楠, 韩清芳, 王兴义, 孟祥萍, 丁瑞霞, 王子煜. 密度对不同株型夏玉米光合特性与群体冠层结构的影响. 西北农业学报, 2016, 25: 1792-1801.
Wu X C, Su W N, Han Q F, Wang X Y, Meng X P, Ding R X, Wang Z Y. Effect of plant density on photosynthetic characteristics and canopy structure of different plant types of summer corn. Acta Agric Boreali-Occident Sin, 2016, 25: 1792-1801. (in Chinese with English abstract)
[35] Tharakan P J, Volk T A, Nowak C A, Ofezu G J. Assessment of canopy structure, light interception, and light-use efficiency of first year regrowth of shrub willow (Salix sp.). Bioenerg Res, 2008, 1: 229-238.
doi: 10.1007/s12155-008-9023-9
[36] Patil S B, Mansur C P, Gaur P M, Salakinkop S R, Alagundagi S C. Planting density affected dry matter production, partitioning, and yield in machine harvestable chickpea genotypes in the irrigated ecosystem. Int J Plant Prod, 2021, 15: 29-43.
doi: 10.1007/s42106-020-00125-1
[37] 孙彦浩, 刘恩鸿, 隋清卫, 李纪恩. 花生亩产千斤高产因素结构与群体动态的研究. 中国农业科学, 1982, 15(1): 71-75.
Sun Y H, Liu E H, Sui Q W, Li J E. Research on the high-yield factors and the population development of peanuts. Sci Agric Sin, 1982, 15(1): 71-75. (in Chinese with English abstract)
[38] 王才斌, 郑亚萍, 成波, 沙继锋, 姜振祥. 花生超高产群体特征与光能利用研究. 华北农学报, 2004, 19(2): 40-43.
Wang C B, Zheng Y P, Cheng B, Sha J F, Jiang Z X. The canopy characters and efficiency for solar energy utilization of supper high-yielding peanut. Acta Agric Boreali-Sin, 2004, 19(2): 40-43. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-7091.2004.02.011
[39] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 2010, 61: 235-261.
doi: 10.1146/annurev-arplant-042809-112206
[40] Long S P, Marshall-Colon A, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161: 56-66.
[41] 王才斌, 孙彦浩, 陶寿祥, 梁裕元, 郑亚萍. 高产花生叶面积消长规律及其与荚果产量关系的研究. 花生科技, 1992, (3): 8-12.
Wang C B, Sun Y H, Tao S X, Liang Y Y, Zheng Y P. Study on the growth and decline law of leaf area and its relationship with pod yield of high-yield peanut. Peanut Sci Technol, 1992, (3): 8-12. (in Chinese)
[42] 李向东, 王晓云, 张高英, 万勇善, 李军. 花生叶片衰老与活性氧代谢. 中国油料作物学报, 2001, 23(2): 31-34.
Li X D, Wang X Y, Zhang G Y, Wan Y S, Li J. Leaf senescence and the metabolism of active oxygen in peanut. Chin J Oil Crop Sci, 2001, 23(2): 31-34. (in Chinese with English abstract)
[43] 李向东, 王晓云, 张高英, 万勇善, 李军. 花生叶片衰老过程中某些酶活性的变化. 植物生理学报, 2001, 27: 353-358.
Li X D, Wang X Y, Zhang G Y, Wan Y S, Li J. Changes in some enzyme activities of peanut leaves during leaf senescence. Acta Phytophysiol Sin, 2001, 27: 353-358. (in Chinese with English abstract)
[44] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. p 360.
Wan S B. Chinese Peanut Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 2003. p 360. (in Chinese)
[45] 吴正锋, 王才斌, 刘俊华, 万书波, 江荣风. 不同产量水平花生群体特征研究. 花生学报, 2013, 42(4): 7-13.
Wu Z F, Wang C B, Liu J H, Wan S B, Jiang R F. The population characteristics of peanut with different yield levels. J Peanut Sci, 2013, 42(4): 7-13. (in Chinese with English abstract)
[1] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[2] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[3] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[4] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[5] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[6] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[7] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[8] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[9] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[10] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[13] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[14] WANG Yi-Xuan, JIA Hao, LU Jie, SHI Xiao-Yu, ZHAO Ming-Yu, GAO Zhen-Zhen, ZHAO Jiong-Chao, CHU Qing-Quan. Water footprint and water consumption structure of peanut production in Yellow-Huaihe-Hai agricultural area [J]. Acta Agronomica Sinica, 2022, 48(12): 3203-3214.
[15] HU Mei-Ling, XUE Xiao-Meng, WU Jie, ZHI Chen-Yang, LIU Nian, CHEN Xiao-Ping, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Genetic analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed [J]. Acta Agronomica Sinica, 2022, 48(11): 2724-2732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!