Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2724-2732.doi: 10.3724/SP.J.1006.2022.14201

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed

HU Mei-Ling1(), XUE Xiao-Meng1, WU Jie1, ZHI Chen-Yang1, LIU Nian1, CHEN Xiao-Ping2, WANG Jin3, YAN Li-Ying1, WANG Xin1, CHEN Yu-Ning1, KANG Yan-Ping1, WANG Zhi-Hui1, HUAI Dong-Xin1,*(), JIANG Hui-Fang1, LEI Yong1,*(), LIAO Bo-Shou1   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    3Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, Hebei, China
  • Received:2021-10-26 Accepted:2022-01-05 Online:2022-11-12 Published:2022-02-14
  • Contact: HUAI Dong-Xin,LEI Yong E-mail:hml13419876358@163.com;dxhuai@caas.cn;leiyong@caas.cn
  • Supported by:
    The National Key Research and Development Program of China(2018YFD1000901);The Key Area Research and Development Program of Guangdong Province(2020B020219003);The Key Area Research and Development Program of Hebei Province(21326316D);The Key Area Research and Development Program of Hubei Province(2021BBA077);The Central Public-interest Scientific Institution Basal Research Fund(Y2021CG05);The Central Public-interest Scientific Institution Basal Research Fund(1610172019003)

Abstract:

The contents of fat and sucrose are important factors to peanut quality, and revealing their hereditary properties is critical to improve the quality in peanut. In this study, the analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed were conducted by using general genetic model. Five peanut lines with significantly different fat and sucrose contents were selected as parents for incomplete diallel crosses. The results indicated that the fat content was mainly controlled by embryo additive effect, followed by maternal additive effect. The sucrose content was primarily governed by maternal additive effect. Correlation analysis showed that there was a significantly negative correlation between fat and sucrose contents in peanut seed (r = -0.886**), which was mostly managed by embryo additive and cytoplasmic effects. Predicted genetic effects suggested that 18-1951 with high fat content and JHT1 with high sucrose content were superior donor parents for improving the contents of fat and sucrose in peanut, respectively.

Key words: peanut, fat content, sucrose content, genetic effect

Table 1

Fat and sucrose contents of seeds from parents (%)"

品种
Variety
脂肪含量
Fat content
蔗糖含量
Sucrose content
18-1951 58.03 2.23
18-3101 57.23 1.99
中花26 Zhonghua 26 54.34 3.81
A1507-3 48.55 6.12
冀花甜1号 Jihuatian 1 47.60 7.48

Table 2

Primers for identifying F1 plants"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
适用组合
Identified cross
PM16-8 F: TCGGGCCATGCACACCCCTAAT 18-1951 × A1507-3; A1507-3 × 18-951
中花26 × A1507-3; 中花26 × 冀花甜1号
Zhonghua 26 × A1507-3; Zhonghua 26 × Jihuatian 1
R: CCATCCCTACCTGTAAACCACT
AGGS1425 F: CATCAGCGCAGGATAAATCAA 冀花甜1号× A1507-3; A1507-3 × 冀花甜1号
Jihuatian 1 × A1507-3; A1507-3 × Jihuatian 1
R: CTGAAGGAGTTTGCAGGAACTT
AGGS1446 F: CCTTTGTGCTTTCAGACAATGA 18-3101 × 18-1951; 18-1951 × 18-3101
R: GCTCCTTCTCTCTCGCTTCTAA

Table S1

F1 true and false hybrid identification"

组合
Cross combination
真杂种个数
No. of true F1 plants
总个数
Total number of F1 plants
真杂种率
Rate of true F1 plants (%)
18-1951 × A1507-3 26 26 100
A1507-3 × 18-1951 8 8 100
冀花甜1号 × A1507-3 Jihuatian 1 × A1507-3 15 16 93.75
A1507-3 × 冀花甜1号 A1507-3 × Jihuatian 1 14 16 87.5
18-3101 × 18-1951 8 8 100
18-1951 × 18-3101 12 12 100
中花26 × A1507-3 Zhonghua 26 × A1507-3 12 12 100
中花26 × 冀花甜1号Zhonghua 26 × Jihuatian 1 9 15 60

Fig. 1

Distribution of fat content of F1 and their parents Different lowercase letters above the bars indicate significant difference at the 0.05 probability level in different groups. ZH26: Zhonghua 26; JHT1: Jihuatian 1."

Fig. 2

Distribution of sucrose content of F1 and their parents Different lowercase letters above the bar indicate significant difference at the 0.05 probability level in different groups. ZH26: Zhonghua 26; JHT1: Jihuatian 1."

Table 3

Estimated value of genetic variance component of fat and sucrose contents in peanut seed"

方差
Variance
脂肪含量
Fat content
蔗糖含量
Sucrose content
胚加性方差 Embryo addictive variance (VA) 5.0205** 0.0660
胚显性方差 Embryo dominance variance (VD) 0.0974 0.1669*
细胞质效应 Cytoplasmic variance (VC) 0.2854** 0.2049**
母体加性效应 Maternal additive variance (VAm) 2.2833** 1.6391**
母体显性效应 Maternal dominance variance (VDm) 0.2885** 0.2049**
机误 Residual variance (V) 0.2621* 0.0208

Table 4

Estimated heritability of fat and sucrose contents in peanut seed"

遗传率
Heritability
脂肪含量
Fat content
蔗糖含量
Sucrose content
胚狭义遗传率 Embryo narrow heritability 0.6097** 0.0287
胚广义遗传率 Embryo broad heritability 0.6216** 0.1012**
细胞质遗传率 Cytoplasmic heritability 0.0347** 0.0890**
母体狭义遗传率 Maternal narrow heritability 0.2773** 0.7118**
母体广义遗传率 Maternal broad heritability 0.3122** 0.8008**

Table 5

Estimated correlation components of fat and sucrose contents in peanut seed"

参数
Parameter
脂肪含量与蔗糖含量
Fat content and sucrose content
胚加性相关 Embryo additive correlation (rA) -1.0000**
胚显性相关 Embryo additive correlation (rD) 0.5411**
细胞质相关 Cytoplasmic correlation (rC) -1.0000**
母体加性相关 Maternal additive correlation (rAm) -0.0943**
母体显性相关 Maternal dominance correlation (rDm) 0.0349*

Table 6

Predictive genetic effect of fat content in peanut seed"

亲本
Parent
胚加性效应
Embryo additive effect
细胞质效应
Cytoplasmic effect
母体加性效应
Maternal additive effect
总和
Total
18-1951 1.1962** 0.3688* 0.7326* 3.0226
18-3101 0.9871* 0.7326** 1.4652** 3.1795
中花26 Zhonghua 26 0.3499 0.1741* 0.3483* 0.8673
A1507-3 -2.2249* -0.4382** -0.8764** -3.5395
冀花甜1号 Jihuatian 1 -0.8551** -0.9676** -1.9353** -3.7580

Table 7

Predictive genetic effect of sucrose contents in peanut seed"

亲本
Parent
胚加性效应
Embryo additive effect
细胞质效应
Cytoplasmic effect
母体加性效应
Maternal additive effect
总和
Total
18-1951 -0.2190 -0.3013** -0.6026** -1.1229
18-3101 -1.1775 -0.4601** -0.9202** -1.5578
中花26 Zhonghua 26 0.0381 -0.2691** -0.5383** -0.7693
A1507-3 0.1930 0.2705** 0.5410** 1.0045
冀花甜1号 Jihuatian 1 0.0920 0.7195** 1.4390** 2.2505
[1] 中华人民共和国国家统计局. https://data.stats.gov.cn/. [引用日期: 2021-08-12].
National Bureau of Statistics of China. https://data.stats.gov.cn/. [Reference data: 2021-08-12] (in Chinese).
[2] 淮东欣, 吴洁, 薛晓梦, 刘芳, 胡美玲, 晏立英, 陈玉宁, 王欣, 康彦平, 王志慧, 刘念, 姜慧芳, 雷永, 廖伯寿. 便携式高油酸花生鉴定仪的研制. 中国油料作物学报, 2021, 43: 1150-1158.
Huai D X, Wu J, Xue X M, Liu F, Hu M L, Yan L Y, Chen Y N, Wang X, Kang Y P, Wang Z H, Liu N, Jiang H F, Lei Y, Liao B S. Development of a portable instrument for identifying high oleate peanut. Chin J Oil Crop Sci, 2021, 43: 1150-1158. (in Chinese with English abstract)
[3] 姚云游, 乔玉兰. 花生功能成分及营养价值的研究进展. 中国油脂, 2005, (9): 29-31.
Yao Y Y, Qiao Y L. Advance in study on functional compositions and nutritive value of peanut. Chin Oils Fats, 2005, (9): 29-31. (in Chinese with English abstract)
[4] 张忠信, 朱松, 刘莉娜, 吴艳荣. 花生的营养成分与食疗方剂. 中国食物与营养, 2007, (11): 57-58.
Zhang Z X, Zhu S, Liu L N, Wu Y R. Nutrient composition of peanuts and dietary prescriptions. Food Nutr Chin, 2007, (11): 57-58. (in Chinese)
[5] 王丽, 王强, 刘红芝, 刘丽, 杜寅, 张建书. 花生加工特性与品质评价研究进展. 中国粮油学报, 2011, 26(10): 122-128.
Wang L, Wang Q, Liu H Z, Liu L, Du Y, Zhang J S. Research process on peanut processing characteristics and quality evaluation. J Chin Cereal Oil Assoc, 2011, 26(10): 22-128. (in Chinese with English abstract)
[6] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 1-6.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 1-6. (in Chinese with English abstract)
[7] 罗虹, 周桂元, 方洪标, 董桂军. 鲜食花生相关生化特性的研究. 花生学报, 2004, 33(4): 1-4.
Luo H, Zhou G Y, Fang H B, Dong G J. Studies on biochemical characters relative to direct edible peanut. J Peanut Sci, 2004, 33(4): 1-4. (in Chinese with English abstract)
[8] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38: 666-671.
Qin L, Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chi J Oil Crop Sci, 2016, 38: 666-671. (in Chinese with English abstract)
[9] 张海珍. 油菜籽品质性状的胚、细胞质和母体遗传效应分析. 浙江大学博士学位论文, 浙江杭州, 2004.
Zhang H Z. Analysis of Embryo, Cytoplasm and Maternal Genetic Effects for Quality Traits in Brassca napsuL. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2004. (in Chinese with English abstract)
[10] Brim C A, Schutz W M, Collins F I. Maternal effect on fatty acid composition and oil content of soybeans, Glycine max (L.) Merrill. Crop Sci, 1968, 8: 517-518.
doi: 10.2135/cropsci1968.0011183X000800050001x
[11] Hobbs D H, Flintham J E, Hills M J. Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol, 2004, 136: 3341-3349.
doi: 10.1104/pp.104.049486
[12] 吴吉祥, 王国建, 朱军, 许馥华, 季道藩. 陆地棉种子性状直接效应和母体效应的遗传分析. 作物学报, 1995, 21: 659-664.
Wu J X, Wang G J, Zhu J, Xu F H, Ji D F. Genetic analysis of direct effects and maternal effects of seed traits in upland cotton. Acta Agron Sin, 1995, 21: 659-664 (in Chinese with abstract).
[13] Pawlowski S H. Seed genotype and oil percentage relationship between seeds of a sunflower. Can J Genet Cytol, 1964, 6: 293-297.
doi: 10.1139/g64-038
[14] Liu J, Hao W J, Liu J, Fan S H, Zhao W, Deng L B, Wang X F, Hu Z Y, Hua W, Wang H Z. A novel chimeric mitochondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (Brassica napus). Mol Plant, 2019, 12: 582-596.
doi: 10.1016/j.molp.2019.01.012
[15] 包海柱, 高聚林, 马庆, 胡树平. 油用向日葵籽实品质性状的遗传研究. 中国粮油学报, 2013, 28(7): 50-55.
Bao H Z, Gao J L, Ma Q, Hu S P. Genetic study of quality traits in oil sunflower seed. J Chin Cereal Oil Assoc, 2013, 28(7): 50-55. (in Chinese with English abstract)
[16] 齐飞艳, 孙子淇, 黄冰艳, 秦利, 石磊, 刘华, 汪晓, 田梦迪, 郑峥, 董文召, 张新友. 基于双列杂交的花生主要品质性状遗传效应分析. 中国油料作物学报, 2021, 43: 600-607.
Qi F Y, Sun Z Q, Huang B Y, Qin L, Shi L, Liu H, Wang X, Tian M D, Zheng Z, Dong W Z, Zhang X Y. Genetic analysis of peanut quality traits based on a diallel cross design. Chin J Oil Crop Sci, 2021, 43: 600-607. (in Chinese with English abstract)
[17] Zhu J. Mixed model approaches for estimating genetic variances and covariances. J Biomathe, 1992, 7: 1-11.
[18] Weir B S, Zhu J. Analysis of cytoplasmic and maternal effects: I. A genetic model for diploid plant seeds and animals. Thero Appl Genet, 1994, 89: 153-159.
[19] Weir B S, Zhu J. Analysis of cytoplasmic and maternal effects: II. Genetic models for triploid endosperms. Theor Appl Genet, 1994, 89: 160-166.
doi: 10.1007/BF00225136 pmid: 24177823
[20] 朱军. 广义遗传模型与数量遗传分析新方法. 浙江农业大学学报, 1994, 20: 551-559.
Zhu J. General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ, 1994, 20: 551-559. (in Chinese with English abstract)
[21] 郭建斌. 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B. QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[22] 方敏, 丁小霞, 李培武, 张兆威, 陈小媚, 姜俊, 张文, 甘冬生. 索氏抽提测定含油量的方法改良及其应用. 中国油料作物学报, 2012, 34: 210-214.
Fang M, Ding X X, Lei P W, Zhang Z W, Chen X M, Jiang J, Zhang W, Gan D S. Modification of oilseeds soxhlet extraction for determination of oil content. Chin J Oil Crop Sci, 2012, 34: 210-214. (in Chinese with English abstract)
[23] 李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷峰, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47: 368-375.
doi: 10.3724/SP.J.1006.2021.04110
Li W T, Guo J B, Yu B L, Xu S L, Chen H W, Wu B, Gong T F, Huang L, Luo H Y, Chen Y N, Zhou X J, Liu N, Chen W G, Jiang H F. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed. Acta Agron Sin, 2021, 47: 368-375. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04110
[24] 黄冰艳, 胡京枝, 张新友, 苗利娟, 石磊, 吕登宇, 柴芃沛, 冯素萍, 刘华, 韩锁义, 汪晓, 齐飞艳, 孙子淇, 秦利, 董文召. 花生种子脂肪含量的直接和母体遗传效应分析. 中国油料作物学报, 2021, 43: 582-589.
Huang B Y, Hu J Z, Zhang X Y, Miao L J, Shi L, Lyu D Y, Zi P F, Feng S P, Liu H, Han S Y, Wang X, Qi F Y, Sun Z Q, Qin L, Dong W Z. Genetic analysis of direct and maternal effects of fat content in peanut seed. Chin J Oil Crop Sci, 2021, 43: 582-589. (in Chinese with English abstract)
[25] Wang X F, Liu G H, Yang Q, Hua W, Liu J, Wang H Z. Genetic analysis on oil content in rapeseed (Brassica napus L.). Euphytica, 2010, 173: 17-24.
doi: 10.1007/s10681-009-0062-x
[26] Hua W, Li R J, Zhan G M, Liu J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69: 432-444.
doi: 10.1111/j.1365-313X.2011.04802.x
[27] Chetelat R T, Klann E, Deverna J W, Yelle S, Bennett A B. Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. Plant J, 1993, 4: 643-650.
doi: 10.1046/j.1365-313X.1993.04040643.x
[28] Hai Y C, Lin G H, Zhang G Y, Chen Y P, Huang S Y. Improving breeding efficiency for quality and yield of sweet potato. Bot Stud, 2007, 48: 283-292.
[29] Baafi E, Gracen V E, Aduening J M, Blay E T, Ofori K, Carey E E. Genetic control of dry matter, starch and sugar content in sweet potato. Acta Agric Scand Section B: Soil Plant Sci, 2016, 67: 110-118.
[30] 李文, 刘迎春, 张维东, 王秀飞, 杜恒国, 郗登宝. 甜菜主要数量性状遗传研究与应用. 中国糖料, 2005, (3): 6-13.
Li W, Liu Y C, Zhang W D, Wang X F, Du H G, Xi D B. Studies of some important quantitative genetic characters in sugar beet. Sugar Crops Chin, 2005, (3): 6-13. (in Chinese with English abstract)
[31] 宫庆友, 施继卫, 谢河山, 徐磊, 李玲玲. 甜玉米的遗传机理和育种方法. 亚热带农业研究, 2005, (4): 7-9.
Gong Q Y, Shi J W, Xie H S, Xu L, Li L L. Approaches to genetic mechanism and breeding methods of sweets maize. Subtrop Agric Res, 2005, (4): 7-9. (in Chinese with English abstract)
[32] 秦利, 刘华, 张新友, 杜培, 代小冬, 孙子淇, 齐飞艳, 董文召, 黄冰艳, 韩锁义, 张忠信, 徐静. 花生籽仁蔗糖含量多世代联合群体主基因+多基因遗传模型分析. 中国油料作物学报, 2021, 43: 590-599.
Qin L, Liu H, Zhang X Y, Du P, Dai X D, Sun Z Q, Qi F Y, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Xu J. Genetic analysis of sugar content in peanut kernel via mixed major gene plus polygene inheritance model in multi-generation combined population. Chin J Oil Crop Sci, 2021, 43: 590-599. (in Chinese with English abstract)
[33] Jiang G L, Chen P Y, Zhang J P, Palacios L L F, Zeng A L, Wang X Z, Bowen R A, Miller A, Berry H. Genetic analysis of sugar composition and its relationship with protein, oil, and fiber in soybean. Crop Sci, 2018, 58: 2413-2421.
doi: 10.2135/cropsci2018.03.0173
[34] 朱圣庚, 徐长法. 生物化学(第4版, 下册). 北京: 高等教育出版社, 2016. pp 377-383.
Zhu S G, Xu C F. Biochemistry, 4th edn (Volume II). Beijing: Higher Education Press, 2016. pp 377-383. (in Chinese)
[1] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[2] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[3] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[6] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[7] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[8] WANG Yi-Xuan, JIA Hao, LU Jie, SHI Xiao-Yu, ZHAO Ming-Yu, GAO Zhen-Zhen, ZHAO Jiong-Chao, CHU Qing-Quan. Water footprint and water consumption structure of peanut production in Yellow-Huaihe-Hai agricultural area [J]. Acta Agronomica Sinica, 2022, 48(12): 3203-3214.
[9] WANG Jian-Guo, GENG Yun, YANG Dian-Qing, GUO Feng, YANG Sha, LI Xin-Guo, TANG Zhao-Hui, ZHANG Jia-Lei, WAN Shu-Bo. Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield drylands [J]. Acta Agronomica Sinica, 2022, 48(11): 2866-2878.
[10] SUN Qi-Qi, ZHENG Yong-Mei, YU Tian-Yi, WU Yue, YANG Ji-Shun, WU Zheng-Feng, WU Ju-Xiang, LI Shang-Xia. Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization [J]. Acta Agronomica Sinica, 2022, 48(10): 2575-2587.
[11] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[12] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[13] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[14] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[15] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .