Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2866-2878.doi: 10.3724/SP.J.1006.2022.14212

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield drylands

WANG Jian-Guo1,2(), GENG Yun1, YANG Dian-Qing3, GUO Feng1,2, YANG Sha1,2, LI Xin-Guo1,2, TANG Zhao-Hui1,2, ZHANG Jia-Lei1,2,*(), WAN Shu-Bo1,2,*()   

  1. 1Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2Scientific Observation and Experiment Station of Crop Cultivation in East China, Ministry of Agriculture and Rural Affairs, Dongying 257000, Shandong, China
    3Office of Peanut Industry Development of Junan, Linyi 276600, Shandong, China
  • Received:2021-11-15 Accepted:2022-02-25 Online:2022-11-12 Published:2022-03-25
  • Contact: ZHANG Jia-Lei,WAN Shu-Bo E-mail:wang_jianguo2020@163.com;zhangjialei19@163.com;wanshubo2016@163.com
  • Supported by:
    The National Key Research and Development Program of China “Integration and Demonstration of Peanut High Quality, Light, Simple and Efficient Cultivation Technology”(2020YFD1000905);The General Project of Shandong Natural Science Foundation(ZR2020MC094);The Funds for Guiding Local Scientific and Technological Development by the Central Government of Shandong Province(YDZX20203700001861)

Abstract:

To investigate the suitable single seed precision sowing density in medium and high-yield drylands and provide a theoretical basis for high-yield and high-efficiency cultivation in peanut, the overyielding mechanism of single seed precision sowing was studied by analyzing the differences of individual and population quality and nutrient absorption under different single seed precision sowing planting densities of peanut in medium and high-yield drylands. High-yield drylands were selected in Pingdu (PD) of Shandong province and middle drylands were selected in Jiyang (JY) of Shandong province for field experiments in 2018 and 2019. Three single seed precision sowing density treatments were established. Compared with the double-seed sowing (278,000 plants hm-2, DS18.0, CK), three single seed precision sowing treatments were 278,000 plants hm-2 (SS9.0), 238,000 plants hm-2 (SS10.5), and 208,000 plants hm-2 (SS12.0), respectively. Plant spacing of single seed sowing of SS9.0, SS10.5, and SS12.0 treatments in peanut was 9.0, 10.5, and 12.0 cm, and plant spacing of double-seed sowing of DS18.0 treatment in peanut was 18.0 cm. The results showed that compared with double seed sowing treatment (DS18.0), single seed precision sowing cultivation improved leaf SPAD, net photosynthetic rate, leaf area index (LAI), the peak value, and duration of leaf area index were higher. Single seed precision sowing exerted the potential of single plant dry matter production, increased the maximum accumulation rate of population dry matter by 6.1% to 20.7%, and realized the rapid accumulation of dry matter. For high-yield drylands in Pingdu, the population dry matter accumulation was SS12.0>SS9.0>SS10.5>DS18.0 at mature stage, and that was SS9.0>SS12.0>SS10.5>DS18.0 under middle-yield dryland in Jiyang. Compared with DS18.0, the population dry matter accumulation of single seed sowing cultivation increased by 5.4%-14.9%. Single seed precision sowing cultivation promoted the absorption and the accumulation of N, P, K, and Ca of individual plants and population plants, and increased the distribution ratio of N and P nutrients to pods, and improved fertilizer utilization efficiency. For high-yield drylands, by increasing individual productivity and increasing the number of full fruits and 100-fruit weight per plant, single seed precision sowing had achieved population yield increase of 13.6%-19.1% (2018) and 15.5%-23.8% (2019), and the suitable single seed precision sowing density was 208,000 plants hm-2. In the middle yield dryland, single seed precision sowing promoted individual fitness and formed the population advantage of high density, which was the key effect to increase production with an increase of 8.4%-19.4% (2018) and 13.9%-27.8% (2019), and the suitable density was 278,000 plants hm-2. In conclusion, the population quality and nutrient absorption of high-yield drylands were better than that of middle-yield drylands. The single-seed precision seeding cultivation model can make full use of the production potential of a single plant for medium and high-yield drylands in peanut, promote the accumulation of photosynthetic product and the absorption and utilization of nutrients, and consequently improve the quality of peanuts in both medium and high-yield drylands. This mechanism was characterized by “strong source”, “smooth flow”, and “large sink”. Therefore, this method could help to increase the pod yield and harvest index, and realize the high yield and high efficiency of peanut.

Key words: peanut, single seed precision sowing, population quality, medium and high yield drylands, nutrient, yield

Table 1

Effects of single seed precision sowing on yield and yield components in peanut"

年份
Year
样点
Spot
处理
Treatment
饱果数
Full pods (×105 hm-2)
秕果数
Unfull pods (×105 hm-2)
单株饱
果数
Full pods
per plant
单株秕
果数
Unfull pods per plant
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
收获
指数
Harvest index
产量
Pod yield
(kg hm-2)
2018 PD SS9.0 31.0 a 20.4 a 11.2 b 7.3 ab 215.5 bc 85.3 b 0.60 a 7480.9 a
SS10.5 30.1 a 17.9 bc 12.7 ab 7.5 ab 226.6 b 88.3 a 0.59 a 7216.3 ab
SS12.0 29.8 a 17.0 c 14.3 a 8.2 a 232.7 a 89.7 a 0.61 a 7565.5 a
DS18.0 25.9 b 19.9 a 9.3 c 7.2 ab 209.9 c 83.4 bc 0.57 b 6349.6 c
2019 PD SS9.0 31.9 a 19.8 a 11.5 b 7.1 ab 225.8 b 89.5 a 0.55 c 7559.8 a
SS10.5 28.5 ab 17.7 bc 12.0 ab 7.4 ab 232.0 a 90.4 a 0.54 c 7147.7 b
SS12.0 30.2 a 15.1 d 14.5 a 7.2 ab 240.0 a 91.5 a 0.55 c 7667.0 a
DS18.0 29.1 a 16.2 cd 10.5 b 5.8 b 221.5 b 86.9 b 0.50 e 6190.6 c
2018 JY SS9.0 21.2 c 19.6 a 7.6 cd 6.6 b 204.8 c 82.1 bc 0.54 c 4713.4 d
SS10.5 19.7 cd 15.7 cd 8.3 c 6.5 b 208.0 c 84.3 b 0.53 cd 4279.7 e
SS12.0 19.9 cd 13.5 e 9.6 c 6.6 b 214.7 bc 86.1 b 0.54 c 4591.1 d
DS18.0 17.9 de 18.5 b 6.4 b 6.7 ab 199.2 d 77.7 d 0.51 de 3946.4 e
2019 JY SS9.0 20.6 c 17.6 bc 7.4 d 6.3 b 205.7 c 80.7 c 0.53 cd 4502.3 d
SS10.5 19.0 d 16.8 c 8.0 c 7.1 ab 208.6 c 82.3 bc 0.52 d 4013.0 e
SS12.0 18.7 e 13.7 e 9.0 c 7.3 ab 216.9 bc 85.7 b 0.53 cd 4474.5 d
DS18.0 16.9 e 18.1 b 6.1 d 6.2 b 198.4 d 76.4 d 0.50 e 3522.6 f

Fig. 1

Effects of single seed precision sowing on SPAD values of peanut functional leaves PD: Pingdu; JY: Jiyang. Different lowercase letters indicate significant differences between treatments during the same period at P < 0.05. Treatments are the same as those given in Table 1. Values are means of eight replicates."

Fig. 2

Effects of single seed precision sowing on LAI of peanut PD: Pingdu; JY: Jiyang; LAI: leaf area index. Treatments are the same as those given in Table 1. Values are means of three replicates."

Table 2

Effects of single seed precision sowing on photosynthesis of peanut at pod-filling stage"

处理
Treatment
PD JY
净光合速率
Pn
(μmol m-2 s-1)
气孔导度
Gs
(mol H2O m-2 s-1)
胞间CO2
浓度
Ci (μL L-1)
蒸腾速率
Tr
(mmol m-2 s-1)
净光合速率
Pn
(μmol m-2 s-1)
气孔导度
Gs
(mol H2O m-2 s-1)
胞间CO2
浓度
Ci (μL L-1)
蒸腾速率
Tr
(mmol m-2 s-1)
SS9.0 23.8 b 0.31 c 196.0 b 4.1 c 21.4 c 0.22 c 167.4 b 3.6 c
SS10.5 24.0 b 0.41 b 230.0 a 4.7 b 23.5 b 0.31 b 186.0 a 4.3 b
SS12.0 27.2 a 0.49 a 231.9 a 5.1 a 26.4 a 0.42 a 192.1 a 5.3 a
DS18.0 22.8 c 0.24 d 174.4 c 3.6 d 19.3 d 0.19 c 157.2 c 3.5 c

Table 3

Dynamic characteristic values of dry matter accumulation under medium and high yield dryland in peanut"

样点
Spot
处理
Treatment
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
回归方程
Regression equation
决定系数R2
Coefficient of determination
PD SS9.0 13,842.5 285.8 68.2 52.3 84.1 31.9 $y=\frac{13842.5}{1+279.52731{{\text{e}}^{-0.0826x}}}$ 0.9882
SS10.5 13,206.0 287.9 66.0 50.9 81.1 30.2 $y=\frac{13206.0}{1+315.98666{{\text{e}}^{-0.0872x}}}$ 0.9892
SS12.0 14,315.7 317.1 66.2 51.4 81.1 29.7 $y=\frac{14315.7}{1+353.86569{{\text{e}}^{-0.0886x}}}$ 0.9949
DS18.0 12,485.1 262.8 67.3 51.7 83.0 31.3 $y=\frac{12485.1}{1+290.26665{{\text{e}}^{-0.0842x}}}$ 0.9898
JY SS9.0 12,608.0 242.1 64.4 47.3 81.6 34.3 $y=\frac{12608.0}{1+141.11851{{\text{e}}^{-0.0768x}}}$ 0.9859
SS10.5 11,583.2 225.6 63.4 46.5 80.3 33.8 $y=\frac{11583.2}{1+139.98423{{\text{e}}^{-0.0779x}}}$ 0.9879
SS12.0 12,116.7 237.5 62.9 46.1 79.7 33.6 $y=\frac{12116.7}{1+138.57338{{\text{e}}^{-0.0784x}}}$ 0.981
DS18.0 11,002.7 212.6 64.2 47.1 81.2 34.1 $y=\frac{11002.7}{1+142.55102{{\text{e}}^{-0.0773x}}}$ 0.9867

Fig. 3

Effects of single seed precision sowing on dry matter accumulation of individual and population plant in peanut PD: Pingdu; JY: Jiyang. Treatments are the same as those given in Table 1. Values are means of three replicates."

Table 4

Effects of single seed precision sowing at different densities on N accumulation and distribution of individual and population plants in peanut"

样点
Spot
处理
Treatment
群体氮素积累
N accumulation
in total plants
(kg hm-2)
氮素积累
N accumulation (mg plant-1)
氮素分配比例
N distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 402.5 a 1447.9 c 10.7 c 143.7 c 167.1 d 1126.4 b 0.7 c 9.9 d 11.5 d 77.8 a
SS10.5 381.0 b 1601.0 b 13.1 b 176.5 b 196.2 c 1215.2 b 0.8 b 11.2 c 12.3 d 75.9 b
SS12.0 401.8 a 1931.5 a 16.9 a 190.5 a 219.7 b 1504.5 a 0.9 a 9.9 d 11.4 b 77.9 a
DS18.0 371.8 b 1337.3 d 10.9 c 179.3 b 167.8 d 979.3 c 0.8 b 13.4 a 12.6 c 73.2 c
JY SS9.0 344.8 c 1240.4 d 15.7 a 157.2 c 196.8 c 870.8 c 1.3 a 12.7 bc 15.9 b 70.2 d
SS10.5 315.0 d 1323.4 d 15.2 a 175.7 b 231.7 b 900.9 c 1.2 a 13.3 b 17.5 a 68.1 c
SS12.0 341.7 c 1642.6 b 14.2 ab 189.7 a 270.0 a 1168.6 b 0.9 a 11.6 c 16.4 ab 71.2 d
DS18.0 308.2 d 1108.5 e 13.7 ab 175.8 b 195.6 c 723.4 d 1.2a 15.9 a 17.6 a 65.3 e

Table 5

Effects of single seed precision sowing at different densities on P accumulation and distribution of individual and population plants in peanut"

样点
Spot
处理
Treatment
群体磷素积累
P accumulation
in total plants
(kg hm-2)
磷素积累
P accumulation (mg plant-1)
磷素分配比例
P distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 52.6 a 189.4 c 3.1 a 29.7 b 14.5 e 142.0 b 1.7 b 15.7 c 7.6 d 75.0 a
SS10.5 48.4 c 203.5 b 2.9 a 32.7 a 17.6 d 150.3 b 1.4 c 16.1 c 8.7 d 73.9 b
SS12.0 50.1 b 241.0 a 3.2 a 35.3 a 19.8 c 182.7 a 1.3 c 14.7 d 8.2 d 75.8 a
DS18.0 43.4 d 156.1 d 1.5 b 28.8 b 16.0 d 109.9 c 1.0 d 18.4 a 10.2 c 70.4 c
JY SS9.0 44.8 d 161.3 d 4.6 a 29.8 b 17.4 d 109.5 c 2.9 a 18.5 b 10.8 c 67.9 d
SS10.5 40.0 e 167.9 d 3.4 a 32.6 a 21.5 b 110.4 c 2.0 b 19.4 b 12.8 b 65.8 e
SS12.0 42.0 d 202.1 b 2.7 ab 34.8 a 24.1 a 140.5 b 1.3 c 17.2 bc 11.9 b 69.5 c
DS18.0 36.5 f 131.3 e 1.9 b 28.4 b 18.6 cd 82.4 d 1.4 c 21.6 a 14.2 a 62.8 f

Table 6

Effects of single seed precision sowing at different densities on K accumulation and distribution of individual and population plants in peanut"

样点
Spot
处理
Treatment
群体钾素积累
K accumulation
in total plants
(kg hm-2)
钾素积累
K accumulation (mg plant-1)
钾素分配比例
K distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 189.0 a 679.9 e 12.3 c 314.0 c 86.2 c 267.5 c 1.8 a 46.2 b 12.7 b 39.4 a
SS10.5 181.8 ab 763.8 c 12.3 c 354.7 b 96.0 b 300.8 b 1.6 a 46.4 b 12.6 b 39.4 a
SS12.0 183.8 ab 883.5 a 11.9 cd 410.3 a 116.0 ab 345.3 a 1.4 a 46.4 b 13.1 b 39.1 a
DS18.0 176.9 b 636.5 f 10.9 d 291.4 c 82.5 c 251.6 c 1.7 a 45.8 b 13.0 b 39.5 a
JY SS9.0 186.5 ab 671.0 e 17.9 a 335.4 b 103.7 b 213.9 d 2.7 a 50.0 a 15.5 a 31.9 c
SS10.5 168.8 bc 709.3 d 14.3 b 352.7 b 117.4 ab 225.0 d 2.0 a 49.7 a 16.6 a 31.7 c
SS12.0 171.5 b 824.4 b 14.7 b 412.1 a 136.4 a 261.3 c 1.8 a 50.0 a 16.5 a 31.7 c
DS18.0 165.5 c 595.2 g 13.8 b 288.3 c 96.1 b 197.0 d 2.3 a 48.4 ab 16.2 a 33.1 b

Table 7

Effects of single seed precision sowing at different densities on Ca accumulation and distribution of individual and population plant in peanut"

样点
Spot
处理
Treatment
群体钙素积累
Ca accumulation
in total plants
(kg hm-2)
钙素积累
Ca accumulation (mg plant-1)
钙素分配比例
Ca distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 117.1 a 421.1 c 11.5 b 144.7 bc 160.6 c 104.4 cd 2.7 ab 34.4 a 38.1 b 24.8 a
SS10.5 120.4 a 506.0 b 14.0 a 191.9 a 174.0 c 126.2 b 2.8 ab 38.0 a 34.4 c 24.9 a
SS12.0 122.72 a 590.0 a 14.7 a 205.1 a 223.7 ab 146.5 a 2.5 b 34.8 a 37.9 b 24.8 a
DS18.0 102.7 b 369.5 d 8.5 c 135.9 c 127.9 d 97.2 d 2.3 bc 36.8 a 34.6 c 26.3 a
JY SS9.0 124.6 a 448.3 c 16.7 a 161.4 b 185.8 c 84.4 e 3.7 a 36.0 a 41.4 a 18.8 b
SS10.5 119.4 a 501.9 b 16.2 a 179.0 b 212.7 b 94.0 d 3.2 a 35.7 a 42.4 a 18.7 b
SS12.0 122.1 a 586.8 a 12.3 b 212.2 a 250.3 a 112.0 c 2.1 c 36.1 a 42.7 a 19.1 b
DS18.0 107.7 b 387.5 d 10.7 c 138.3 c 158.4 c 80.1 e 2.8 ab 35.7 a 40.8 a 20.7 b

Fig. 4

Effects of single seed precision sowing on fertilizer partial factor productivity in peanut PD: Pingdu; JY: Jiyang. Different lowercase letters significant differences between treatments at P < 0.05. Treatments are the same as those given in Table 1. Values are means of three replicates."

[1] 王才斌. 实施理性栽培, 推进山东花生生产可持续发展. 花生学报, 2018, 47(1): 74-76.
Wang C B. Rational cultivation promotes the sustainable development of peanut production in Shandong. J Peanut Sci, 2018, 47(1): 74-76. (in Chinese with English abstract)
[2] 王在序, 盖树人. 山东花生. 上海: 上海科学技术出版社, 1999. pp 1-15.
Wang Z X, Ge S R. Shandong Peanut. Shanghai: Shanghai Scientific and Technolical publishers, 1999. pp 1-15. (in Chinese)
[3] Reddy T Y, Reddy V R, Anbumozhi V. Physiological responses of peanut (Arachis hypogaea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul, 2003, 41: 75-88.
doi: 10.1023/A:1027353430164
[4] 万书波, 张佳蕾. 花生单粒精播高产栽培理论与技术. 北京: 科学出版社, 2020. pp 231-251.
Wan S B, Zhang J L. Theory and Technology of Peanut High Yield Cultivation with Single Seed Precision Sowing. Beijing: Science Press, 2020. pp 231-251. (in Chinese)
[5] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 35-48.
Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 35-48. (in Chinese with English abstract)
[6] Wang Y, Pang Y L, Chen K, Zhai L Y, Shen C C, Wang S, Xu J L. Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. Crop J, 2020, 8: 119-131.
doi: 10.1016/j.cj.2019.05.001
[7] Senthold A, Belay T K, Marcelo H L, Amador C, Daniel F C. Simulating the impact of source-sink manipulations in wheat. Field Crops Res, 2017, 202: 47-56.
doi: 10.1016/j.fcr.2016.04.031
[8] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51: 4264-4276.
Xiao J B, Liu Z, Kong F X, Xin Z X, Wu H S. Effects of planting pattern and density on population structure and yield of sorghum. Sci Agric Sin, 2018, 51: 4264-4276 (in Chinese with English abstract).
[9] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34: 447-455.
doi: 10.3724/SP.J.1006.2008.00447
Lyu L H, Tao H B, Xia L K, Zhang Y J, Zhao M, Zhao J R, Wang P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin, 2008, 34: 447-455. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00447
[10] 张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2): 52-58.
Zhang J L, Guo F, Miao H C, Li L M, Yang S, Geng Y, Meng J J, Li X G, Wan S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. J Peanut Sci, 2018, 47(2): 52-58. (in Chinese with English abstract)
[11] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757-3766.
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757-3766. (in Chinese with English abstract)
[12] Liang X Y, Guo F, Feng Y, Zhang J L, Yang S, Meng J J, Li X G, Wan S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea. J Integr Agric, 2020, 19: 1019-1032.
doi: 10.1016/S2095-3119(19)62712-7
[13] Zhang J L, Geng Y, Guo F, Li X G, Wan S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. J Integr Agric, 2020, 19: 1919-1927.
doi: 10.1016/S2095-3119(19)62763-2
[14] 赵长星, 邵长亮, 王月福, 宋传雪, 王铭伦. 单粒精播模式下种植密度对花生群体生态特征及产量的影响. 农学学报, 2013, 3(2):1-5.
Zhao C X, Shao C L, Wang Y F, Song C X, Wang M L. Effects of different planting densities on population ecological characteristics and yield of peanut under the mode of single-seed precision sowing. J Agric, 2013, 3(2): 1-5 (in Chinese with English abstract).
[15] 冯烨, 郭峰, 李宝龙, 孟静静, 李新国, 万书波. 单粒精播对花生根系生长、根冠比和产量的影响. 作物学报, 2013, 39: 2228-2237.
doi: 10.3724/SP.J.1006.2013.02228
Feng Y, Guo F, Li B L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing on root growth, root-shoot ratio, and yield in peanut (Arachis hypogaca L.). Acta Agron Sin, 2013, 39: 2228-2237. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02228
[16] 梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26: 3700-3706.
Liang X Y, Guo F, Zhang J L, Meng J J, Li L, Wan S B, Li X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca). Chin J Appl Ecol, 2015, 26: 3700-3706. (in Chinese with English abstract)
[17] 姚远, 刘兆新, 刘妍, 刘婷如, 何美娟, 李向东. 花生、玉米不同间作方式对花生生理性状以及产量的影响. 花生学报, 2017, 46(1): 1-7.
Yao Y, Liu Z X, Liu Y, Liu T R, He M J, Li X D. Effect of different peanut-maize intercropping patterns on peanut growth and yield. J Peanut Sci, 2017, 46(1): 1-7. (in Chinese with English abstract)
[18] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666-1679.
doi: 10.3724/SP.J.1006.2021.04186
Wang J G, Zhang J L, Guo F, Tang Z H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut. Acta Agron Sin, 2021, 47: 1666-1679. (in Chinese with English abstract)
[19] 武兰芳, 欧阳竹. 不同播量与行距对小麦产量与辐射截获利用的影响. 中国生态农业学报, 2014, 22: 31-36.
Wu L F, Qu-yang Z. Effects of row spacing and seeding rate on radiation use efficiency and grain yield of wheat. Chin J Eco-Agric, 2014, 22: 31-36. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2014.30568
[20] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类. 作物学报, 2021, 47: 1712-1723.
doi: 10.3724/SP.J.1006.2021.04164
Gao F, Liu Z X, Zhao J H, Wang Y, Pan X Y, Lai H J, Li X D, Yang D Q. Source-sink characteristics and classification of peanut major cultivars in North China. Acta Agron Sin, 2021, 47: 1712-1723. (in Chinese with English abstract)
[21] 张佳蕾, 张雷, 林英杰, 刘颖, 王建国, 郭峰, 唐朝辉, 李新国, 万书波. 单粒精播对花生生物学特性的影响. 中国油料作物学报, 2020, 42: 960-969.
Zhang J L, Zhang L, Lin Y J, Liu Y, Wang J G, Guo F, Tang Z H, Li X G, Wan S B. Effects of single seed sowing on biological characteristics of peanut. Chin J Oil Crop Sci, 2020, 42: 960-969. (in Chinese with English abstract)
[22] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响. 作物学报, 2020, 46: 1605-1616.
Liu J H, Wu Z F, Shen P, Yu T Y, Zheng Y M, Sun X W, Li L, Chen D X, Wang C B, Wan S B. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed planting in peanut. Acta Agron Sin, 2020, 46: 1605-1616. (in Chinese with English abstract)
[23] 赵鹏飞. 小麦/玉米轮作体系农户产量差定量及其缩减途径. 中国农业大学博士学位论文, 北京, 2016.
Zhao P F. Quantifying and Closing Yield Gaps for Winter Wheat and Summer Maize Rotation in Smallholder Farming System. PhD Dissertation of China Agricultural University, Beijing, China, 2016. (in Chinese with English abstract)
[24] 李娜, 姜伟, 周进, 张华, 崔中凯, 邸志峰. 山东省花生生产全程机械化现状与对策建议. 中国农机化学报, 2019, 40(10): 42-50.
doi: 10.13733/j.jcam.issn.2095-5553.2019.10.09
Li N, Jiang W, Zhou J, Zhang H, Cui Z K, Di Z F. Present situation and countermeasures of peanut production mechanization in Shandong province. J Chin Agric Mechan, 2019, 40(10): 42-50. (in Chinese with English abstract)
[25] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响. 作物学报, 2021, 47: 2459-2470.
doi: 10.3724/SP.J.1006.2021.04252
Dong E W, Wang J S, Wu A L, Wang Y, Wang L G, Han X, Guo J, Jiao X Y. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle. Acta Agron Sin, 2021, 47: 2459-2470. (in Chinese with English abstract)
[26] 梁晓艳, 郭峰, 张佳蕾, 李林, 孟静静, 李新国, 万书波. 不同密度单粒精播对花生养分吸收及分配的影响. 中国生态农业学报, 2016, 24: 893-901.
Liang X Y, Guo F, Zhang J L, Li L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing at different densities on nutrient uptake and distribution in peanut. Chin J Eco-Agric, 2016, 24: 893-901. (in Chinese with English abstract)
[27] 余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响. 植物营养与肥料学报, 2009, 15: 1-8.
Yu C B, Sun J H, Li L. Effects of interspecific interactions on crop growth and nutrition accumulation. Plant Nutr Fert Sci, 2009, 15: 1-8. (in Chinese with English abstract)
[28] 董钻, 那桂秋. 大豆叶、粒关系的研究. 大豆科学, 1993, 12(1): 1-7.
Dong Z, Na G Q. Correlative performance between leaf and seed in soybeans. Soybean Sci, 1993, 12(1): 1-7. (in Chinese with English abstract)
[29] 潘晓华, 邓强辉. 作物收获指数的研究进展. 江西农业大学学报, 2007, 29: 1-5.
Pan X H, Deng Q H. Research progress of crop harvest index. Acta Agric Univ Jiangxiensis, 2007, 29: 1-5. (in Chinese with English abstract)
[30] 赵桂范, 连成才, 郑天琪, 王成, 张洪全. 种植方式对大豆植株干物质积累及养分吸收影响的研究. 大豆科学, 1995, 14: 233-240.
Zhao G F, Lian C C, Zheng T Q, Wang C, Zhang H Q. Effects of planting methods on dry matter accumulation and nutrient absorption of soybean plants. Soybean Sci, 1995, 14: 233-240. (in Chinese with English abstract)
[31] Damisch W. Biomass yield and topical issue in model wheat breeding programmers. Plant Breed, 1996, 107: 11-17.
doi: 10.1111/j.1439-0523.1991.tb00523.x
[1] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[2] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[3] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[4] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[5] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[6] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[7] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[8] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[9] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[10] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[11] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[12] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[13] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[14] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[15] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .